(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(X, __(Y, Z))
__1(__(X, Y), Z) → __1(Y, Z)
AND(tt, X) → ACTIVATE(X)
ISLIST(V) → ISNELIST(activate(V))
ISLIST(V) → ACTIVATE(V)
ISLIST(n____(V1, V2)) → AND(isList(activate(V1)), n__isList(activate(V2)))
ISLIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(n____(V1, V2)) → ACTIVATE(V1)
ISLIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(V) → ISQID(activate(V))
ISNELIST(V) → ACTIVATE(V)
ISNELIST(n____(V1, V2)) → AND(isList(activate(V1)), n__isNeList(activate(V2)))
ISNELIST(n____(V1, V2)) → ISLIST(activate(V1))
ISNELIST(n____(V1, V2)) → ACTIVATE(V1)
ISNELIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(n____(V1, V2)) → AND(isNeList(activate(V1)), n__isList(activate(V2)))
ISNELIST(n____(V1, V2)) → ISNELIST(activate(V1))
ISNEPAL(V) → ISQID(activate(V))
ISNEPAL(V) → ACTIVATE(V)
ISNEPAL(n____(I, n____(P, I))) → AND(isQid(activate(I)), n__isPal(activate(P)))
ISNEPAL(n____(I, n____(P, I))) → ISQID(activate(I))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
ISPAL(V) → ISNEPAL(activate(V))
ISPAL(V) → ACTIVATE(V)
ACTIVATE(n__nil) → NIL
ACTIVATE(n____(X1, X2)) → __1(activate(X1), activate(X2))
ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__isList(X)) → ISLIST(X)
ACTIVATE(n__isNeList(X)) → ISNELIST(X)
ACTIVATE(n__isPal(X)) → ISPAL(X)
ACTIVATE(n__a) → A
ACTIVATE(n__e) → E
ACTIVATE(n__i) → I
ACTIVATE(n__o) → O
ACTIVATE(n__u) → U

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 10 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[^12, 2, n2]

Status:
_2: [1,2]
_^12: [1,2]
n2: [1,2]
nil: multiset


The following usable rules [FROCOS05] were oriented:

__(X1, X2) → n____(X1, X2)
__(X, nil) → X
__(nil, X) → X
__(__(X, Y), Z) → __(X, __(Y, Z))

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__isList(X)) → ISLIST(X)
ISLIST(V) → ISNELIST(activate(V))
ISNELIST(V) → ACTIVATE(V)
ACTIVATE(n__isNeList(X)) → ISNELIST(X)
ISNELIST(n____(V1, V2)) → AND(isList(activate(V1)), n__isNeList(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → ISNEPAL(activate(V))
ISNEPAL(V) → ACTIVATE(V)
ISNEPAL(n____(I, n____(P, I))) → AND(isQid(activate(I)), n__isPal(activate(P)))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
ISPAL(V) → ACTIVATE(V)
ISNELIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(V) → ACTIVATE(V)
ISLIST(n____(V1, V2)) → AND(isList(activate(V1)), n__isList(activate(V2)))
ISLIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(n____(V1, V2)) → ACTIVATE(V1)
ISLIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(n____(V1, V2)) → ACTIVATE(V1)
ISNELIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(n____(V1, V2)) → AND(isNeList(activate(V1)), n__isList(activate(V2)))
ISNELIST(n____(V1, V2)) → ISNELIST(activate(V1))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ISNELIST(n____(V1, V2)) → AND(isList(activate(V1)), n__isNeList(activate(V2)))
ISNEPAL(n____(I, n____(P, I))) → AND(isQid(activate(I)), n__isPal(activate(P)))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
ISNELIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(n____(V1, V2)) → AND(isList(activate(V1)), n__isList(activate(V2)))
ISLIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(n____(V1, V2)) → ACTIVATE(V1)
ISLIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(n____(V1, V2)) → ACTIVATE(V1)
ISNELIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(n____(V1, V2)) → AND(isNeList(activate(V1)), n__isList(activate(V2)))
ISNELIST(n____(V1, V2)) → ISNELIST(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n____(x1, x2)  =  n____(x1, x2)
n__isList(x1)  =  x1
ISLIST(x1)  =  x1
ISNELIST(x1)  =  x1
activate(x1)  =  x1
n__isNeList(x1)  =  x1
AND(x1, x2)  =  x2
isList(x1)  =  x1
tt  =  tt
n__isPal(x1)  =  x1
ISPAL(x1)  =  x1
ISNEPAL(x1)  =  x1
isQid(x1)  =  x1
isNeList(x1)  =  x1
isPal(x1)  =  x1
n__nil  =  n__nil
n__a  =  n__a
isNePal(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
nil  =  nil
u  =  u
n__u  =  n__u
o  =  o
n__o  =  n__o
a  =  a
i  =  i
n__i  =  n__i
e  =  e
n__e  =  n__e
and(x1, x2)  =  x2

Recursive path order with status [RPO].
Quasi-Precedence:
[n2, 2]
[nnil, nil] > tt
[na, a] > tt
[u, nu] > tt
[o, no] > tt
[i, ni] > tt
[e, ne] > tt

Status:
i: multiset
a: multiset
nu: multiset
_2: [1,2]
e: multiset
ni: multiset
ne: multiset
nnil: multiset
o: multiset
n2: [1,2]
na: multiset
no: multiset
tt: multiset
u: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented:

isPal(n__nil) → tt
isQid(n__a) → tt
isNePal(V) → isQid(activate(V))
isNeList(V) → isQid(activate(V))
isList(n__nil) → tt
__(X, nil) → X
__(nil, X) → X
__(__(X, Y), Z) → __(X, __(Y, Z))
un__u
on__o
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__nil) → nil
an__a
isPal(X) → n__isPal(X)
in__i
en__e
__(X1, X2) → n____(X1, X2)
niln__nil
isNeList(X) → n__isNeList(X)
isList(X) → n__isList(X)
isQid(n__i) → tt
isQid(n__e) → tt
isQid(n__u) → tt
isQid(n__o) → tt
activate(X) → X
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isPal(V) → isNePal(activate(V))
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__isList(X)) → ISLIST(X)
ISLIST(V) → ISNELIST(activate(V))
ISNELIST(V) → ACTIVATE(V)
ACTIVATE(n__isNeList(X)) → ISNELIST(X)
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → ISNEPAL(activate(V))
ISNEPAL(V) → ACTIVATE(V)
ISPAL(V) → ACTIVATE(V)
ISLIST(V) → ACTIVATE(V)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLIST(V) → ISNELIST(activate(V))
ISNELIST(V) → ACTIVATE(V)
ACTIVATE(n__isList(X)) → ISLIST(X)
ISLIST(V) → ACTIVATE(V)
ACTIVATE(n__isNeList(X)) → ISNELIST(X)
ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → ISNEPAL(activate(V))
ISNEPAL(V) → ACTIVATE(V)
ISPAL(V) → ACTIVATE(V)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__isPal(X)) → ISPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISLIST(x1)  =  x1
ISNELIST(x1)  =  x1
activate(x1)  =  x1
ACTIVATE(x1)  =  x1
n__isList(x1)  =  x1
n__isNeList(x1)  =  x1
n__isPal(x1)  =  n__isPal(x1)
ISPAL(x1)  =  x1
ISNEPAL(x1)  =  x1
isPal(x1)  =  isPal(x1)
n__nil  =  n__nil
tt  =  tt
isQid(x1)  =  isQid
n__a  =  n__a
isNePal(x1)  =  isNePal(x1)
isNeList(x1)  =  x1
isList(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
nil  =  nil
u  =  u
n__u  =  n__u
o  =  o
n__o  =  n__o
n____(x1, x2)  =  n____(x1, x2)
a  =  a
i  =  i
n__i  =  n__i
e  =  e
n__e  =  n__e
and(x1, x2)  =  and(x2)

Recursive path order with status [RPO].
Quasi-Precedence:
[nisPal1, isPal1, isNePal1] > and1 > [tt, isQid]
[nnil, nil] > [tt, isQid]
[na, a] > [tt, isQid]
[2, n2] > and1 > [tt, isQid]
[u, nu] > [tt, isQid]
[o, no] > [tt, isQid]
[i, ni] > [tt, isQid]
[e, ne] > [tt, isQid]

Status:
i: multiset
a: multiset
_2: [1,2]
nu: multiset
nisPal1: [1]
e: multiset
ni: multiset
ne: multiset
isNePal1: [1]
nnil: multiset
o: multiset
n2: [1,2]
na: multiset
isPal1: [1]
no: multiset
tt: multiset
u: multiset
and1: multiset
isQid: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented:

isPal(n__nil) → tt
isQid(n__a) → tt
isNePal(V) → isQid(activate(V))
isNeList(V) → isQid(activate(V))
isList(n__nil) → tt
__(X, nil) → X
__(nil, X) → X
__(__(X, Y), Z) → __(X, __(Y, Z))
un__u
on__o
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__nil) → nil
an__a
isPal(X) → n__isPal(X)
in__i
en__e
__(X1, X2) → n____(X1, X2)
niln__nil
isNeList(X) → n__isNeList(X)
isList(X) → n__isList(X)
isQid(n__i) → tt
isQid(n__e) → tt
isQid(n__u) → tt
isQid(n__o) → tt
activate(X) → X
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isPal(V) → isNePal(activate(V))
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLIST(V) → ISNELIST(activate(V))
ISNELIST(V) → ACTIVATE(V)
ACTIVATE(n__isList(X)) → ISLIST(X)
ISLIST(V) → ACTIVATE(V)
ACTIVATE(n__isNeList(X)) → ISNELIST(X)
ISPAL(V) → ISNEPAL(activate(V))
ISNEPAL(V) → ACTIVATE(V)
ISPAL(V) → ACTIVATE(V)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNELIST(V) → ACTIVATE(V)
ACTIVATE(n__isList(X)) → ISLIST(X)
ISLIST(V) → ISNELIST(activate(V))
ISLIST(V) → ACTIVATE(V)
ACTIVATE(n__isNeList(X)) → ISNELIST(X)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNELIST(V) → ACTIVATE(V)
ACTIVATE(n__isList(X)) → ISLIST(X)
ISLIST(V) → ACTIVATE(V)
ACTIVATE(n__isNeList(X)) → ISNELIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNELIST(x1)  =  ISNELIST(x1)
ACTIVATE(x1)  =  x1
n__isList(x1)  =  n__isList(x1)
ISLIST(x1)  =  ISLIST(x1)
activate(x1)  =  x1
n__isNeList(x1)  =  n__isNeList(x1)
isPal(x1)  =  isPal(x1)
n__nil  =  n__nil
tt  =  tt
isQid(x1)  =  isQid
n__a  =  n__a
isNePal(x1)  =  isNePal(x1)
isNeList(x1)  =  isNeList(x1)
isList(x1)  =  isList(x1)
__(x1, x2)  =  __(x1, x2)
nil  =  nil
u  =  u
n__u  =  n__u
o  =  o
n__o  =  n__o
n____(x1, x2)  =  n____(x1, x2)
a  =  a
n__isPal(x1)  =  n__isPal(x1)
i  =  i
n__i  =  n__i
e  =  e
n__e  =  n__e
and(x1, x2)  =  x2

Recursive path order with status [RPO].
Quasi-Precedence:
[isPal1, isNePal1, nisPal1] > [tt, isQid, i, ni, e, ne]
[nnil, nil] > [tt, isQid, i, ni, e, ne]
[na, a] > [tt, isQid, i, ni, e, ne]
[2, n2] > [nisList1, isList1] > [nisNeList1, isNeList1] > [ISNELIST1, ISLIST1] > [tt, isQid, i, ni, e, ne]
[u, nu] > [tt, isQid, i, ni, e, ne]
[o, no] > [tt, isQid, i, ni, e, ne]

Status:
i: multiset
nu: multiset
_2: [1,2]
ni: multiset
nnil: multiset
na: multiset
tt: multiset
nisList1: multiset
isQid: []
nil: multiset
a: multiset
isList1: multiset
ISNELIST1: multiset
nisPal1: multiset
e: multiset
ne: multiset
isNePal1: multiset
n2: [1,2]
o: multiset
nisNeList1: [1]
isPal1: multiset
no: multiset
u: multiset
isNeList1: [1]
ISLIST1: multiset


The following usable rules [FROCOS05] were oriented:

isPal(n__nil) → tt
isQid(n__a) → tt
isNePal(V) → isQid(activate(V))
isNeList(V) → isQid(activate(V))
isList(n__nil) → tt
__(X, nil) → X
__(nil, X) → X
__(__(X, Y), Z) → __(X, __(Y, Z))
un__u
on__o
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__nil) → nil
an__a
isPal(X) → n__isPal(X)
in__i
en__e
__(X1, X2) → n____(X1, X2)
niln__nil
isNeList(X) → n__isNeList(X)
isList(X) → n__isList(X)
isQid(n__i) → tt
isQid(n__e) → tt
isQid(n__u) → tt
isQid(n__o) → tt
activate(X) → X
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isPal(V) → isNePal(activate(V))
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLIST(V) → ISNELIST(activate(V))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(22) TRUE