(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → MARK(X)
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)
A__U21(tt, V2) → A__U22(a__isList(V2))
A__U21(tt, V2) → A__ISLIST(V2)
A__U41(tt, V2) → A__U42(a__isNeList(V2))
A__U41(tt, V2) → A__ISNELIST(V2)
A__U51(tt, V2) → A__U52(a__isList(V2))
A__U51(tt, V2) → A__ISLIST(V2)
A__U71(tt, P) → A__U72(a__isPal(P))
A__U71(tt, P) → A__ISPAL(P)
A__ISLIST(V) → A__U11(a__isNeList(V))
A__ISLIST(V) → A__ISNELIST(V)
A__ISLIST(__(V1, V2)) → A__U21(a__isList(V1), V2)
A__ISLIST(__(V1, V2)) → A__ISLIST(V1)
A__ISNELIST(V) → A__U31(a__isQid(V))
A__ISNELIST(V) → A__ISQID(V)
A__ISNELIST(__(V1, V2)) → A__U41(a__isList(V1), V2)
A__ISNELIST(__(V1, V2)) → A__ISLIST(V1)
A__ISNELIST(__(V1, V2)) → A__U51(a__isNeList(V1), V2)
A__ISNELIST(__(V1, V2)) → A__ISNELIST(V1)
A__ISNEPAL(V) → A__U61(a__isQid(V))
A__ISNEPAL(V) → A__ISQID(V)
A__ISNEPAL(__(I, __(P, I))) → A__U71(a__isQid(I), P)
A__ISNEPAL(__(I, __(P, I))) → A__ISQID(I)
A__ISPAL(V) → A__U81(a__isNePal(V))
A__ISPAL(V) → A__ISNEPAL(V)
MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X)) → A__U11(mark(X))
MARK(U11(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → A__U22(mark(X))
MARK(U22(X)) → MARK(X)
MARK(isList(X)) → A__ISLIST(X)
MARK(U31(X)) → A__U31(mark(X))
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → A__U41(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → A__U42(mark(X))
MARK(U42(X)) → MARK(X)
MARK(isNeList(X)) → A__ISNELIST(X)
MARK(U51(X1, X2)) → A__U51(mark(X1), X2)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → A__U52(mark(X))
MARK(U52(X)) → MARK(X)
MARK(U61(X)) → A__U61(mark(X))
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → A__U72(mark(X))
MARK(U72(X)) → MARK(X)
MARK(isPal(X)) → A__ISPAL(X)
MARK(U81(X)) → A__U81(mark(X))
MARK(U81(X)) → MARK(X)
MARK(isQid(X)) → A__ISQID(X)
MARK(isNePal(X)) → A__ISNEPAL(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 28 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U71(tt, P) → A__ISPAL(P)
A__ISPAL(V) → A__ISNEPAL(V)
A__ISNEPAL(__(I, __(P, I))) → A__U71(a__isQid(I), P)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U71(tt, P) → A__ISPAL(P)
A__ISNEPAL(__(I, __(P, I))) → A__U71(a__isQid(I), P)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U71(x1, x2)  =  A__U71(x1, x2)
tt  =  tt
A__ISPAL(x1)  =  x1
A__ISNEPAL(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
a__isQid(x1)  =  x1
a____(x1, x2)  =  a____(x1, x2)
mark(x1)  =  x1
nil  =  nil
a__U11(x1)  =  x1
a__U21(x1, x2)  =  a__U21(x1)
a__U22(x1)  =  a__U22
a__isList(x1)  =  x1
a__U31(x1)  =  x1
a__U41(x1, x2)  =  a__U41(x1, x2)
a__U42(x1)  =  x1
a__isNeList(x1)  =  x1
a__U51(x1, x2)  =  x2
a__U52(x1)  =  x1
a__U61(x1)  =  a__U61(x1)
a__U71(x1, x2)  =  x1
a__U72(x1)  =  a__U72
a__isPal(x1)  =  a__isPal(x1)
a__U81(x1)  =  x1
a__isNePal(x1)  =  a__isNePal(x1)
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
U11(x1)  =  x1
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22
isList(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U42(x1)  =  x1
isNeList(x1)  =  x1
U51(x1, x2)  =  x2
U52(x1)  =  x1
U61(x1)  =  U61(x1)
U71(x1, x2)  =  x1
U72(x1)  =  U72
isPal(x1)  =  isPal(x1)
U81(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  isNePal(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[2, a2, aU211, U211] > AU712
[2, a2, aU211, U211] > [tt, aU22, aU72, i, u, U22, U72]
[2, a2, aU211, U211] > [aU412, U412]
nil > [tt, aU22, aU72, i, u, U22, U72]
[aisPal1, isPal1] > [tt, aU22, aU72, i, u, U22, U72]
[aisPal1, isPal1] > [aisNePal1, isNePal1] > [aU611, U611]
a > [tt, aU22, aU72, i, u, U22, U72]
e > [tt, aU22, aU72, i, u, U22, U72]
o > [tt, aU22, aU72, i, u, U22, U72]

