(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → MARK(X)
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)
A__U21(tt, V2) → A__U22(a__isList(V2))
A__U21(tt, V2) → A__ISLIST(V2)
A__U41(tt, V2) → A__U42(a__isNeList(V2))
A__U41(tt, V2) → A__ISNELIST(V2)
A__U51(tt, V2) → A__U52(a__isList(V2))
A__U51(tt, V2) → A__ISLIST(V2)
A__U71(tt, P) → A__U72(a__isPal(P))
A__U71(tt, P) → A__ISPAL(P)
A__ISLIST(V) → A__U11(a__isNeList(V))
A__ISLIST(V) → A__ISNELIST(V)
A__ISLIST(__(V1, V2)) → A__U21(a__isList(V1), V2)
A__ISLIST(__(V1, V2)) → A__ISLIST(V1)
A__ISNELIST(V) → A__U31(a__isQid(V))
A__ISNELIST(V) → A__ISQID(V)
A__ISNELIST(__(V1, V2)) → A__U41(a__isList(V1), V2)
A__ISNELIST(__(V1, V2)) → A__ISLIST(V1)
A__ISNELIST(__(V1, V2)) → A__U51(a__isNeList(V1), V2)
A__ISNELIST(__(V1, V2)) → A__ISNELIST(V1)
A__ISNEPAL(V) → A__U61(a__isQid(V))
A__ISNEPAL(V) → A__ISQID(V)
A__ISNEPAL(__(I, __(P, I))) → A__U71(a__isQid(I), P)
A__ISNEPAL(__(I, __(P, I))) → A__ISQID(I)
A__ISPAL(V) → A__U81(a__isNePal(V))
A__ISPAL(V) → A__ISNEPAL(V)
MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X)) → A__U11(mark(X))
MARK(U11(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → A__U22(mark(X))
MARK(U22(X)) → MARK(X)
MARK(isList(X)) → A__ISLIST(X)
MARK(U31(X)) → A__U31(mark(X))
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → A__U41(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → A__U42(mark(X))
MARK(U42(X)) → MARK(X)
MARK(isNeList(X)) → A__ISNELIST(X)
MARK(U51(X1, X2)) → A__U51(mark(X1), X2)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → A__U52(mark(X))
MARK(U52(X)) → MARK(X)
MARK(U61(X)) → A__U61(mark(X))
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → A__U72(mark(X))
MARK(U72(X)) → MARK(X)
MARK(isPal(X)) → A__ISPAL(X)
MARK(U81(X)) → A__U81(mark(X))
MARK(U81(X)) → MARK(X)
MARK(isQid(X)) → A__ISQID(X)
MARK(isNePal(X)) → A__ISNEPAL(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 28 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U71(tt, P) → A__ISPAL(P)
A__ISPAL(V) → A__ISNEPAL(V)
A__ISNEPAL(__(I, __(P, I))) → A__U71(a__isQid(I), P)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNEPAL(__(I, __(P, I))) → A__U71(a__isQid(I), P)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U71(x1, x2)  =  x2
tt  =  tt
A__ISPAL(x1)  =  x1
A__ISNEPAL(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
a__isQid(x1)  =  x1
a____(x1, x2)  =  a____(x1, x2)
mark(x1)  =  x1
nil  =  nil
a__U11(x1)  =  x1
a__U21(x1, x2)  =  a__U21(x1, x2)
a__U22(x1)  =  a__U22
a__isList(x1)  =  x1
a__U31(x1)  =  x1
a__U41(x1, x2)  =  a__U41(x2)
a__U42(x1)  =  x1
a__isNeList(x1)  =  x1
a__U51(x1, x2)  =  a__U51(x1, x2)
a__U52(x1)  =  x1
a__U61(x1)  =  x1
a__U71(x1, x2)  =  a__U71(x1, x2)
a__U72(x1)  =  a__U72
a__isPal(x1)  =  x1
a__U81(x1)  =  x1
a__isNePal(x1)  =  x1
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
U11(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  U22
isList(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  U41(x2)
U42(x1)  =  x1
isNeList(x1)  =  x1
U51(x1, x2)  =  U51(x1, x2)
U52(x1)  =  x1
U61(x1)  =  x1
U71(x1, x2)  =  U71(x1, x2)
U72(x1)  =  U72
isPal(x1)  =  x1
U81(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[2, a2, aU512, U512] > [aU212, U212] > [tt, nil, aU22, a, i, o, U22]
[2, a2, aU512, U512] > [aU411, U411]
[2, a2, aU512, U512] > [aU712, U712] > [aU72, U72] > [tt, nil, aU22, a, i, o, U22]
e > [tt, nil, aU22, a, i, o, U22]
u > [tt, nil, aU22, a, i, o, U22]

