(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, __(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
nil → n__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
a → n__a
e → n__e
i → n__i
o → n__o
u → n__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Lexicographic Path Order [LPO].
Precedence:
[2, n2] > [isList1, nisList1] > [isNeList1, nisNeList1] > and2 > activate1 > nil > nnil
[2, n2] > [isList1, nisList1] > [isNeList1, nisNeList1] > and2 > activate1 > a > na
[2, n2] > [isList1, nisList1] > [isNeList1, nisNeList1] > and2 > activate1 > e > ne
[2, n2] > [isList1, nisList1] > [isNeList1, nisNeList1] > and2 > activate1 > i > ni
[2, n2] > [isList1, nisList1] > [isNeList1, nisNeList1] > and2 > activate1 > o > no
[2, n2] > [isList1, nisList1] > [isNeList1, nisNeList1] > and2 > activate1 > u > nu
[2, n2] > [isList1, nisList1] > [isNeList1, nisNeList1] > isQid1 > tt
[2, n2] > [nisPal1, isPal1] > isNePal1 > and2 > activate1 > nil > nnil
[2, n2] > [nisPal1, isPal1] > isNePal1 > and2 > activate1 > a > na
[2, n2] > [nisPal1, isPal1] > isNePal1 > and2 > activate1 > e > ne
[2, n2] > [nisPal1, isPal1] > isNePal1 > and2 > activate1 > i > ni
[2, n2] > [nisPal1, isPal1] > isNePal1 > and2 > activate1 > o > no
[2, n2] > [nisPal1, isPal1] > isNePal1 > and2 > activate1 > u > nu
[2, n2] > [nisPal1, isPal1] > isNePal1 > isQid1 > tt
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, __(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
nil → n__nil
a → n__a
e → n__e
i → n__i
o → n__o
u → n__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
Q is empty.
(3) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Lexicographic Path Order [LPO].
Precedence:
_2 > n2
isList1 > nisList1
isNeList1 > nisNeList1
isPal1 > nisPal1
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
(4) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(5) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(6) TRUE