Status:
AU712: [1,2]
tt: []
_2: [1,2]
a2: [1,2]
nil: []
aU211: [1]
aU22: []
aU412: [1,2]
aU611: [1]
aU72: []
aisPal1: [1]
aisNePal1: [1]
a: []
e: []
i: []
o: []
u: []
U211: [1]
U22: []
U412: [1,2]
U611: [1]
U72: []
isPal1: [1]
isNePal1: [1]


The following usable rules [FROCOS05] were oriented:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISPAL(V) → A__ISNEPAL(V)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U21(tt, V2) → A__ISLIST(V2)
A__ISLIST(V) → A__ISNELIST(V)
A__ISNELIST(__(V1, V2)) → A__U41(a__isList(V1), V2)
A__U41(tt, V2) → A__ISNELIST(V2)
A__ISNELIST(__(V1, V2)) → A__ISLIST(V1)
A__ISLIST(__(V1, V2)) → A__U21(a__isList(V1), V2)
A__ISLIST(__(V1, V2)) → A__ISLIST(V1)
A__ISNELIST(__(V1, V2)) → A__U51(a__isNeList(V1), V2)
A__U51(tt, V2) → A__ISLIST(V2)
A__ISNELIST(__(V1, V2)) → A__ISNELIST(V1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U21(tt, V2) → A__ISLIST(V2)
A__ISNELIST(__(V1, V2)) → A__U41(a__isList(V1), V2)
A__ISNELIST(__(V1, V2)) → A__ISLIST(V1)
A__ISLIST(__(V1, V2)) → A__U21(a__isList(V1), V2)
A__ISLIST(__(V1, V2)) → A__ISLIST(V1)
A__ISNELIST(__(V1, V2)) → A__U51(a__isNeList(V1), V2)
A__ISNELIST(__(V1, V2)) → A__ISNELIST(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U21(x1, x2)  =  A__U21(x1, x2)
tt  =  tt
A__ISLIST(x1)  =  A__ISLIST(x1)
A__ISNELIST(x1)  =  A__ISNELIST(x1)
__(x1, x2)  =  __(x1, x2)
A__U41(x1, x2)  =  A__U41(x2)
a__isList(x1)  =  a__isList
A__U51(x1, x2)  =  A__U51(x2)
a__isNeList(x1)  =  a__isNeList
a____(x1, x2)  =  a____(x1, x2)
mark(x1)  =  x1
nil  =  nil
a__U11(x1)  =  a__U11
a__U21(x1, x2)  =  x1
a__U22(x1)  =  x1
a__U31(x1)  =  a__U31
a__U41(x1, x2)  =  a__U41
a__U42(x1)  =  a__U42
a__U51(x1, x2)  =  x1
a__U52(x1)  =  a__U52
a__U61(x1)  =  a__U61
a__U71(x1, x2)  =  a__U71(x2)
a__U72(x1)  =  x1
a__isPal(x1)  =  x1
a__U81(x1)  =  x1
a__isQid(x1)  =  a__isQid
a__isNePal(x1)  =  x1
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
U11(x1)  =  U11
U21(x1, x2)  =  x1
U22(x1)  =  x1
isList(x1)  =  isList
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNeList(x1)  =  isNeList
U51(x1, x2)  =  x1
U52(x1)  =  U52
U61(x1)  =  U61
U71(x1, x2)  =  U71(x2)
U72(x1)  =  x1
isPal(x1)  =  x1
U81(x1)  =  x1
isQid(x1)  =  isQid
isNePal(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[AU212, AISLIST1, AISNELIST1, AU411, AU511, aisNeList, isNeList] > [tt, 2, aisList, a2, aU11, aU31, aU41, aU42, aU52, aU61, aU711, a, o, U11, isList, U31, U41, U42, U52, U61, U711]
nil > [tt, 2, aisList, a2, aU11, aU31, aU41, aU42, aU52, aU61, aU711, a, o, U11, isList, U31, U41, U42, U52, U61, U711]
[aisQid, isQid] > [tt, 2, aisList, a2, aU11, aU31, aU41, aU42, aU52, aU61, aU711, a, o, U11, isList, U31, U41, U42, U52, U61, U711]
e > [tt, 2, aisList, a2, aU11, aU31, aU41, aU42, aU52, aU61, aU711, a, o, U11, isList, U31, U41, U42, U52, U61, U711]
i > [tt, 2, aisList, a2, aU11, aU31, aU41, aU42, aU52, aU61, aU711, a, o, U11, isList, U31, U41, U42, U52, U61, U711]
u > [tt, 2, aisList, a2, aU11, aU31, aU41, aU42, aU52, aU61, aU711, a, o, U11, isList, U31, U41, U42, U52, U61, U711]