Status:
tt: []
_2: [1,2]
a2: [1,2]
nil: []
aU212: [1,2]
aU22: []
aU411: [1]
aU512: [1,2]
aU712: [1,2]
aU72: []
a: []
e: []
i: []
o: []
u: []
U212: [1,2]
U22: []
U411: [1]
U512: [1,2]
U712: [1,2]
U72: []


The following usable rules [FROCOS05] were oriented:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U71(tt, P) → A__ISPAL(P)
A__ISPAL(V) → A__ISNEPAL(V)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U21(tt, V2) → A__ISLIST(V2)
A__ISLIST(V) → A__ISNELIST(V)
A__ISNELIST(__(V1, V2)) → A__U41(a__isList(V1), V2)
A__U41(tt, V2) → A__ISNELIST(V2)
A__ISNELIST(__(V1, V2)) → A__ISLIST(V1)
A__ISLIST(__(V1, V2)) → A__U21(a__isList(V1), V2)
A__ISLIST(__(V1, V2)) → A__ISLIST(V1)
A__ISNELIST(__(V1, V2)) → A__U51(a__isNeList(V1), V2)
A__U51(tt, V2) → A__ISLIST(V2)
A__ISNELIST(__(V1, V2)) → A__ISNELIST(V1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U21(tt, V2) → A__ISLIST(V2)
A__ISNELIST(__(V1, V2)) → A__U41(a__isList(V1), V2)
A__U41(tt, V2) → A__ISNELIST(V2)
A__ISNELIST(__(V1, V2)) → A__ISLIST(V1)
A__ISLIST(__(V1, V2)) → A__ISLIST(V1)
A__ISNELIST(__(V1, V2)) → A__U51(a__isNeList(V1), V2)
A__U51(tt, V2) → A__ISLIST(V2)
A__ISNELIST(__(V1, V2)) → A__ISNELIST(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U21(x1, x2)  =  A__U21(x1, x2)
tt  =  tt
A__ISLIST(x1)  =  x1
A__ISNELIST(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
A__U41(x1, x2)  =  A__U41(x2)
a__isList(x1)  =  x1
A__U51(x1, x2)  =  A__U51(x2)
a__isNeList(x1)  =  x1
a____(x1, x2)  =  a____(x1, x2)
mark(x1)  =  x1
nil  =  nil
a__U11(x1)  =  x1
a__U21(x1, x2)  =  x1
a__U22(x1)  =  a__U22
a__U31(x1)  =  x1
a__U41(x1, x2)  =  a__U41(x2)
a__U42(x1)  =  x1
a__U51(x1, x2)  =  a__U51
a__U52(x1)  =  a__U52
a__U61(x1)  =  x1
a__U71(x1, x2)  =  x2
a__U72(x1)  =  x1
a__isPal(x1)  =  x1
a__U81(x1)  =  x1
a__isQid(x1)  =  x1
a__isNePal(x1)  =  x1
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
U11(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  U22
isList(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  U41(x2)
U42(x1)  =  x1
isNeList(x1)  =  x1
U51(x1, x2)  =  U51
U52(x1)  =  U52
U61(x1)  =  x1
U71(x1, x2)  =  x2
U72(x1)  =  x1
isPal(x1)  =  x1
U81(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[AU212, 2, a2, aU51, U51] > AU411
[AU212, 2, a2, aU51, U51] > AU511
[AU212, 2, a2, aU51, U51] > [aU411, U411]
[AU212, 2, a2, aU51, U51] > [aU52, U52] > [tt, nil, aU22, e, i, u, U22]
a > [tt, nil, aU22, e, i, u, U22]
o > [tt, nil, aU22, e, i, u, U22]

