(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(__(__(X, Y), Z)) → __1(X, __(Y, Z))
ACTIVE(__(__(X, Y), Z)) → __1(Y, Z)
ACTIVE(U21(tt, V2)) → U221(isList(V2))
ACTIVE(U21(tt, V2)) → ISLIST(V2)
ACTIVE(U41(tt, V2)) → U421(isNeList(V2))
ACTIVE(U41(tt, V2)) → ISNELIST(V2)
ACTIVE(U51(tt, V2)) → U521(isList(V2))
ACTIVE(U51(tt, V2)) → ISLIST(V2)
ACTIVE(U71(tt, P)) → U721(isPal(P))
ACTIVE(U71(tt, P)) → ISPAL(P)
ACTIVE(isList(V)) → U111(isNeList(V))
ACTIVE(isList(V)) → ISNELIST(V)
ACTIVE(isList(__(V1, V2))) → U211(isList(V1), V2)
ACTIVE(isList(__(V1, V2))) → ISLIST(V1)
ACTIVE(isNeList(V)) → U311(isQid(V))
ACTIVE(isNeList(V)) → ISQID(V)
ACTIVE(isNeList(__(V1, V2))) → U411(isList(V1), V2)
ACTIVE(isNeList(__(V1, V2))) → ISLIST(V1)
ACTIVE(isNeList(__(V1, V2))) → U511(isNeList(V1), V2)
ACTIVE(isNeList(__(V1, V2))) → ISNELIST(V1)
ACTIVE(isNePal(V)) → U611(isQid(V))
ACTIVE(isNePal(V)) → ISQID(V)
ACTIVE(isNePal(__(I, __(P, I)))) → U711(isQid(I), P)
ACTIVE(isNePal(__(I, __(P, I)))) → ISQID(I)
ACTIVE(isPal(V)) → U811(isNePal(V))
ACTIVE(isPal(V)) → ISNEPAL(V)
ACTIVE(__(X1, X2)) → __1(active(X1), X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
ACTIVE(__(X1, X2)) → __1(X1, active(X2))
ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(U11(X)) → U111(active(X))
ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → U211(active(X1), X2)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → U221(active(X))
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U31(X)) → U311(active(X))
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → U411(active(X1), X2)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → U421(active(X))
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → U511(active(X1), X2)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X)) → U521(active(X))
ACTIVE(U52(X)) → ACTIVE(X)
ACTIVE(U61(X)) → U611(active(X))
ACTIVE(U61(X)) → ACTIVE(X)
ACTIVE(U71(X1, X2)) → U711(active(X1), X2)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X)) → U721(active(X))
ACTIVE(U72(X)) → ACTIVE(X)
ACTIVE(U81(X)) → U811(active(X))
ACTIVE(U81(X)) → ACTIVE(X)
__1(mark(X1), X2) → __1(X1, X2)
__1(X1, mark(X2)) → __1(X1, X2)
U111(mark(X)) → U111(X)
U211(mark(X1), X2) → U211(X1, X2)
U221(mark(X)) → U221(X)
U311(mark(X)) → U311(X)
U411(mark(X1), X2) → U411(X1, X2)
U421(mark(X)) → U421(X)
U511(mark(X1), X2) → U511(X1, X2)
U521(mark(X)) → U521(X)
U611(mark(X)) → U611(X)
U711(mark(X1), X2) → U711(X1, X2)
U721(mark(X)) → U721(X)
U811(mark(X)) → U811(X)
PROPER(__(X1, X2)) → __1(proper(X1), proper(X2))
PROPER(__(X1, X2)) → PROPER(X1)
PROPER(__(X1, X2)) → PROPER(X2)
PROPER(U11(X)) → U111(proper(X))
PROPER(U11(X)) → PROPER(X)
PROPER(U21(X1, X2)) → U211(proper(X1), proper(X2))
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X)) → U221(proper(X))
PROPER(U22(X)) → PROPER(X)
PROPER(isList(X)) → ISLIST(proper(X))
PROPER(isList(X)) → PROPER(X)
PROPER(U31(X)) → U311(proper(X))
PROPER(U31(X)) → PROPER(X)
PROPER(U41(X1, X2)) → U411(proper(X1), proper(X2))
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(U42(X)) → U421(proper(X))
PROPER(U42(X)) → PROPER(X)
PROPER(isNeList(X)) → ISNELIST(proper(X))
PROPER(isNeList(X)) → PROPER(X)
PROPER(U51(X1, X2)) → U511(proper(X1), proper(X2))
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X)) → U521(proper(X))
PROPER(U52(X)) → PROPER(X)
PROPER(U61(X)) → U611(proper(X))
PROPER(U61(X)) → PROPER(X)
PROPER(U71(X1, X2)) → U711(proper(X1), proper(X2))
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(U72(X)) → U721(proper(X))
PROPER(U72(X)) → PROPER(X)
PROPER(isPal(X)) → ISPAL(proper(X))
PROPER(isPal(X)) → PROPER(X)
PROPER(U81(X)) → U811(proper(X))
PROPER(U81(X)) → PROPER(X)
PROPER(isQid(X)) → ISQID(proper(X))
PROPER(isQid(X)) → PROPER(X)
PROPER(isNePal(X)) → ISNEPAL(proper(X))
PROPER(isNePal(X)) → PROPER(X)
__1(ok(X1), ok(X2)) → __1(X1, X2)
U111(ok(X)) → U111(X)
U211(ok(X1), ok(X2)) → U211(X1, X2)
U221(ok(X)) → U221(X)
ISLIST(ok(X)) → ISLIST(X)
U311(ok(X)) → U311(X)
U411(ok(X1), ok(X2)) → U411(X1, X2)
U421(ok(X)) → U421(X)
ISNELIST(ok(X)) → ISNELIST(X)
U511(ok(X1), ok(X2)) → U511(X1, X2)
U521(ok(X)) → U521(X)
U611(ok(X)) → U611(X)
U711(ok(X1), ok(X2)) → U711(X1, X2)
U721(ok(X)) → U721(X)
ISPAL(ok(X)) → ISPAL(X)
U811(ok(X)) → U811(X)
ISQID(ok(X)) → ISQID(X)
ISNEPAL(ok(X)) → ISNEPAL(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 21 SCCs with 60 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(ok(X)) → ISNEPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(ok(X)) → ISNEPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > ISNEPAL1