Status:
AU212: [2,1]
tt: []
AISLIST1: [1]
AISNELIST1: [1]
_2: [1,2]
AU411: [1]
aisList: []
AU511: [1]
aisNeList: []
a2: [1,2]
nil: []
aU11: []
aU31: []
aU41: []
aU42: []
aU52: []
aU61: []
aU711: [1]
aisQid: []
a: []
e: []
i: []
o: []
u: []
U11: []
isList: []
U31: []
U41: []
U42: []
isNeList: []
U52: []
U61: []
U711: [1]
isQid: []


The following usable rules [FROCOS05] were oriented:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISLIST(V) → A__ISNELIST(V)
A__U41(tt, V2) → A__ISNELIST(V2)
A__U51(tt, V2) → A__ISLIST(V2)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A____(__(X, Y), Z) → MARK(X)
MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → MARK(X)
MARK(U81(X)) → MARK(X)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A____(__(X, Y), Z) → MARK(X)
A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → MARK(X)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A____(x1, x2)  =  A____(x1, x2)
__(x1, x2)  =  __(x1, x2)
MARK(x1)  =  x1
mark(x1)  =  x1
a____(x1, x2)  =  a____(x1, x2)
U11(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  U22(x1)
U31(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U42(x1)  =  U42(x1)
U51(x1, x2)  =  U51(x1, x2)
U52(x1)  =  U52(x1)
U61(x1)  =  U61(x1)
U71(x1, x2)  =  U71(x1, x2)
U72(x1)  =  U72(x1)
U81(x1)  =  x1
nil  =  nil
a__U11(x1)  =  x1
tt  =  tt
a__U21(x1, x2)  =  a__U21(x1, x2)
a__U22(x1)  =  a__U22(x1)
a__isList(x1)  =  a__isList(x1)
a__U31(x1)  =  x1
a__U41(x1, x2)  =  a__U41(x1, x2)
a__U42(x1)  =  a__U42(x1)
a__isNeList(x1)  =  a__isNeList(x1)
a__U51(x1, x2)  =  a__U51(x1, x2)
a__U52(x1)  =  a__U52(x1)
a__U61(x1)  =  a__U61(x1)
a__U71(x1, x2)  =  a__U71(x1, x2)
a__U72(x1)  =  a__U72(x1)
a__isPal(x1)  =  a__isPal(x1)
a__U81(x1)  =  x1
a__isQid(x1)  =  x1
a__isNePal(x1)  =  a__isNePal(x1)
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
isList(x1)  =  isList(x1)
isNeList(x1)  =  isNeList(x1)
isPal(x1)  =  isPal(x1)
isQid(x1)  =  x1
isNePal(x1)  =  isNePal(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[A2, 2, a2] > [U421, aU421]
[U712, aU712, aisPal1, aisNePal1, isPal1, isNePal1] > [U212, U412, U512, tt, aU212, aisList1, aU412, aisNeList1, aU512, a, u, isList1, isNeList1] > [U221, aU221] > [U421, aU421]
[U712, aU712, aisPal1, aisNePal1, isPal1, isNePal1] > [U212, U412, U512, tt, aU212, aisList1, aU412, aisNeList1, aU512, a, u, isList1, isNeList1] > [U521, aU521] > [U421, aU421]
[U712, aU712, aisPal1, aisNePal1, isPal1, isNePal1] > [U212, U412, U512, tt, aU212, aisList1, aU412, aisNeList1, aU512, a, u, isList1, isNeList1] > [U721, aU721] > [U421, aU421]
[U712, aU712, aisPal1, aisNePal1, isPal1, isNePal1] > [U611, aU611] > [U421, aU421]
nil > [U421, aU421]
e > [U212, U412, U512, tt, aU212, aisList1, aU412, aisNeList1, aU512, a, u, isList1, isNeList1] > [U221, aU221] > [U421, aU421]
e > [U212, U412, U512, tt, aU212, aisList1, aU412, aisNeList1, aU512, a, u, isList1, isNeList1] > [U521, aU521] > [U421, aU421]
e > [U212, U412, U512, tt, aU212, aisList1, aU412, aisNeList1, aU512, a, u, isList1, isNeList1] > [U721, aU721] > [U421, aU421]
i > [U212, U412, U512, tt, aU212, aisList1, aU412, aisNeList1, aU512, a, u, isList1, isNeList1] > [U221, aU221] > [U421, aU421]
i > [U212, U412, U512, tt, aU212, aisList1, aU412, aisNeList1, aU512, a, u, isList1, isNeList1] > [U521, aU521] > [U421, aU421]
i > [U212, U412, U512, tt, aU212, aisList1, aU412, aisNeList1, aU512, a, u, isList1, isNeList1] > [U721, aU721] > [U421, aU421]
o > [U212, U412, U512, tt, aU212, aisList1, aU412, aisNeList1, aU512, a, u, isList1, isNeList1] > [U221, aU221] > [U421, aU421]
o > [U212, U412, U512, tt, aU212, aisList1, aU412, aisNeList1, aU512, a, u, isList1, isNeList1] > [U521, aU521] > [U421, aU421]
o > [U212, U412, U512, tt, aU212, aisList1, aU412, aisNeList1, aU512, a, u, isList1, isNeList1] > [U721, aU721] > [U421, aU421]