Status:
AU212: [1,2]
tt: []
_2: [1,2]
AU411: [1]
AU511: [1]
a2: [1,2]
nil: []
aU22: []
aU411: [1]
aU51: []
aU52: []
a: []
e: []
i: []
o: []
u: []
U22: []
U411: [1]
U51: []
U52: []


The following usable rules [FROCOS05] were oriented:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISLIST(V) → A__ISNELIST(V)
A__ISLIST(__(V1, V2)) → A__U21(a__isList(V1), V2)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A____(__(X, Y), Z) → MARK(X)
MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → MARK(X)
MARK(U81(X)) → MARK(X)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A____(__(X, Y), Z) → MARK(X)
A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A____(x1, x2)  =  A____(x1, x2)
__(x1, x2)  =  __(x1, x2)
MARK(x1)  =  x1
mark(x1)  =  x1
a____(x1, x2)  =  a____(x1, x2)
U11(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1)  =  x1
U61(x1)  =  x1
U71(x1, x2)  =  x1
U72(x1)  =  x1
U81(x1)  =  x1
nil  =  nil
a__U11(x1)  =  x1
tt  =  tt
a__U21(x1, x2)  =  x1
a__U22(x1)  =  x1
a__isList(x1)  =  a__isList
a__U31(x1)  =  x1
a__U41(x1, x2)  =  x1
a__U42(x1)  =  x1
a__isNeList(x1)  =  a__isNeList
a__U51(x1, x2)  =  x1
a__U52(x1)  =  x1
a__U61(x1)  =  x1
a__U71(x1, x2)  =  x1
a__U72(x1)  =  x1
a__isPal(x1)  =  a__isPal
a__U81(x1)  =  x1
a__isQid(x1)  =  a__isQid
a__isNePal(x1)  =  a__isNePal
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
isList(x1)  =  isList
isNeList(x1)  =  isNeList
isPal(x1)  =  isPal
isQid(x1)  =  isQid
isNePal(x1)  =  isNePal

Lexicographic path order with status [LPO].
Quasi-Precedence:
[A2, 2, a2] > [tt, aisList, aisNeList, aisPal, aisQid, aisNePal, e, i, o, u, isList, isNeList, isPal, isQid, isNePal]
nil > [tt, aisList, aisNeList, aisPal, aisQid, aisNePal, e, i, o, u, isList, isNeList, isPal, isQid, isNePal]
a > [tt, aisList, aisNeList, aisPal, aisQid, aisNePal, e, i, o, u, isList, isNeList, isPal, isQid, isNePal]

Status:
A2: [1,2]
_2: [1,2]
a2: [1,2]
nil: []
tt: []
aisList: []
aisNeList: []
aisPal: []
aisQid: []
aisNePal: []
a: []
e: []
i: []
o: []
u: []
isList: []
isNeList: []
isPal: []
isQid: []
isNePal: []


The following usable rules [FROCOS05] were oriented:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
MARK(U11(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → MARK(X)
MARK(U81(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U21(X1, X2)) → MARK(X1)
MARK(U11(X)) → MARK(X)
MARK(U22(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → MARK(X)
MARK(U81(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U21(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U71(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U11(x1)  =  x1
U22(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U42(x1)  =  x1
U51(x1, x2)  =  U51(x1, x2)
U52(x1)  =  U52(x1)
U61(x1)  =  x1
U71(x1, x2)  =  U71(x1, x2)
U72(x1)  =  x1
U81(x1)  =  x1
a____(x1, x2)  =  a____(x1, x2)
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  x1
nil  =  nil
a__U11(x1)  =  x1
tt  =  tt
a__U21(x1, x2)  =  a__U21(x1, x2)
a__U22(x1)  =  x1
a__isList(x1)  =  x1
a__U31(x1)  =  x1
a__U41(x1, x2)  =  a__U41(x1, x2)
a__U42(x1)  =  x1
a__isNeList(x1)  =  x1
a__U51(x1, x2)  =  a__U51(x1, x2)
a__U52(x1)  =  a__U52(x1)
a__U61(x1)  =  x1
a__U71(x1, x2)  =  a__U71(x1, x2)
a__U72(x1)  =  x1
a__isPal(x1)  =  x1
a__U81(x1)  =  x1
a__isQid(x1)  =  a__isQid
a__isNePal(x1)  =  x1
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
isList(x1)  =  x1
isNeList(x1)  =  x1
isPal(x1)  =  x1
isQid(x1)  =  isQid
isNePal(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U412, a2, 2, aU412] > [U212, aU212] > [U521, nil, tt, aU521, aisQid, e, i, o, u, isQid]
[U412, a2, 2, aU412] > [U512, aU512] > [U521, nil, tt, aU521, aisQid, e, i, o, u, isQid]
[U412, a2, 2, aU412] > [U712, aU712] > [U521, nil, tt, aU521, aisQid, e, i, o, u, isQid]
a > [U521, nil, tt, aU521, aisQid, e, i, o, u, isQid]