Status:
ok1: multiset
ISNEPAL1: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISQID(ok(X)) → ISQID(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISQID(ok(X)) → ISQID(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > ISQID1

Status:
ISQID1: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISPAL(ok(X)) → ISPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISPAL(ok(X)) → ISPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > ISPAL1

Status:
ISPAL1: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNELIST(ok(X)) → ISNELIST(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNELIST(ok(X)) → ISNELIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > ISNELIST1

Status:
ISNELIST1: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLIST(ok(X)) → ISLIST(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISLIST(ok(X)) → ISLIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > ISLIST1

Status:
ok1: multiset
ISLIST1: multiset


The following usable rules [FROCOS05] were oriented: none

(27) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(29) TRUE

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(ok(X)) → U811(X)
U811(mark(X)) → U811(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(ok(X)) → U811(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1)  =  U811(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U81^11, ok1]

Status:
U81^11: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(mark(X)) → U811(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(mark(X)) → U811(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U81^11

Status:
U81^11: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(34) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(36) TRUE

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U721(ok(X)) → U721(X)
U721(mark(X)) → U721(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U721(ok(X)) → U721(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U721(x1)  =  U721(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U72^11, ok1]

Status:
ok1: multiset
U72^11: multiset


The following usable rules [FROCOS05] were oriented: none

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U721(mark(X)) → U721(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U721(mark(X)) → U721(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U72^11

Status:
mark1: multiset
U72^11: multiset


The following usable rules [FROCOS05] were oriented: none

(41) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(43) TRUE

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(ok(X1), ok(X2)) → U711(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(ok(X1), ok(X2)) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2)  =  U711(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U71^11
mark > U71^11

Status:
U71^11: multiset
mark: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(mark(X1), X2) → U711(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(mark(X1), X2) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2)  =  U711(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U71^11, mark1]

Status:
U71^11: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(48) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(50) TRUE

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(ok(X)) → U611(X)
U611(mark(X)) → U611(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(ok(X)) → U611(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1)  =  U611(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U61^11, ok1]

Status:
U61^11: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X)) → U611(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X)) → U611(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U61^11

Status:
U61^11: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(55) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(57) TRUE

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(ok(X)) → U521(X)
U521(mark(X)) → U521(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(ok(X)) → U521(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1)  =  U521(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U52^11, ok1]

Status:
U52^11: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(mark(X)) → U521(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(mark(X)) → U521(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U52^11

Status:
U52^11: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(62) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(64) TRUE

(65) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2)) → U511(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(ok(X1), ok(X2)) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U51^11
mark > U51^11

Status:
mark: multiset
ok1: multiset
U51^11: multiset


The following usable rules [FROCOS05] were oriented: none

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(mark(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U51^11, mark1]

Status:
mark1: [1]
U51^11: multiset


The following usable rules [FROCOS05] were oriented: none

(69) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(71) TRUE

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(ok(X)) → U421(X)
U421(mark(X)) → U421(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U421(ok(X)) → U421(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U421(x1)  =  U421(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U42^11, ok1]

Status:
ok1: multiset
U42^11: multiset


The following usable rules [FROCOS05] were oriented: none

(74) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(mark(X)) → U421(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U421(mark(X)) → U421(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U42^11

Status:
mark1: multiset
U42^11: multiset


The following usable rules [FROCOS05] were oriented: none

(76) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(77) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(78) TRUE

(79) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(ok(X1), ok(X2)) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U41^11
mark > U41^11

Status:
U41^11: multiset
mark: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(81) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(82) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X1), X2) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U41^11, mark1]

Status:
U41^11: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(83) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(85) TRUE

(86) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X)) → U311(X)
U311(mark(X)) → U311(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(87) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(ok(X)) → U311(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1)  =  U311(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U31^11, ok1]

Status:
U31^11: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(88) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X)) → U311(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(89) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X)) → U311(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U31^11

Status:
U31^11: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(90) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(91) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(92) TRUE

(93) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(ok(X)) → U221(X)
U221(mark(X)) → U221(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(94) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(ok(X)) → U221(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1)  =  U221(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U22^11, ok1]

Status:
U22^11: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(95) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(mark(X)) → U221(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(96) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X)) → U221(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U22^11

Status:
U22^11: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(97) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(99) TRUE

(100) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(101) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(ok(X1), ok(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U21^11
mark > U21^11

Status:
mark: multiset
U21^11: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(102) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(103) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U21^11, mark1]

Status:
mark1: [1]
U21^11: multiset


The following usable rules [FROCOS05] were oriented: none

(104) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(105) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(106) TRUE

(107) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X)) → U111(X)
U111(mark(X)) → U111(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(108) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X)) → U111(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1)  =  U111(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U11^11, ok1]

Status:
U11^11: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(109) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X)) → U111(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(110) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X)) → U111(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U11^11

Status:
U11^11: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(111) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(112) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(113) TRUE

(114) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(X1, mark(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)
__1(ok(X1), ok(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(115) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(X1, mark(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset
_^12: [2,1]


The following usable rules [FROCOS05] were oriented: none

(116) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(ok(X1), ok(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(117) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(ok(X1), ok(X2)) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x2)
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[^11, ok1]

Status:
ok1: [1]
_^11: multiset


The following usable rules [FROCOS05] were oriented: none

(118) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(119) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(120) TRUE

(121) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(__(X1, X2)) → PROPER(X2)
PROPER(__(X1, X2)) → PROPER(X1)
PROPER(U11(X)) → PROPER(X)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X)) → PROPER(X)
PROPER(isList(X)) → PROPER(X)
PROPER(U31(X)) → PROPER(X)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(U42(X)) → PROPER(X)
PROPER(isNeList(X)) → PROPER(X)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X)) → PROPER(X)
PROPER(U61(X)) → PROPER(X)
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(U72(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)
PROPER(U81(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(122) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(__(X1, X2)) → PROPER(X2)
PROPER(__(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
__(x1, x2)  =  __(x1, x2)
U11(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  x1
isList(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U42(x1)  =  x1
isNeList(x1)  =  x1
U51(x1, x2)  =  U51(x1, x2)
U52(x1)  =  x1
U61(x1)  =  x1
U71(x1, x2)  =  U71(x1, x2)
U72(x1)  =  x1
isPal(x1)  =  x1
U81(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
PROPER1: [1]
_2: multiset
U412: multiset
U212: multiset
U512: multiset
U712: multiset


The following usable rules [FROCOS05] were oriented: none

(123) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U11(X)) → PROPER(X)
PROPER(U22(X)) → PROPER(X)
PROPER(isList(X)) → PROPER(X)
PROPER(U31(X)) → PROPER(X)
PROPER(U42(X)) → PROPER(X)
PROPER(isNeList(X)) → PROPER(X)
PROPER(U52(X)) → PROPER(X)
PROPER(U61(X)) → PROPER(X)
PROPER(U72(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)
PROPER(U81(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(124) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U22(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U11(x1)  =  x1
U22(x1)  =  U22(x1)
isList(x1)  =  x1
U31(x1)  =  x1
U42(x1)  =  x1
isNeList(x1)  =  x1
U52(x1)  =  x1
U61(x1)  =  x1
U72(x1)  =  x1
isPal(x1)  =  x1
U81(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
U221 > PROPER1

Status:
PROPER1: multiset
U221: [1]


The following usable rules [FROCOS05] were oriented: none

(125) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U11(X)) → PROPER(X)
PROPER(isList(X)) → PROPER(X)
PROPER(U31(X)) → PROPER(X)
PROPER(U42(X)) → PROPER(X)
PROPER(isNeList(X)) → PROPER(X)
PROPER(U52(X)) → PROPER(X)
PROPER(U61(X)) → PROPER(X)
PROPER(U72(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)
PROPER(U81(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(126) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isList(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U11(x1)  =  x1
isList(x1)  =  isList(x1)
U31(x1)  =  x1
U42(x1)  =  x1
isNeList(x1)  =  x1
U52(x1)  =  x1
U61(x1)  =  x1
U72(x1)  =  x1
isPal(x1)  =  x1
U81(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[PROPER1, isList1]

Status:
PROPER1: multiset
isList1: multiset


The following usable rules [FROCOS05] were oriented: none

(127) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U11(X)) → PROPER(X)
PROPER(U31(X)) → PROPER(X)
PROPER(U42(X)) → PROPER(X)
PROPER(isNeList(X)) → PROPER(X)
PROPER(U52(X)) → PROPER(X)
PROPER(U61(X)) → PROPER(X)
PROPER(U72(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)
PROPER(U81(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(128) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isNePal(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U11(x1)  =  x1
U31(x1)  =  x1
U42(x1)  =  x1
isNeList(x1)  =  x1
U52(x1)  =  x1
U61(x1)  =  x1
U72(x1)  =  x1
isPal(x1)  =  x1
U81(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  isNePal(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[PROPER1, isNePal1]

Status:
PROPER1: multiset
isNePal1: multiset


The following usable rules [FROCOS05] were oriented: none

(129) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U11(X)) → PROPER(X)
PROPER(U31(X)) → PROPER(X)
PROPER(U42(X)) → PROPER(X)
PROPER(isNeList(X)) → PROPER(X)
PROPER(U52(X)) → PROPER(X)
PROPER(U61(X)) → PROPER(X)
PROPER(U72(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)
PROPER(U81(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(130) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U11(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
U11(x1)  =  U11(x1)
U31(x1)  =  x1
U42(x1)  =  x1
isNeList(x1)  =  x1
U52(x1)  =  x1
U61(x1)  =  x1
U72(x1)  =  x1
isPal(x1)  =  x1
U81(x1)  =  x1
isQid(x1)  =  isQid(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U111: multiset
isQid1: multiset


The following usable rules [FROCOS05] were oriented: none

(131) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U31(X)) → PROPER(X)
PROPER(U42(X)) → PROPER(X)
PROPER(isNeList(X)) → PROPER(X)
PROPER(U52(X)) → PROPER(X)
PROPER(U61(X)) → PROPER(X)
PROPER(U72(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)
PROPER(U81(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(132) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U52(X)) → PROPER(X)
PROPER(U61(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U31(x1)  =  x1
U42(x1)  =  x1
isNeList(x1)  =  x1
U52(x1)  =  U52(x1)
U61(x1)  =  U61(x1)
U72(x1)  =  x1
isPal(x1)  =  x1
U81(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
U611 > [PROPER1, U521]

Status:
PROPER1: multiset
U611: multiset
U521: multiset


The following usable rules [FROCOS05] were oriented: none

(133) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U31(X)) → PROPER(X)
PROPER(U42(X)) → PROPER(X)
PROPER(isNeList(X)) → PROPER(X)
PROPER(U72(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)
PROPER(U81(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(134) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U81(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U31(x1)  =  x1
U42(x1)  =  x1
isNeList(x1)  =  x1
U72(x1)  =  x1
isPal(x1)  =  x1
U81(x1)  =  U81(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
PROPER1: multiset
U811: multiset


The following usable rules [FROCOS05] were oriented: none

(135) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U31(X)) → PROPER(X)
PROPER(U42(X)) → PROPER(X)
PROPER(isNeList(X)) → PROPER(X)
PROPER(U72(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(136) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U31(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U31(x1)  =  U31(x1)
U42(x1)  =  x1
isNeList(x1)  =  x1
U72(x1)  =  x1
isPal(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[PROPER1, U311]

Status:
PROPER1: multiset
U311: multiset


The following usable rules [FROCOS05] were oriented: none

(137) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U42(X)) → PROPER(X)
PROPER(isNeList(X)) → PROPER(X)
PROPER(U72(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(138) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U72(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U42(x1)  =  x1
isNeList(x1)  =  x1
U72(x1)  =  U72(x1)
isPal(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[PROPER1, U721]

Status:
PROPER1: multiset
U721: multiset


The following usable rules [FROCOS05] were oriented: none

(139) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U42(X)) → PROPER(X)
PROPER(isNeList(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(140) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U42(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U42(x1)  =  U42(x1)
isNeList(x1)  =  x1
isPal(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[PROPER1, U421]

Status:
PROPER1: multiset
U421: multiset


The following usable rules [FROCOS05] were oriented: none

(141) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isNeList(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(142) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isNeList(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
isNeList(x1)  =  isNeList(x1)
isPal(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[PROPER1, isNeList1]

Status:
PROPER1: multiset
isNeList1: multiset


The following usable rules [FROCOS05] were oriented: none

(143) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isPal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(144) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isPal(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
isPal1 > PROPER1

Status:
isPal1: multiset
PROPER1: multiset


The following usable rules [FROCOS05] were oriented: none

(145) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(146) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(147) TRUE

(148) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X)) → ACTIVE(X)
ACTIVE(U61(X)) → ACTIVE(X)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X)) → ACTIVE(X)
ACTIVE(U81(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(149) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
__(x1, x2)  =  __(x1, x2)
U11(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1)  =  x1
U61(x1)  =  x1
U71(x1, x2)  =  x1
U72(x1)  =  x1
U81(x1)  =  U81(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
_2 > ACTIVE1

Status:
_2: multiset
U811: [1]
ACTIVE1: multiset


The following usable rules [FROCOS05] were oriented: none

(150) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X)) → ACTIVE(X)
ACTIVE(U61(X)) → ACTIVE(X)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(151) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U71(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1)  =  x1
U61(x1)  =  x1
U71(x1, x2)  =  U71(x1, x2)
U72(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U712: multiset
ACTIVE1: multiset


The following usable rules [FROCOS05] were oriented: none

(152) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X)) → ACTIVE(X)
ACTIVE(U61(X)) → ACTIVE(X)
ACTIVE(U72(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(153) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U72(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1)  =  x1
U61(x1)  =  x1
U72(x1)  =  U72(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U721: [1]
ACTIVE1: multiset


The following usable rules [FROCOS05] were oriented: none

(154) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X)) → ACTIVE(X)
ACTIVE(U61(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(155) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U31(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  x1
U31(x1)  =  U31(x1)
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1)  =  x1
U61(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVE1, U311]

Status:
U311: multiset
ACTIVE1: multiset


The following usable rules [FROCOS05] were oriented: none

(156) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X)) → ACTIVE(X)
ACTIVE(U61(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(157) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U11(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1)  =  U11(x1)
U21(x1, x2)  =  x1
U22(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1)  =  x1
U61(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U111: multiset
ACTIVE1: multiset


The following usable rules [FROCOS05] were oriented: none

(158) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X)) → ACTIVE(X)
ACTIVE(U61(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(159) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
U41(x1, x2)  =  U41(x1, x2)
U42(x1)  =  U42(x1)
U51(x1, x2)  =  U51(x1)
U52(x1)  =  x1
U61(x1)  =  U61(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U221: multiset
U611: multiset
U412: [2,1]
U421: [1]
U211: multiset
U511: [1]


The following usable rules [FROCOS05] were oriented: none

(160) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U52(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(161) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U52(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
U521 > ACTIVE1

Status:
U521: multiset
ACTIVE1: multiset


The following usable rules [FROCOS05] were oriented: none

(162) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(163) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(164) TRUE

(165) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(166) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(mark(X)) → TOP(proper(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  x1
ok(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)
proper(x1)  =  x1
U51(x1, x2)  =  U51(x1, x2)
tt  =  tt
U52(x1)  =  U52(x1)
isList(x1)  =  isList(x1)
U42(x1)  =  U42(x1)
U41(x1, x2)  =  U41(x1, x2)
isNeList(x1)  =  isNeList(x1)
U31(x1)  =  U31(x1)
U22(x1)  =  U22(x1)
U21(x1, x2)  =  U21(x1, x2)
U11(x1)  =  U11(x1)
__(x1, x2)  =  __(x1, x2)
nil  =  nil
U81(x1)  =  U81(x1)
U72(x1)  =  U72(x1)
U71(x1, x2)  =  U71(x1, x2)
isPal(x1)  =  isPal(x1)
U61(x1)  =  U61(x1)
isQid(x1)  =  isQid
isNePal(x1)  =  isNePal(x1)
u  =  u
i  =  i
o  =  o
a  =  a
e  =  e

Recursive path order with status [RPO].
Quasi-Precedence:
_2 > U512 > isList1 > isNeList1 > U311 > [mark1, U521, U811, U721, U611, o]
_2 > U512 > isList1 > isNeList1 > isQid > tt > U421 > [mark1, U521, U811, U721, U611, o]
_2 > U512 > isList1 > U111 > tt > U421 > [mark1, U521, U811, U721, U611, o]
_2 > U412 > isNeList1 > U311 > [mark1, U521, U811, U721, U611, o]
_2 > U412 > isNeList1 > isQid > tt > U421 > [mark1, U521, U811, U721, U611, o]
_2 > U212 > isList1 > isNeList1 > U311 > [mark1, U521, U811, U721, U611, o]
_2 > U212 > isList1 > isNeList1 > isQid > tt > U421 > [mark1, U521, U811, U721, U611, o]
_2 > U212 > isList1 > U111 > tt > U421 > [mark1, U521, U811, U721, U611, o]
_2 > U212 > U221 > tt > U421 > [mark1, U521, U811, U721, U611, o]
_2 > U712 > isPal1 > isNePal1 > isQid > tt > U421 > [mark1, U521, U811, U721, U611, o]
nil > [mark1, U521, U811, U721, U611, o]
u > tt > U421 > [mark1, U521, U811, U721, U611, o]
i > [mark1, U521, U811, U721, U611, o]
a > tt > U421 > [mark1, U521, U811, U721, U611, o]
e > tt > U421 > [mark1, U521, U811, U721, U611, o]

Status:
i: multiset
_2: [1,2]
U811: [1]
mark1: [1]
U712: [2,1]
U212: multiset
U512: [2,1]
tt: multiset
U521: [1]
U721: [1]
U111: multiset
isQid: multiset
nil: multiset
a: multiset
U611: [1]
isList1: multiset
e: multiset
isNePal1: multiset
o: multiset
isPal1: multiset
U221: [1]
U311: [1]
u: multiset
U412: [1,2]
isNeList1: [1]
U421: [1]


The following usable rules [FROCOS05] were oriented:

active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U42(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U31(tt)) → mark(tt)
active(U22(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U11(tt)) → mark(tt)
active(__(nil, X)) → mark(X)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isList(nil)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(U81(tt)) → mark(tt)
active(U72(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U61(tt)) → mark(tt)
active(U52(tt)) → mark(tt)
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U61(ok(X)) → ok(U61(X))
isPal(ok(X)) → ok(isPal(X))
U72(ok(X)) → ok(U72(X))
isNeList(ok(X)) → ok(isNeList(X))
U42(ok(X)) → ok(U42(X))
U52(ok(X)) → ok(U52(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
isList(ok(X)) → ok(isList(X))
U22(ok(X)) → ok(U22(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(ok(X)) → ok(U31(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
proper(u) → ok(u)
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U11(ok(X)) → ok(U11(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(i) → ok(i)
proper(o) → ok(o)
proper(a) → ok(a)
proper(e) → ok(e)
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(tt) → ok(tt)
proper(U11(X)) → U11(proper(X))
proper(nil) → ok(nil)
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(U31(X)) → U31(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U22(X)) → U22(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
U52(mark(X)) → mark(U52(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U42(mark(X)) → mark(U42(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U81(mark(X)) → mark(U81(X))
U72(mark(X)) → mark(U72(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U61(mark(X)) → mark(U61(X))
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(isQid(i)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(u)) → mark(tt)
active(isQid(o)) → mark(tt)
active(__(X1, X2)) → __(X1, active(X2))
active(__(X1, X2)) → __(active(X1), X2)
active(U21(X1, X2)) → U21(active(X1), X2)
active(U11(X)) → U11(active(X))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isQid(a)) → mark(tt)
active(isPal(nil)) → mark(tt)

(167) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(168) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(ok(X)) → TOP(active(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  TOP(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U51(x1, x2)  =  x1
tt  =  tt
mark(x1)  =  mark
U52(x1)  =  x1
isList(x1)  =  isList
U42(x1)  =  x1
U41(x1, x2)  =  x2
isNeList(x1)  =  isNeList
U31(x1)  =  x1
U22(x1)  =  x1
U21(x1, x2)  =  x2
U11(x1)  =  x1
__(x1, x2)  =  x2
nil  =  nil
U81(x1)  =  x1
U72(x1)  =  x1
U71(x1, x2)  =  x1
isPal(x1)  =  isPal
U61(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  x1
i  =  i
e  =  e
u  =  u
o  =  o
a  =  a

Recursive path order with status [RPO].
Quasi-Precedence:
[TOP1, ok1] > active1 > isNeList > isList > [mark, i, e, u]
[TOP1, ok1] > active1 > isPal > [tt, nil] > isList > [mark, i, e, u]
o > [mark, i, e, u]
a > [tt, nil] > isList > [mark, i, e, u]

Status:
i: multiset
isPal: []
a: multiset
e: multiset
isNeList: []
ok1: [1]
o: multiset
active1: [1]
isList: multiset
tt: multiset
u: multiset
mark: []
TOP1: [1]
nil: multiset


The following usable rules [FROCOS05] were oriented:

active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U42(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U31(tt)) → mark(tt)
active(U22(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U11(tt)) → mark(tt)
active(__(nil, X)) → mark(X)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isList(nil)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(U81(tt)) → mark(tt)
active(U72(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U61(tt)) → mark(tt)
active(U52(tt)) → mark(tt)
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
U81(ok(X)) → ok(U81(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U61(ok(X)) → ok(U61(X))
U72(ok(X)) → ok(U72(X))
U42(ok(X)) → ok(U42(X))
U52(ok(X)) → ok(U52(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U22(ok(X)) → ok(U22(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U31(ok(X)) → ok(U31(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U11(ok(X)) → ok(U11(X))
U52(mark(X)) → mark(U52(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U42(mark(X)) → mark(U42(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U81(mark(X)) → mark(U81(X))
U72(mark(X)) → mark(U72(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U61(mark(X)) → mark(U61(X))
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(isQid(i)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(u)) → mark(tt)
active(isQid(o)) → mark(tt)
active(__(X1, X2)) → __(X1, active(X2))
active(__(X1, X2)) → __(active(X1), X2)
active(U21(X1, X2)) → U21(active(X1), X2)
active(U11(X)) → U11(active(X))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isQid(a)) → mark(tt)
active(isPal(nil)) → mark(tt)

(169) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt)) → mark(tt)
active(U21(tt, V2)) → mark(U22(isList(V2)))
active(U22(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNeList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt)) → mark(tt)
active(U71(tt, P)) → mark(U72(isPal(P)))
active(U72(tt)) → mark(tt)
active(U81(tt)) → mark(tt)
active(isList(V)) → mark(U11(isNeList(V)))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(isList(V1), V2))
active(isNeList(V)) → mark(U31(isQid(V)))
active(isNeList(__(V1, V2))) → mark(U41(isList(V1), V2))
active(isNeList(__(V1, V2))) → mark(U51(isNeList(V1), V2))
active(isNePal(V)) → mark(U61(isQid(V)))
active(isNePal(__(I, __(P, I)))) → mark(U71(isQid(I), P))
active(isPal(V)) → mark(U81(isNePal(V)))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X)) → U11(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X)) → U61(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(U81(X)) → U81(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
U81(mark(X)) → mark(U81(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isList(X)) → isList(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(U61(X)) → U61(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(U81(X)) → U81(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isList(ok(X)) → ok(isList(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNeList(ok(X)) → ok(isNeList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isPal(ok(X)) → ok(isPal(X))
U81(ok(X)) → ok(U81(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(170) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(171) TRUE