Status:
A2: [1,2]
_2: [1,2]
a2: [1,2]
U212: [2,1]
U221: [1]
U412: [2,1]
U421: [1]
U512: [2,1]
U521: [1]
U611: [1]
U712: [2,1]
U721: [1]
nil: []
tt: []
aU212: [2,1]
aU221: [1]
aisList1: [1]
aU412: [2,1]
aU421: [1]
aisNeList1: [1]
aU512: [2,1]
aU521: [1]
aU611: [1]
aU712: [2,1]
aU721: [1]
aisPal1: [1]
aisNePal1: [1]
a: []
e: []
i: []
o: []
u: []
isList1: [1]
isNeList1: [1]
isPal1: [1]
isNePal1: [1]


The following usable rules [FROCOS05] were oriented:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
MARK(U11(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U81(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U31(X)) → MARK(X)
MARK(U11(X)) → MARK(X)
MARK(U81(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U81(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U31(x1)  =  x1
U11(x1)  =  x1
U81(x1)  =  U81(x1)
a____(x1, x2)  =  a____(x1, x2)
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  x1
nil  =  nil
a__U11(x1)  =  x1
tt  =  tt
a__U21(x1, x2)  =  x1
a__U22(x1)  =  a__U22
a__isList(x1)  =  a__isList
a__U31(x1)  =  x1
a__U41(x1, x2)  =  x1
a__U42(x1)  =  x1
a__isNeList(x1)  =  a__isNeList
a__U51(x1, x2)  =  a__U51
a__U52(x1)  =  x1
a__U61(x1)  =  x1
a__U71(x1, x2)  =  x1
a__U72(x1)  =  a__U72
a__isPal(x1)  =  a__isPal(x1)
a__U81(x1)  =  a__U81(x1)
a__isQid(x1)  =  a__isQid
a__isNePal(x1)  =  a__isNePal(x1)
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
U21(x1, x2)  =  x1
U22(x1)  =  U22
isList(x1)  =  isList
U41(x1, x2)  =  x1
U42(x1)  =  x1
isNeList(x1)  =  isNeList
U51(x1, x2)  =  U51
U52(x1)  =  x1
U61(x1)  =  x1
U71(x1, x2)  =  x1
U72(x1)  =  U72
isPal(x1)  =  isPal(x1)
isQid(x1)  =  isQid
isNePal(x1)  =  isNePal(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[a2, 2] > [tt, aU22, aisList, aisNeList, aU51, aU72, aisQid, e, u, U22, isList, isNeList, U51, U72, isQid]
nil > [tt, aU22, aisList, aisNeList, aU51, aU72, aisQid, e, u, U22, isList, isNeList, U51, U72, isQid]
[aisPal1, isPal1] > [U811, aU811] > MARK1 > [tt, aU22, aisList, aisNeList, aU51, aU72, aisQid, e, u, U22, isList, isNeList, U51, U72, isQid]
[aisPal1, isPal1] > [aisNePal1, isNePal1] > [tt, aU22, aisList, aisNeList, aU51, aU72, aisQid, e, u, U22, isList, isNeList, U51, U72, isQid]
a > [tt, aU22, aisList, aisNeList, aU51, aU72, aisQid, e, u, U22, isList, isNeList, U51, U72, isQid]
i > [tt, aU22, aisList, aisNeList, aU51, aU72, aisQid, e, u, U22, isList, isNeList, U51, U72, isQid]
o > [tt, aU22, aisList, aisNeList, aU51, aU72, aisQid, e, u, U22, isList, isNeList, U51, U72, isQid]

