(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(__(__(X, Y), Z)) → __1(X, __(Y, Z))
ACTIVE(__(__(X, Y), Z)) → __1(Y, Z)
ACTIVE(isList(V)) → ISNELIST(V)
ACTIVE(isList(__(V1, V2))) → AND(isList(V1), isList(V2))
ACTIVE(isList(__(V1, V2))) → ISLIST(V1)
ACTIVE(isList(__(V1, V2))) → ISLIST(V2)
ACTIVE(isNeList(V)) → ISQID(V)
ACTIVE(isNeList(__(V1, V2))) → AND(isList(V1), isNeList(V2))
ACTIVE(isNeList(__(V1, V2))) → ISLIST(V1)
ACTIVE(isNeList(__(V1, V2))) → ISNELIST(V2)
ACTIVE(isNeList(__(V1, V2))) → AND(isNeList(V1), isList(V2))
ACTIVE(isNeList(__(V1, V2))) → ISNELIST(V1)
ACTIVE(isNeList(__(V1, V2))) → ISLIST(V2)
ACTIVE(isNePal(V)) → ISQID(V)
ACTIVE(isNePal(__(I, __(P, I)))) → AND(isQid(I), isPal(P))
ACTIVE(isNePal(__(I, __(P, I)))) → ISQID(I)
ACTIVE(isNePal(__(I, __(P, I)))) → ISPAL(P)
ACTIVE(isPal(V)) → ISNEPAL(V)
ACTIVE(__(X1, X2)) → __1(active(X1), X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
ACTIVE(__(X1, X2)) → __1(X1, active(X2))
ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
__1(mark(X1), X2) → __1(X1, X2)
__1(X1, mark(X2)) → __1(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
PROPER(__(X1, X2)) → __1(proper(X1), proper(X2))
PROPER(__(X1, X2)) → PROPER(X1)
PROPER(__(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isList(X)) → ISLIST(proper(X))
PROPER(isList(X)) → PROPER(X)
PROPER(isNeList(X)) → ISNELIST(proper(X))
PROPER(isNeList(X)) → PROPER(X)
PROPER(isQid(X)) → ISQID(proper(X))
PROPER(isQid(X)) → PROPER(X)
PROPER(isNePal(X)) → ISNEPAL(proper(X))
PROPER(isNePal(X)) → PROPER(X)
PROPER(isPal(X)) → ISPAL(proper(X))
PROPER(isPal(X)) → PROPER(X)
__1(ok(X1), ok(X2)) → __1(X1, X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)
ISLIST(ok(X)) → ISLIST(X)
ISNELIST(ok(X)) → ISNELIST(X)
ISQID(ok(X)) → ISQID(X)
ISNEPAL(ok(X)) → ISNEPAL(X)
ISPAL(ok(X)) → ISPAL(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 10 SCCs with 30 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISPAL(ok(X)) → ISPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISPAL(ok(X)) → ISPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISPAL(x1)  =  ISPAL(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  mark
nil  =  nil
and(x1, x2)  =  and(x1)
tt  =  tt
isList(x1)  =  x1
isNeList(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  x1
isPal(x1)  =  x1
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
ISPAL1 > [ok1, mark, and1, tt, top]
proper1 > _2 > [ok1, mark, and1, tt, top]
proper1 > nil > [ok1, mark, and1, tt, top]
proper1 > a > [ok1, mark, and1, tt, top]
proper1 > e > [ok1, mark, and1, tt, top]
proper1 > i > [ok1, mark, and1, tt, top]
proper1 > o > [ok1, mark, and1, tt, top]
proper1 > u > [ok1, mark, and1, tt, top]

Status:
ISPAL1: [1]
ok1: [1]
_2: [2,1]
mark: []
nil: []
and1: [1]
tt: []
a: []
e: []
i: []
o: []
u: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(ok(X)) → ISNEPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(ok(X)) → ISNEPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNEPAL(x1)  =  ISNEPAL(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  mark
nil  =  nil
and(x1, x2)  =  and(x1)
tt  =  tt
isList(x1)  =  x1
isNeList(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  x1
isPal(x1)  =  x1
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
ISNEPAL1 > [ok1, mark, and1, tt, top]
proper1 > _2 > [ok1, mark, and1, tt, top]
proper1 > nil > [ok1, mark, and1, tt, top]
proper1 > a > [ok1, mark, and1, tt, top]
proper1 > e > [ok1, mark, and1, tt, top]
proper1 > i > [ok1, mark, and1, tt, top]
proper1 > o > [ok1, mark, and1, tt, top]
proper1 > u > [ok1, mark, and1, tt, top]

Status:
ISNEPAL1: [1]
ok1: [1]
_2: [2,1]
mark: []
nil: []
and1: [1]
tt: []
a: []
e: []
i: []
o: []
u: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISQID(ok(X)) → ISQID(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISQID(ok(X)) → ISQID(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISQID(x1)  =  ISQID(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  mark
nil  =  nil
and(x1, x2)  =  and(x1)
tt  =  tt
isList(x1)  =  x1
isNeList(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  x1
isPal(x1)  =  x1
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
ISQID1 > [ok1, mark, and1, tt, top]
proper1 > _2 > [ok1, mark, and1, tt, top]
proper1 > nil > [ok1, mark, and1, tt, top]
proper1 > a > [ok1, mark, and1, tt, top]
proper1 > e > [ok1, mark, and1, tt, top]
proper1 > i > [ok1, mark, and1, tt, top]
proper1 > o > [ok1, mark, and1, tt, top]
proper1 > u > [ok1, mark, and1, tt, top]

Status:
ISQID1: [1]
ok1: [1]
_2: [2,1]
mark: []
nil: []
and1: [1]
tt: []
a: []
e: []
i: []
o: []
u: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNELIST(ok(X)) → ISNELIST(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNELIST(ok(X)) → ISNELIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNELIST(x1)  =  ISNELIST(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  mark
nil  =  nil
and(x1, x2)  =  and(x1)
tt  =  tt
isList(x1)  =  x1
isNeList(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  x1
isPal(x1)  =  x1
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
ISNELIST1 > [ok1, mark, and1, tt, top]
proper1 > _2 > [ok1, mark, and1, tt, top]
proper1 > nil > [ok1, mark, and1, tt, top]
proper1 > a > [ok1, mark, and1, tt, top]
proper1 > e > [ok1, mark, and1, tt, top]
proper1 > i > [ok1, mark, and1, tt, top]
proper1 > o > [ok1, mark, and1, tt, top]
proper1 > u > [ok1, mark, and1, tt, top]

Status:
ISNELIST1: [1]
ok1: [1]
_2: [2,1]
mark: []
nil: []
and1: [1]
tt: []
a: []
e: []
i: []
o: []
u: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLIST(ok(X)) → ISLIST(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISLIST(ok(X)) → ISLIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISLIST(x1)  =  ISLIST(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  mark
nil  =  nil
and(x1, x2)  =  and(x1)
tt  =  tt
isList(x1)  =  x1
isNeList(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  x1
isPal(x1)  =  x1
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
ISLIST1 > [ok1, mark, and1, tt, top]
proper1 > _2 > [ok1, mark, and1, tt, top]
proper1 > nil > [ok1, mark, and1, tt, top]
proper1 > a > [ok1, mark, and1, tt, top]
proper1 > e > [ok1, mark, and1, tt, top]
proper1 > i > [ok1, mark, and1, tt, top]
proper1 > o > [ok1, mark, and1, tt, top]
proper1 > u > [ok1, mark, and1, tt, top]

Status:
ISLIST1: [1]
ok1: [1]
_2: [2,1]
mark: []
nil: []
and1: [1]
tt: []
a: []
e: []
i: []
o: []
u: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(27) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(29) TRUE

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(ok(X1), ok(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(ok(X1), ok(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  x2
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
__(x1, x2)  =  __(x1, x2)
nil  =  nil
and(x1, x2)  =  and(x1)
tt  =  tt
isList(x1)  =  isList(x1)
isNeList(x1)  =  isNeList(x1)
isQid(x1)  =  isQid(x1)
isNePal(x1)  =  isNePal(x1)
isPal(x1)  =  isPal(x1)
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, 2, nil, isNePal1, a, e, i, o, u, proper1] > [ok1, mark, and1, tt, isList1, isNeList1, isQid1, isPal1, top]

Status:
ok1: [1]
mark: []
active1: [1]
_2: [2,1]
nil: []
and1: [1]
tt: []
isList1: [1]
isNeList1: [1]
isQid1: [1]
isNePal1: [1]
isPal1: [1]
a: []
e: []
i: []
o: []
u: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
nil  =  nil
and(x1, x2)  =  and(x1, x2)
tt  =  tt
isList(x1)  =  isList(x1)
isNeList(x1)  =  isNeList(x1)
isQid(x1)  =  x1
isNePal(x1)  =  isNePal(x1)
isPal(x1)  =  isPal(x1)
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
proper1 > _2 > and2 > [mark1, tt, isNeList1, ok1, top]
proper1 > _2 > isList1 > [mark1, tt, isNeList1, ok1, top]
proper1 > _2 > isPal1 > isNePal1 > [mark1, tt, isNeList1, ok1, top]
proper1 > nil > [mark1, tt, isNeList1, ok1, top]
proper1 > a > [mark1, tt, isNeList1, ok1, top]
proper1 > e > [mark1, tt, isNeList1, ok1, top]
proper1 > i > [mark1, tt, isNeList1, ok1, top]
proper1 > o > [mark1, tt, isNeList1, ok1, top]
proper1 > u > [mark1, tt, isNeList1, ok1, top]

Status:
mark1: [1]
_2: [1,2]
nil: []
and2: [1,2]
tt: []
isList1: [1]
isNeList1: [1]
isNePal1: [1]
isPal1: [1]
a: []
e: []
i: []
o: []
u: []
proper1: [1]
ok1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(34) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(36) TRUE

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(X1, mark(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)
__1(ok(X1), ok(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(mark(X1), X2) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x1)
mark(x1)  =  mark(x1)
ok(x1)  =  x1
active(x1)  =  active(x1)
__(x1, x2)  =  __(x1, x2)
nil  =  nil
and(x1, x2)  =  and(x1, x2)
tt  =  tt
isList(x1)  =  x1
isNeList(x1)  =  isNeList(x1)
isQid(x1)  =  isQid
isNePal(x1)  =  isNePal(x1)
isPal(x1)  =  isPal(x1)
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
proper1 > [active1, 2, and2, isNePal1] > [^11, mark1, tt, isNeList1, isQid, isPal1, top]
proper1 > nil > [^11, mark1, tt, isNeList1, isQid, isPal1, top]
proper1 > a > [^11, mark1, tt, isNeList1, isQid, isPal1, top]
proper1 > e > [^11, mark1, tt, isNeList1, isQid, isPal1, top]
proper1 > i > [^11, mark1, tt, isNeList1, isQid, isPal1, top]
proper1 > o > [^11, mark1, tt, isNeList1, isQid, isPal1, top]
proper1 > u > [^11, mark1, tt, isNeList1, isQid, isPal1, top]

Status:
_^11: [1]
mark1: [1]
active1: [1]
_2: [1,2]
nil: []
and2: [2,1]
tt: []
isNeList1: [1]
isQid: []
isNePal1: [1]
isPal1: [1]
a: []
e: []
i: []
o: []
u: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(X1, mark(X2)) → __1(X1, X2)
__1(ok(X1), ok(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(ok(X1), ok(X2)) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x2)
mark(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
__(x1, x2)  =  __(x1, x2)
nil  =  nil
and(x1, x2)  =  and(x2)
tt  =  tt
isList(x1)  =  isList(x1)
isNeList(x1)  =  isNeList(x1)
isQid(x1)  =  isQid(x1)
isNePal(x1)  =  isNePal(x1)
isPal(x1)  =  isPal(x1)
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, 2, nil, isNePal1, a, e, i, o, u, proper1] > [^11, ok1, and1, tt, isList1, isNeList1, isQid1, isPal1, top]

Status:
_^11: [1]
ok1: [1]
active1: [1]
_2: [2,1]
nil: []
and1: [1]
tt: []
isList1: [1]
isNeList1: [1]
isQid1: [1]
isNePal1: [1]
isPal1: [1]
a: []
e: []
i: []
o: []
u: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(X1, mark(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(X1, mark(X2)) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
nil  =  nil
and(x1, x2)  =  and(x1, x2)
tt  =  tt
isList(x1)  =  isList(x1)
isNeList(x1)  =  isNeList(x1)
isQid(x1)  =  x1
isNePal(x1)  =  isNePal(x1)
isPal(x1)  =  isPal(x1)
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
proper1 > _2 > and2 > [mark1, tt, isNeList1, ok1, top]
proper1 > _2 > isList1 > [mark1, tt, isNeList1, ok1, top]
proper1 > _2 > isPal1 > isNePal1 > [mark1, tt, isNeList1, ok1, top]
proper1 > nil > [mark1, tt, isNeList1, ok1, top]
proper1 > a > [mark1, tt, isNeList1, ok1, top]
proper1 > e > [mark1, tt, isNeList1, ok1, top]
proper1 > i > [mark1, tt, isNeList1, ok1, top]
proper1 > o > [mark1, tt, isNeList1, ok1, top]
proper1 > u > [mark1, tt, isNeList1, ok1, top]

Status:
mark1: [1]
_2: [1,2]
nil: []
and2: [1,2]
tt: []
isList1: [1]
isNeList1: [1]
isNePal1: [1]
isPal1: [1]
a: []
e: []
i: []
o: []
u: []
proper1: [1]
ok1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(43) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(45) TRUE

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(__(X1, X2)) → PROPER(X2)
PROPER(__(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isList(X)) → PROPER(X)
PROPER(isNeList(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(__(X1, X2)) → PROPER(X2)
PROPER(__(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNeList(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
and(x1, x2)  =  and(x1, x2)
isList(x1)  =  x1
isNeList(x1)  =  isNeList(x1)
isQid(x1)  =  x1
isNePal(x1)  =  x1
isPal(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark
nil  =  nil
tt  =  tt
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
proper1 > [2, isNeList1] > [and2, mark, tt, ok, top]
proper1 > nil > [and2, mark, tt, ok, top]
proper1 > a > [and2, mark, tt, ok, top]
proper1 > e > [and2, mark, tt, ok, top]
proper1 > i > [and2, mark, tt, ok, top]
proper1 > o > [and2, mark, tt, ok, top]
proper1 > u > [and2, mark, tt, ok, top]

Status:
_2: [1,2]
and2: [1,2]
isNeList1: [1]
mark: []
nil: []
tt: []
a: []
e: []
i: []
o: []
u: []
proper1: [1]
ok: []
top: []


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isList(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isList(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
isList(x1)  =  isList(x1)
isQid(x1)  =  isQid(x1)
isNePal(x1)  =  isNePal(x1)
isPal(x1)  =  isPal(x1)
active(x1)  =  active(x1)
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  mark
nil  =  nil
and(x1, x2)  =  and(x1, x2)
tt  =  tt
isNeList(x1)  =  isNeList(x1)
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[isList1, isNePal1, active1, 2, nil, a, e, i, o, u, proper1] > [isQid1, isPal1, mark, and2, tt, isNeList1, ok, top]

Status:
isList1: [1]
isQid1: [1]
isNePal1: [1]
isPal1: [1]
active1: [1]
_2: [2,1]
mark: []
nil: []
and2: [2,1]
tt: []
isNeList1: [1]
a: []
e: []
i: []
o: []
u: []
proper1: [1]
ok: []
top: []


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(50) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(52) TRUE

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
and(x1, x2)  =  and(x1, x2)
active(x1)  =  x1
mark(x1)  =  mark
nil  =  nil
tt  =  tt
isList(x1)  =  isList(x1)
isNeList(x1)  =  isNeList(x1)
isQid(x1)  =  x1
isNePal(x1)  =  isNePal(x1)
isPal(x1)  =  isPal(x1)
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
proper1 > _2 > [and2, mark, tt, isList1, isNeList1, isPal1, ok, top]
proper1 > nil > [and2, mark, tt, isList1, isNeList1, isPal1, ok, top]
proper1 > isNePal1 > [and2, mark, tt, isList1, isNeList1, isPal1, ok, top]
proper1 > a > [and2, mark, tt, isList1, isNeList1, isPal1, ok, top]
proper1 > e > [and2, mark, tt, isList1, isNeList1, isPal1, ok, top]
proper1 > i > [and2, mark, tt, isList1, isNeList1, isPal1, ok, top]
proper1 > o > [and2, mark, tt, isList1, isNeList1, isPal1, ok, top]
proper1 > u > [and2, mark, tt, isList1, isNeList1, isPal1, ok, top]

Status:
_2: [1,2]
and2: [1,2]
mark: []
nil: []
tt: []
isList1: [1]
isNeList1: [1]
isNePal1: [1]
isPal1: [1]
a: []
e: []
i: []
o: []
u: []
proper1: [1]
ok: []
top: []


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(55) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(57) TRUE

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(mark(X)) → TOP(proper(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  TOP(x1)
ok(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)
proper(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
nil  =  nil
and(x1, x2)  =  and(x1, x2)
tt  =  tt
isList(x1)  =  isList(x1)
isNeList(x1)  =  isNeList(x1)
isQid(x1)  =  x1
isNePal(x1)  =  isNePal(x1)
isPal(x1)  =  isPal(x1)
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[2, isPal1] > and2 > [TOP1, mark1, tt, isNeList1, top]
[2, isPal1] > isList1 > [TOP1, mark1, tt, isNeList1, top]
[2, isPal1] > isNePal1 > [TOP1, mark1, tt, isNeList1, top]
nil > [TOP1, mark1, tt, isNeList1, top]
a > [TOP1, mark1, tt, isNeList1, top]
e > [TOP1, mark1, tt, isNeList1, top]
i > [TOP1, mark1, tt, isNeList1, top]
o > [TOP1, mark1, tt, isNeList1, top]
u > [TOP1, mark1, tt, isNeList1, top]

Status:
TOP1: [1]
mark1: [1]
_2: [1,2]
nil: []
and2: [1,2]
tt: []
isList1: [1]
isNeList1: [1]
isNePal1: [1]
isPal1: [1]
a: []
e: []
i: []
o: []
u: []
top: []


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(ok(X)) → TOP(active(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
mark(x1)  =  mark
nil  =  nil
and(x1, x2)  =  and(x1)
tt  =  tt
isList(x1)  =  isList(x1)
isNeList(x1)  =  isNeList(x1)
isQid(x1)  =  isQid(x1)
isNePal(x1)  =  isNePal(x1)
isPal(x1)  =  isPal(x1)
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[2, nil, isNePal1, a, e, i, o, u, proper1] > [ok1, mark, and1, tt, isList1, isNeList1, isQid1, isPal1, top]

Status:
ok1: [1]
_2: [2,1]
mark: []
nil: []
and1: [1]
tt: []
isList1: [1]
isNeList1: [1]
isQid1: [1]
isNePal1: [1]
isPal1: [1]
a: []
e: []
i: []
o: []
u: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(62) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(64) TRUE