Status:
U212: [2,1]
U412: [1,2]
U512: [1,2]
U521: [1]
U712: [2,1]
a2: [1,2]
_2: [1,2]
nil: []
tt: []
aU212: [2,1]
aU412: [1,2]
aU512: [1,2]
aU521: [1]
aU712: [2,1]
aisQid: []
a: []
e: []
i: []
o: []
u: []
isQid: []


The following usable rules [FROCOS05] were oriented:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X)) → MARK(X)
MARK(U22(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U42(X)) → MARK(X)
MARK(U61(X)) → MARK(X)
MARK(U72(X)) → MARK(X)
MARK(U81(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U42(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U11(x1)  =  x1
U22(x1)  =  x1
U31(x1)  =  x1
U42(x1)  =  U42(x1)
U61(x1)  =  x1
U72(x1)  =  x1
U81(x1)  =  x1
a____(x1, x2)  =  a____(x1, x2)
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  x1
nil  =  nil
a__U11(x1)  =  x1
tt  =  tt
a__U21(x1, x2)  =  x2
a__U22(x1)  =  x1
a__isList(x1)  =  x1
a__U31(x1)  =  x1
a__U41(x1, x2)  =  a__U41(x2)
a__U42(x1)  =  a__U42(x1)
a__isNeList(x1)  =  x1
a__U51(x1, x2)  =  x1
a__U52(x1)  =  a__U52
a__U61(x1)  =  x1
a__U71(x1, x2)  =  a__U71(x1, x2)
a__U72(x1)  =  x1
a__isPal(x1)  =  x1
a__U81(x1)  =  x1
a__isQid(x1)  =  a__isQid
a__isNePal(x1)  =  x1
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
U21(x1, x2)  =  x2
isList(x1)  =  x1
U41(x1, x2)  =  U41(x2)
isNeList(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1)  =  U52
U71(x1, x2)  =  U71(x1, x2)
isPal(x1)  =  x1
isQid(x1)  =  isQid
isNePal(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[a2, 2] > [aU411, U411] > [U421, aU421] > [tt, aU52, aisQid, a, o, u, U52, isQid]
[a2, 2] > [aU712, U712] > [tt, aU52, aisQid, a, o, u, U52, isQid]
nil > [tt, aU52, aisQid, a, o, u, U52, isQid]
e > [tt, aU52, aisQid, a, o, u, U52, isQid]
i > [tt, aU52, aisQid, a, o, u, U52, isQid]

Status:
U421: [1]
a2: [1,2]
_2: [1,2]
nil: []
tt: []
aU411: [1]
aU421: [1]
aU52: []
aU712: [2,1]
aisQid: []
a: []
e: []
i: []
o: []
u: []
U411: [1]
U52: []
U712: [2,1]
isQid: []


The following usable rules [FROCOS05] were oriented:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X)) → MARK(X)
MARK(U22(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U61(X)) → MARK(X)
MARK(U72(X)) → MARK(X)
MARK(U81(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U72(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U11(x1)  =  x1
U22(x1)  =  x1
U31(x1)  =  x1
U61(x1)  =  x1
U72(x1)  =  U72(x1)
U81(x1)  =  x1
a____(x1, x2)  =  a____(x1, x2)
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  x1
nil  =  nil
a__U11(x1)  =  x1
tt  =  tt
a__U21(x1, x2)  =  x2
a__U22(x1)  =  x1
a__isList(x1)  =  x1
a__U31(x1)  =  x1
a__U41(x1, x2)  =  a__U41(x1, x2)
a__U42(x1)  =  x1
a__isNeList(x1)  =  x1
a__U51(x1, x2)  =  x1
a__U52(x1)  =  a__U52
a__U61(x1)  =  x1
a__U71(x1, x2)  =  a__U71(x2)
a__U72(x1)  =  a__U72(x1)
a__isPal(x1)  =  x1
a__U81(x1)  =  x1
a__isQid(x1)  =  x1
a__isNePal(x1)  =  x1
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
U21(x1, x2)  =  x2
isList(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U42(x1)  =  x1
isNeList(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1)  =  U52
U71(x1, x2)  =  U71(x2)
isPal(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[a2, 2] > [aU412, U412]
[a2, 2] > [aU711, U711] > [MARK1, U721, aU721]
nil > [tt, aU52, i, o, u, U52] > [MARK1, U721, aU721]
a > [tt, aU52, i, o, u, U52] > [MARK1, U721, aU721]
e > [tt, aU52, i, o, u, U52] > [MARK1, U721, aU721]

Status:
MARK1: [1]
U721: [1]
a2: [1,2]
_2: [1,2]
nil: []
tt: []
aU412: [2,1]
aU52: []
aU711: [1]
aU721: [1]
a: []
e: []
i: []
o: []
u: []
U412: [2,1]
U52: []
U711: [1]


The following usable rules [FROCOS05] were oriented:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X)) → MARK(X)
MARK(U22(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U61(X)) → MARK(X)
MARK(U81(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U81(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U11(x1)  =  x1
U22(x1)  =  x1
U31(x1)  =  x1
U61(x1)  =  x1
U81(x1)  =  U81(x1)
a____(x1, x2)  =  a____(x1, x2)
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  x1
nil  =  nil
a__U11(x1)  =  x1
tt  =  tt
a__U21(x1, x2)  =  x2
a__U22(x1)  =  x1
a__isList(x1)  =  x1
a__U31(x1)  =  x1
a__U41(x1, x2)  =  a__U41(x1, x2)
a__U42(x1)  =  x1
a__isNeList(x1)  =  x1
a__U51(x1, x2)  =  a__U51(x1, x2)
a__U52(x1)  =  a__U52
a__U61(x1)  =  x1
a__U71(x1, x2)  =  a__U71(x1, x2)
a__U72(x1)  =  a__U72
a__isPal(x1)  =  a__isPal(x1)
a__U81(x1)  =  a__U81(x1)
a__isQid(x1)  =  x1
a__isNePal(x1)  =  x1
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
U21(x1, x2)  =  x2
isList(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U42(x1)  =  x1
isNeList(x1)  =  x1
U51(x1, x2)  =  U51(x1, x2)
U52(x1)  =  U52
U71(x1, x2)  =  U71(x1, x2)
U72(x1)  =  U72
isPal(x1)  =  isPal(x1)
isQid(x1)  =  x1
isNePal(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[a2, 2, aU712, aisPal1, U712, isPal1] > [U811, aU811] > [aU412, U412]
[a2, 2, aU712, aisPal1, U712, isPal1] > [aU512, U512] > [nil, tt, aU52, aU72, e, i, o, u, U52, U72] > [aU412, U412]
a > [nil, tt, aU52, aU72, e, i, o, u, U52, U72] > [aU412, U412]

Status:
U811: [1]
a2: [1,2]
_2: [1,2]
nil: []
tt: []
aU412: [2,1]
aU512: [1,2]
aU52: []
aU712: [2,1]
aU72: []
aisPal1: [1]
aU811: [1]
a: []
e: []
i: []
o: []
u: []
U412: [2,1]
U512: [1,2]
U52: []
U712: [2,1]
U72: []
isPal1: [1]


The following usable rules [FROCOS05] were oriented:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X)) → MARK(X)
MARK(U22(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U61(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U61(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U11(x1)  =  x1
U22(x1)  =  x1
U31(x1)  =  x1
U61(x1)  =  U61(x1)
a____(x1, x2)  =  a____(x1, x2)
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  x1
nil  =  nil
a__U11(x1)  =  x1
tt  =  tt
a__U21(x1, x2)  =  x2
a__U22(x1)  =  x1
a__isList(x1)  =  x1
a__U31(x1)  =  x1
a__U41(x1, x2)  =  x2
a__U42(x1)  =  x1
a__isNeList(x1)  =  x1
a__U51(x1, x2)  =  x2
a__U52(x1)  =  a__U52
a__U61(x1)  =  a__U61(x1)
a__U71(x1, x2)  =  a__U71
a__U72(x1)  =  a__U72
a__isPal(x1)  =  x1
a__U81(x1)  =  a__U81
a__isQid(x1)  =  x1
a__isNePal(x1)  =  a__isNePal(x1)
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
U21(x1, x2)  =  x2
isList(x1)  =  x1
U41(x1, x2)  =  x2
U42(x1)  =  x1
isNeList(x1)  =  x1
U51(x1, x2)  =  x2
U52(x1)  =  U52
U71(x1, x2)  =  U71
U72(x1)  =  U72
isPal(x1)  =  x1
U81(x1)  =  U81
isQid(x1)  =  x1
isNePal(x1)  =  isNePal(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[a2, 2] > [aU71, U71] > [aU72, U72] > [tt, aU52, aU81, e, i, o, U52, U81]
nil > [tt, aU52, aU81, e, i, o, U52, U81]
[aisNePal1, isNePal1] > [MARK1, U611, aU611] > [tt, aU52, aU81, e, i, o, U52, U81]
[aisNePal1, isNePal1] > [aU71, U71] > [aU72, U72] > [tt, aU52, aU81, e, i, o, U52, U81]
a > [tt, aU52, aU81, e, i, o, U52, U81]
u > [tt, aU52, aU81, e, i, o, U52, U81]

Status:
MARK1: [1]
U611: [1]
a2: [1,2]
_2: [1,2]
nil: []
tt: []
aU52: []
aU611: [1]
aU71: []
aU72: []
aU81: []
aisNePal1: [1]
a: []
e: []
i: []
o: []
u: []
U52: []
U71: []
U72: []
U81: []
isNePal1: [1]


The following usable rules [FROCOS05] were oriented:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X)) → MARK(X)
MARK(U22(X)) → MARK(X)
MARK(U31(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U31(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U11(x1)  =  x1
U22(x1)  =  x1
U31(x1)  =  U31(x1)
a____(x1, x2)  =  a____(x1, x2)
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  x1
nil  =  nil
a__U11(x1)  =  x1
tt  =  tt
a__U21(x1, x2)  =  a__U21
a__U22(x1)  =  x1
a__isList(x1)  =  a__isList
a__U31(x1)  =  a__U31(x1)
a__U41(x1, x2)  =  x1
a__U42(x1)  =  a__U42
a__isNeList(x1)  =  a__isNeList
a__U51(x1, x2)  =  a__U51
a__U52(x1)  =  a__U52
a__U61(x1)  =  x1
a__U71(x1, x2)  =  x1
a__U72(x1)  =  a__U72
a__isPal(x1)  =  x1
a__U81(x1)  =  x1
a__isQid(x1)  =  a__isQid
a__isNePal(x1)  =  x1
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
U21(x1, x2)  =  U21
isList(x1)  =  isList
U41(x1, x2)  =  x1
U42(x1)  =  U42
isNeList(x1)  =  isNeList
U51(x1, x2)  =  U51
U52(x1)  =  U52
U61(x1)  =  x1
U71(x1, x2)  =  x1
U72(x1)  =  U72
isPal(x1)  =  x1
U81(x1)  =  x1
isQid(x1)  =  isQid
isNePal(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
MARK1 > [U311, nil, tt, aU311, aU42, aU52, aU72, aisQid, u, U42, U52, U72, isQid]
[a2, 2] > [aU21, aisList, aisNeList, aU51, U21, isList, isNeList, U51] > [U311, nil, tt, aU311, aU42, aU52, aU72, aisQid, u, U42, U52, U72, isQid]
a > [U311, nil, tt, aU311, aU42, aU52, aU72, aisQid, u, U42, U52, U72, isQid]
e > [U311, nil, tt, aU311, aU42, aU52, aU72, aisQid, u, U42, U52, U72, isQid]
i > [U311, nil, tt, aU311, aU42, aU52, aU72, aisQid, u, U42, U52, U72, isQid]
o > [U311, nil, tt, aU311, aU42, aU52, aU72, aisQid, u, U42, U52, U72, isQid]

Status:
MARK1: [1]
U311: [1]
a2: [1,2]
_2: [1,2]
nil: []
tt: []
aU21: []
aisList: []
aU311: [1]
aU42: []
aisNeList: []
aU51: []
aU52: []
aU72: []
aisQid: []
a: []
e: []
i: []
o: []
u: []
U21: []
isList: []
U42: []
isNeList: []
U51: []
U52: []
U72: []
isQid: []


The following usable rules [FROCOS05] were oriented:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X)) → MARK(X)
MARK(U22(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U11(X)) → MARK(X)
MARK(U22(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U11(x1)  =  U11(x1)
U22(x1)  =  U22(x1)
a____(x1, x2)  =  a____(x1, x2)
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  x1
nil  =  nil
a__U11(x1)  =  a__U11(x1)
tt  =  tt
a__U21(x1, x2)  =  a__U21(x1, x2)
a__U22(x1)  =  a__U22(x1)
a__isList(x1)  =  a__isList(x1)
a__U31(x1)  =  x1
a__U41(x1, x2)  =  a__U41(x1, x2)
a__U42(x1)  =  a__U42
a__isNeList(x1)  =  x1
a__U51(x1, x2)  =  x1
a__U52(x1)  =  a__U52
a__U61(x1)  =  x1
a__U71(x1, x2)  =  x2
a__U72(x1)  =  x1
a__isPal(x1)  =  x1
a__U81(x1)  =  x1
a__isQid(x1)  =  x1
a__isNePal(x1)  =  x1
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
U21(x1, x2)  =  U21(x1, x2)
isList(x1)  =  isList(x1)
U31(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U42(x1)  =  U42
isNeList(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1)  =  U52
U61(x1)  =  x1
U71(x1, x2)  =  x2
U72(x1)  =  x1
isPal(x1)  =  x1
U81(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
MARK1 > [U221, aU221]
[a2, 2] > [aU212, U212] > [U111, aU111, aisList1, isList1] > [U221, aU221]
[a2, 2] > [aU412, U412] > [tt, aU42, aU52, e, i, o, u, U42, U52] > [U111, aU111, aisList1, isList1] > [U221, aU221]
nil > [tt, aU42, aU52, e, i, o, u, U42, U52] > [U111, aU111, aisList1, isList1] > [U221, aU221]
a > [tt, aU42, aU52, e, i, o, u, U42, U52] > [U111, aU111, aisList1, isList1] > [U221, aU221]

Status:
MARK1: [1]
U111: [1]
U221: [1]
a2: [1,2]
_2: [1,2]
nil: []
aU111: [1]
tt: []
aU212: [1,2]
aU221: [1]
aisList1: [1]
aU412: [1,2]
aU42: []
aU52: []
a: []
e: []
i: []
o: []
u: []
U212: [1,2]
isList1: [1]
U412: [1,2]
U42: []
U52: []


The following usable rules [FROCOS05] were oriented:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

(33) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt) → tt
a__U21(tt, V2) → a__U22(a__isList(V2))
a__U22(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNeList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isList(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt, P) → a__U72(a__isPal(P))
a__U72(tt) → tt
a__U81(tt) → tt
a__isList(V) → a__U11(a__isNeList(V))
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isQid(V))
a__isNeList(__(V1, V2)) → a__U41(a__isList(V1), V2)
a__isNeList(__(V1, V2)) → a__U51(a__isNeList(V1), V2)
a__isNePal(V) → a__U61(a__isQid(V))
a__isNePal(__(I, __(P, I))) → a__U71(a__isQid(I), P)
a__isPal(V) → a__U81(a__isNePal(V))
a__isPal(nil) → tt
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X)) → a__U11(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(isList(X)) → a__isList(X)
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(U81(X)) → a__U81(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(isNePal(X)) → a__isNePal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X) → U11(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__isList(X) → isList(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNeList(X) → isNeList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isPal(X) → isPal(X)
a__U81(X) → U81(X)
a__isQid(X) → isQid(X)
a__isNePal(X) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(35) TRUE