Status:
MARK1: [1]
U811: [1]
a2: [1,2]
_2: [1,2]
nil: []
tt: []
aU22: []
aisList: []
aisNeList: []
aU51: []
aU72: []
aisPal1: [1]
aU811: [1]
aisQid: []
aisNePal1: [1]
a: []
e: []
i: []
o: []
u: []
U22: []
isList: []
isNeList: []
U51: []
U72: []
isPal1: [1]
isQid: []
isNePal1: [1]


The following usable rules [FROCOS05] were oriented:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U31(X)) → MARK(X)
MARK(U11(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U31(X)) → MARK(X)
MARK(U11(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U31(x1)  =  U31(x1)
U11(x1)  =  U11(x1)
a____(x1, x2)  =  a____(x1, x2)
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  x1
nil  =  nil
a__U11(x1)  =  a__U11(x1)
tt  =  tt
a__U21(x1, x2)  =  a__U21(x1, x2)
a__U22(x1)  =  x1
a__isList(x1)  =  a__isList(x1)
a__U31(x1)  =  a__U31(x1)
a__U41(x1, x2)  =  x2
a__U42(x1)  =  a__U42
a__isNeList(x1)  =  a__isNeList(x1)
a__U51(x1, x2)  =  x1
a__U52(x1)  =  a__U52
a__U61(x1)  =  x1
a__U71(x1, x2)  =  a__U71
a__U72(x1)  =  a__U72
a__isPal(x1)  =  a__isPal(x1)
a__U81(x1)  =  x1
a__isQid(x1)  =  a__isQid
a__isNePal(x1)  =  a__isNePal
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  x1
isList(x1)  =  isList(x1)
U41(x1, x2)  =  x2
U42(x1)  =  U42
isNeList(x1)  =  isNeList(x1)
U51(x1, x2)  =  x1
U52(x1)  =  U52
U61(x1)  =  x1
U71(x1, x2)  =  U71
U72(x1)  =  U72
isPal(x1)  =  isPal(x1)
U81(x1)  =  x1
isQid(x1)  =  isQid
isNePal(x1)  =  isNePal

Lexicographic path order with status [LPO].
Quasi-Precedence:
[a2, 2] > [U111, aU111, tt, aU42, aU52, aisQid, a, i, U42, U52, isQid]
nil > [U111, aU111, tt, aU42, aU52, aisQid, a, i, U42, U52, isQid]
[aU212, aisList1, U212, isList1] > [U311, aU311, aisNeList1, isNeList1] > [U111, aU111, tt, aU42, aU52, aisQid, a, i, U42, U52, isQid]
[aisPal1, isPal1] > [aU71, aisNePal, U71, isNePal] > [aU72, U72] > [U111, aU111, tt, aU42, aU52, aisQid, a, i, U42, U52, isQid]
e > [U111, aU111, tt, aU42, aU52, aisQid, a, i, U42, U52, isQid]
o > [U111, aU111, tt, aU42, aU52, aisQid, a, i, U42, U52, isQid]
u > [U111, aU111, tt, aU42, aU52, aisQid, a, i, U42, U52, isQid]

Status:
U311: [1]
U111: [1]
a2: [1,2]
_2: [1,2]
nil: []
aU111: [1]
tt: []
aU212: [2,1]
aisList1: [1]
aU311: [1]
aU42: []
aisNeList1: [1]
aU52: []
aU71: []
aU72: []
aisPal1: [1]
aisQid: []
aisNePal: []
a: []
e: []
i: []
o: []
u: []
U212: [2,1]
isList1: [1]
U42: []
isNeList1: [1]
U52: []
U71: []
U72: []
isPal1: [1]
isQid: []
isNePal: []


The following usable rules [FROCOS05] were oriented:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE