(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(__(__(X, Y), Z)) → MARK(__(X, __(Y, Z)))
ACTIVE(__(__(X, Y), Z)) → __1(X, __(Y, Z))
ACTIVE(__(__(X, Y), Z)) → __1(Y, Z)
ACTIVE(__(X, nil)) → MARK(X)
ACTIVE(__(nil, X)) → MARK(X)
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(isList(V)) → MARK(isNeList(V))
ACTIVE(isList(V)) → ISNELIST(V)
ACTIVE(isList(nil)) → MARK(tt)
ACTIVE(isList(__(V1, V2))) → MARK(and(isList(V1), isList(V2)))
ACTIVE(isList(__(V1, V2))) → AND(isList(V1), isList(V2))
ACTIVE(isList(__(V1, V2))) → ISLIST(V1)
ACTIVE(isList(__(V1, V2))) → ISLIST(V2)
ACTIVE(isNeList(V)) → MARK(isQid(V))
ACTIVE(isNeList(V)) → ISQID(V)
ACTIVE(isNeList(__(V1, V2))) → MARK(and(isList(V1), isNeList(V2)))
ACTIVE(isNeList(__(V1, V2))) → AND(isList(V1), isNeList(V2))
ACTIVE(isNeList(__(V1, V2))) → ISLIST(V1)
ACTIVE(isNeList(__(V1, V2))) → ISNELIST(V2)
ACTIVE(isNeList(__(V1, V2))) → MARK(and(isNeList(V1), isList(V2)))
ACTIVE(isNeList(__(V1, V2))) → AND(isNeList(V1), isList(V2))
ACTIVE(isNeList(__(V1, V2))) → ISNELIST(V1)
ACTIVE(isNeList(__(V1, V2))) → ISLIST(V2)
ACTIVE(isNePal(V)) → MARK(isQid(V))
ACTIVE(isNePal(V)) → ISQID(V)
ACTIVE(isNePal(__(I, __(P, I)))) → MARK(and(isQid(I), isPal(P)))
ACTIVE(isNePal(__(I, __(P, I)))) → AND(isQid(I), isPal(P))
ACTIVE(isNePal(__(I, __(P, I)))) → ISQID(I)
ACTIVE(isNePal(__(I, __(P, I)))) → ISPAL(P)
ACTIVE(isPal(V)) → MARK(isNePal(V))
ACTIVE(isPal(V)) → ISNEPAL(V)
ACTIVE(isPal(nil)) → MARK(tt)
ACTIVE(isQid(a)) → MARK(tt)
ACTIVE(isQid(e)) → MARK(tt)
ACTIVE(isQid(i)) → MARK(tt)
ACTIVE(isQid(o)) → MARK(tt)
ACTIVE(isQid(u)) → MARK(tt)
MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
MARK(__(X1, X2)) → __1(mark(X1), mark(X2))
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(nil) → ACTIVE(nil)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(isList(X)) → ACTIVE(isList(X))
MARK(isNeList(X)) → ACTIVE(isNeList(X))
MARK(isQid(X)) → ACTIVE(isQid(X))
MARK(isNePal(X)) → ACTIVE(isNePal(X))
MARK(isPal(X)) → ACTIVE(isPal(X))
MARK(a) → ACTIVE(a)
MARK(e) → ACTIVE(e)
MARK(i) → ACTIVE(i)
MARK(o) → ACTIVE(o)
MARK(u) → ACTIVE(u)
__1(mark(X1), X2) → __1(X1, X2)
__1(X1, mark(X2)) → __1(X1, X2)
__1(active(X1), X2) → __1(X1, X2)
__1(X1, active(X2)) → __1(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
ISLIST(mark(X)) → ISLIST(X)
ISLIST(active(X)) → ISLIST(X)
ISNELIST(mark(X)) → ISNELIST(X)
ISNELIST(active(X)) → ISNELIST(X)
ISQID(mark(X)) → ISQID(X)
ISQID(active(X)) → ISQID(X)
ISNEPAL(mark(X)) → ISNEPAL(X)
ISNEPAL(active(X)) → ISNEPAL(X)
ISPAL(mark(X)) → ISPAL(X)
ISPAL(active(X)) → ISPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 8 SCCs with 34 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISPAL(active(X)) → ISPAL(X)
ISPAL(mark(X)) → ISPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISPAL(active(X)) → ISPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISPAL(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISPAL(mark(X)) → ISPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISPAL(mark(X)) → ISPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
mark1 > ISPAL1

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(active(X)) → ISNEPAL(X)
ISNEPAL(mark(X)) → ISNEPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(active(X)) → ISNEPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNEPAL(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(mark(X)) → ISNEPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(mark(X)) → ISNEPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
mark1 > ISNEPAL1

The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISQID(active(X)) → ISQID(X)
ISQID(mark(X)) → ISQID(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISQID(active(X)) → ISQID(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISQID(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISQID(mark(X)) → ISQID(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISQID(mark(X)) → ISQID(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
mark1 > ISQID1

The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNELIST(active(X)) → ISNELIST(X)
ISNELIST(mark(X)) → ISNELIST(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNELIST(active(X)) → ISNELIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNELIST(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNELIST(mark(X)) → ISNELIST(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNELIST(mark(X)) → ISNELIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
mark1 > ISNELIST1

The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(32) TRUE

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLIST(active(X)) → ISLIST(X)
ISLIST(mark(X)) → ISLIST(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISLIST(active(X)) → ISLIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISLIST(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLIST(mark(X)) → ISLIST(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISLIST(mark(X)) → ISLIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
mark1 > ISLIST1

The following usable rules [FROCOS05] were oriented: none

(37) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(39) TRUE

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(X1, mark(X2)) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(active(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(active(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
active1 > AND1

The following usable rules [FROCOS05] were oriented: none

(46) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(48) TRUE

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(X1, mark(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)
__1(active(X1), X2) → __1(X1, X2)
__1(X1, active(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(X1, mark(X2)) → __1(X1, X2)
__1(X1, active(X2)) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(mark(X1), X2) → __1(X1, X2)
__1(active(X1), X2) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(mark(X1), X2) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(active(X1), X2) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(active(X1), X2) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
active1 > _^11

The following usable rules [FROCOS05] were oriented: none

(55) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(57) TRUE

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
ACTIVE(__(__(X, Y), Z)) → MARK(__(X, __(Y, Z)))
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(__(X, nil)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
MARK(isList(X)) → ACTIVE(isList(X))
ACTIVE(__(nil, X)) → MARK(X)
MARK(isNeList(X)) → ACTIVE(isNeList(X))
ACTIVE(and(tt, X)) → MARK(X)
MARK(isQid(X)) → ACTIVE(isQid(X))
ACTIVE(isList(V)) → MARK(isNeList(V))
MARK(isNePal(X)) → ACTIVE(isNePal(X))
ACTIVE(isList(__(V1, V2))) → MARK(and(isList(V1), isList(V2)))
MARK(isPal(X)) → ACTIVE(isPal(X))
ACTIVE(isNeList(V)) → MARK(isQid(V))
ACTIVE(isNeList(__(V1, V2))) → MARK(and(isList(V1), isNeList(V2)))
ACTIVE(isNeList(__(V1, V2))) → MARK(and(isNeList(V1), isList(V2)))
ACTIVE(isNePal(V)) → MARK(isQid(V))
ACTIVE(isNePal(__(I, __(P, I)))) → MARK(and(isQid(I), isPal(P)))
ACTIVE(isPal(V)) → MARK(isNePal(V))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(__(__(X, Y), Z)) → MARK(__(X, __(Y, Z)))
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
ACTIVE(__(X, nil)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(__(nil, X)) → MARK(X)
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(isList(__(V1, V2))) → MARK(and(isList(V1), isList(V2)))
ACTIVE(isNeList(__(V1, V2))) → MARK(and(isList(V1), isNeList(V2)))
ACTIVE(isNeList(__(V1, V2))) → MARK(and(isNeList(V1), isList(V2)))
ACTIVE(isNePal(__(I, __(P, I)))) → MARK(and(isQid(I), isPal(P)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
ACTIVE(x1)  =  x1
mark(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
nil  =  nil
isList(x1)  =  x1
isNeList(x1)  =  x1
tt  =  tt
isQid(x1)  =  x1
isNePal(x1)  =  x1
isPal(x1)  =  x1
active(x1)  =  x1
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic Path Order [LPO].
Precedence:
_2 > and2
nil > tt
a > tt
e > tt
i > tt
o > tt
u > tt

The following usable rules [FROCOS05] were oriented:

mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(__(X, nil)) → mark(X)
mark(isList(X)) → active(isList(X))
active(__(nil, X)) → mark(X)
mark(isNeList(X)) → active(isNeList(X))
active(and(tt, X)) → mark(X)
mark(isQid(X)) → active(isQid(X))
active(isList(V)) → mark(isNeList(V))
mark(isNePal(X)) → active(isNePal(X))
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
mark(isPal(X)) → active(isPal(X))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
mark(nil) → active(nil)
mark(tt) → active(tt)
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(X1, mark(X2)) → __(X1, X2)
__(mark(X1), X2) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(active(X)) → isList(X)
isList(mark(X)) → isList(X)
isNeList(active(X)) → isNeList(X)
isNeList(mark(X)) → isNeList(X)
isQid(active(X)) → isQid(X)
isQid(mark(X)) → isQid(X)
isNePal(active(X)) → isNePal(X)
isNePal(mark(X)) → isNePal(X)
isPal(active(X)) → isPal(X)
isPal(mark(X)) → isPal(X)
active(isList(nil)) → mark(tt)
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(isList(X)) → ACTIVE(isList(X))
MARK(isNeList(X)) → ACTIVE(isNeList(X))
MARK(isQid(X)) → ACTIVE(isQid(X))
ACTIVE(isList(V)) → MARK(isNeList(V))
MARK(isNePal(X)) → ACTIVE(isNePal(X))
MARK(isPal(X)) → ACTIVE(isPal(X))
ACTIVE(isNeList(V)) → MARK(isQid(V))
ACTIVE(isNePal(V)) → MARK(isQid(V))
ACTIVE(isPal(V)) → MARK(isNePal(V))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(isPal(V)) → MARK(isNePal(V))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
__(x1, x2)  =  __
ACTIVE(x1)  =  x1
mark(x1)  =  x1
and(x1, x2)  =  and(x2)
isList(x1)  =  x1
isNeList(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  x1
isPal(x1)  =  isPal(x1)
active(x1)  =  x1
nil  =  nil
tt  =  tt
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic Path Order [LPO].
Precedence:
isPal1 > tt
nil > tt
a > tt
e > tt
i > tt
o > tt
u > tt

The following usable rules [FROCOS05] were oriented:

__(X1, mark(X2)) → __(X1, X2)
__(mark(X1), X2) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(active(X)) → isList(X)
isList(mark(X)) → isList(X)
isNeList(active(X)) → isNeList(X)
isNeList(mark(X)) → isNeList(X)
isQid(active(X)) → isQid(X)
isQid(mark(X)) → isQid(X)
isNePal(active(X)) → isNePal(X)
isNePal(mark(X)) → isNePal(X)
isPal(active(X)) → isPal(X)
isPal(mark(X)) → isPal(X)

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(isList(X)) → ACTIVE(isList(X))
MARK(isNeList(X)) → ACTIVE(isNeList(X))
MARK(isQid(X)) → ACTIVE(isQid(X))
ACTIVE(isList(V)) → MARK(isNeList(V))
MARK(isNePal(X)) → ACTIVE(isNePal(X))
MARK(isPal(X)) → ACTIVE(isPal(X))
ACTIVE(isNeList(V)) → MARK(isQid(V))
ACTIVE(isNePal(V)) → MARK(isQid(V))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(isNePal(V)) → MARK(isQid(V))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
__(x1, x2)  =  __
ACTIVE(x1)  =  x1
mark(x1)  =  x1
and(x1, x2)  =  x2
isList(x1)  =  x1
isNeList(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  isNePal(x1)
isPal(x1)  =  x1
active(x1)  =  x1
nil  =  nil
tt  =  tt
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic Path Order [LPO].
Precedence:
nil > tt
e > tt
i > tt
o > tt
u > tt

The following usable rules [FROCOS05] were oriented:

__(X1, mark(X2)) → __(X1, X2)
__(mark(X1), X2) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(active(X)) → isList(X)
isList(mark(X)) → isList(X)
isNeList(active(X)) → isNeList(X)
isNeList(mark(X)) → isNeList(X)
isQid(active(X)) → isQid(X)
isQid(mark(X)) → isQid(X)
isNePal(active(X)) → isNePal(X)
isNePal(mark(X)) → isNePal(X)
isPal(active(X)) → isPal(X)
isPal(mark(X)) → isPal(X)

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(isList(X)) → ACTIVE(isList(X))
MARK(isNeList(X)) → ACTIVE(isNeList(X))
MARK(isQid(X)) → ACTIVE(isQid(X))
ACTIVE(isList(V)) → MARK(isNeList(V))
MARK(isNePal(X)) → ACTIVE(isNePal(X))
MARK(isPal(X)) → ACTIVE(isPal(X))
ACTIVE(isNeList(V)) → MARK(isQid(V))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(isList(V)) → MARK(isNeList(V))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
__(x1, x2)  =  __
ACTIVE(x1)  =  x1
mark(x1)  =  x1
and(x1, x2)  =  x2
isList(x1)  =  isList(x1)
isNeList(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  isNePal(x1)
isPal(x1)  =  isPal(x1)
active(x1)  =  active(x1)
nil  =  nil
tt  =  tt
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic Path Order [LPO].
Precedence:
isPal1 > isNePal1
isPal1 > tt
active1 > _
active1 > isList1 > tt
active1 > isNePal1
nil > tt
a > tt
e > tt
i > tt
o > tt
u > tt

The following usable rules [FROCOS05] were oriented:

__(X1, mark(X2)) → __(X1, X2)
__(mark(X1), X2) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(active(X)) → isList(X)
isList(mark(X)) → isList(X)
isNeList(active(X)) → isNeList(X)
isNeList(mark(X)) → isNeList(X)
isQid(active(X)) → isQid(X)
isQid(mark(X)) → isQid(X)
isNePal(active(X)) → isNePal(X)
isNePal(mark(X)) → isNePal(X)
isPal(active(X)) → isPal(X)
isPal(mark(X)) → isPal(X)

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(isList(X)) → ACTIVE(isList(X))
MARK(isNeList(X)) → ACTIVE(isNeList(X))
MARK(isQid(X)) → ACTIVE(isQid(X))
MARK(isNePal(X)) → ACTIVE(isNePal(X))
MARK(isPal(X)) → ACTIVE(isPal(X))
ACTIVE(isNeList(V)) → MARK(isQid(V))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(isNeList(V)) → MARK(isQid(V))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
__(x1, x2)  =  __
ACTIVE(x1)  =  x1
mark(x1)  =  x1
and(x1, x2)  =  x2
isList(x1)  =  isList
isNeList(x1)  =  isNeList
isQid(x1)  =  isQid
isNePal(x1)  =  isNePal(x1)
isPal(x1)  =  isPal(x1)
active(x1)  =  x1
nil  =  nil
tt  =  tt
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic Path Order [LPO].
Precedence:
_ > isQid > tt
isList > isNeList > isQid > tt
isPal1 > isNePal1 > isQid > tt
nil > tt
a > tt
e > tt
i > tt
o > tt
u > tt

The following usable rules [FROCOS05] were oriented:

__(X1, mark(X2)) → __(X1, X2)
__(mark(X1), X2) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(active(X)) → isList(X)
isList(mark(X)) → isList(X)
isNeList(active(X)) → isNeList(X)
isNeList(mark(X)) → isNeList(X)
isQid(active(X)) → isQid(X)
isQid(mark(X)) → isQid(X)
isNePal(active(X)) → isNePal(X)
isNePal(mark(X)) → isNePal(X)
isPal(active(X)) → isPal(X)
isPal(mark(X)) → isPal(X)

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(isList(X)) → ACTIVE(isList(X))
MARK(isNeList(X)) → ACTIVE(isNeList(X))
MARK(isQid(X)) → ACTIVE(isQid(X))
MARK(isNePal(X)) → ACTIVE(isNePal(X))
MARK(isPal(X)) → ACTIVE(isPal(X))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isList(X)) → active(isList(X))
mark(isNeList(X)) → active(isNeList(X))
mark(isQid(X)) → active(isQid(X))
mark(isNePal(X)) → active(isNePal(X))
mark(isPal(X)) → active(isPal(X))
mark(a) → active(a)
mark(e) → active(e)
mark(i) → active(i)
mark(o) → active(o)
mark(u) → active(u)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isList(mark(X)) → isList(X)
isList(active(X)) → isList(X)
isNeList(mark(X)) → isNeList(X)
isNeList(active(X)) → isNeList(X)
isQid(mark(X)) → isQid(X)
isQid(active(X)) → isQid(X)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)
isPal(mark(X)) → isPal(X)
isPal(active(X)) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 7 less nodes.

(70) TRUE