(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(X, __(Y, Z))
__1(__(X, Y), Z) → __1(Y, Z)
U211(tt, V2) → U221(isList(activate(V2)))
U211(tt, V2) → ISLIST(activate(V2))
U211(tt, V2) → ACTIVATE(V2)
U411(tt, V2) → U421(isNeList(activate(V2)))
U411(tt, V2) → ISNELIST(activate(V2))
U411(tt, V2) → ACTIVATE(V2)
U511(tt, V2) → U521(isList(activate(V2)))
U511(tt, V2) → ISLIST(activate(V2))
U511(tt, V2) → ACTIVATE(V2)
U711(tt, P) → U721(isPal(activate(P)))
U711(tt, P) → ISPAL(activate(P))
U711(tt, P) → ACTIVATE(P)
ISLIST(V) → U111(isNeList(activate(V)))
ISLIST(V) → ISNELIST(activate(V))
ISLIST(V) → ACTIVATE(V)
ISLIST(n____(V1, V2)) → U211(isList(activate(V1)), activate(V2))
ISLIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(n____(V1, V2)) → ACTIVATE(V1)
ISLIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(V) → U311(isQid(activate(V)))
ISNELIST(V) → ISQID(activate(V))
ISNELIST(V) → ACTIVATE(V)
ISNELIST(n____(V1, V2)) → U411(isList(activate(V1)), activate(V2))
ISNELIST(n____(V1, V2)) → ISLIST(activate(V1))
ISNELIST(n____(V1, V2)) → ACTIVATE(V1)
ISNELIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(n____(V1, V2)) → U511(isNeList(activate(V1)), activate(V2))
ISNELIST(n____(V1, V2)) → ISNELIST(activate(V1))
ISNEPAL(V) → U611(isQid(activate(V)))
ISNEPAL(V) → ISQID(activate(V))
ISNEPAL(V) → ACTIVATE(V)
ISNEPAL(n____(I, __(P, I))) → U711(isQid(activate(I)), activate(P))
ISNEPAL(n____(I, __(P, I))) → ISQID(activate(I))
ISNEPAL(n____(I, __(P, I))) → ACTIVATE(I)
ISNEPAL(n____(I, __(P, I))) → ACTIVATE(P)
ISPAL(V) → U811(isNePal(activate(V)))
ISPAL(V) → ISNEPAL(activate(V))
ISPAL(V) → ACTIVATE(V)
ACTIVATE(n__nil) → NIL
ACTIVATE(n____(X1, X2)) → __1(X1, X2)
ACTIVATE(n__a) → A
ACTIVATE(n__e) → E
ACTIVATE(n__i) → I
ACTIVATE(n__o) → O
ACTIVATE(n__u) → U

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 32 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  x1
__(x1, x2)  =  __(x1, x2)
nil  =  nil
U11(x1)  =  U11
tt  =  tt
U21(x1, x2)  =  U21
U22(x1)  =  U22
isList(x1)  =  isList
activate(x1)  =  activate(x1)
U31(x1)  =  U31
U41(x1, x2)  =  x1
U42(x1)  =  U42
isNeList(x1)  =  isNeList(x1)
U51(x1, x2)  =  U51(x2)
U52(x1)  =  U52(x1)
U61(x1)  =  U61
U71(x1, x2)  =  U71(x1)
U72(x1)  =  U72
isPal(x1)  =  isPal(x1)
U81(x1)  =  x1
n__nil  =  n__nil
n____(x1, x2)  =  n____(x1, x2)
isQid(x1)  =  isQid
isNePal(x1)  =  x1
n__a  =  n__a
n__e  =  n__e
n__i  =  n__i
n__o  =  n__o
n__u  =  n__u
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Recursive path order with status [RPO].
Quasi-Precedence:
[2, activate1, isNeList1, isPal1, no, e, i, o] > U31 > [nil, tt, U42, U521, U61, nnil, nu, u]
[2, activate1, isNeList1, isPal1, no, e, i, o] > [U711, U72, n2, isQid] > [U11, U21, U22, isList, U511] > [nil, tt, U42, U521, U61, nnil, nu, u]
[2, activate1, isNeList1, isPal1, no, e, i, o] > [na, a] > [nil, tt, U42, U521, U61, nnil, nu, u]
[2, activate1, isNeList1, isPal1, no, e, i, o] > ne > [nil, tt, U42, U521, U61, nnil, nu, u]
[2, activate1, isNeList1, isPal1, no, e, i, o] > ni > [nil, tt, U42, U521, U61, nnil, nu, u]

Status:
_2: [1,2]
nil: multiset
U11: []
tt: multiset
U21: []
U22: []
isList: []
activate1: [1]
U31: []
U42: []
isNeList1: [1]
U511: [1]
U521: multiset
U61: []
U711: [1]
U72: []
isPal1: [1]
nnil: multiset
n2: [2,1]
isQid: multiset
na: multiset
ne: multiset
ni: multiset
no: multiset
nu: multiset
a: multiset
e: multiset
i: multiset
o: multiset
u: multiset


The following usable rules [FROCOS05] were oriented:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(tt, P) → ISPAL(activate(P))
ISPAL(V) → ISNEPAL(activate(V))
ISNEPAL(n____(I, __(P, I))) → U711(isQid(activate(I)), activate(P))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(tt, P) → ISPAL(activate(P))
ISNEPAL(n____(I, __(P, I))) → U711(isQid(activate(I)), activate(P))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2)  =  U711(x2)
tt  =  tt
ISPAL(x1)  =  ISPAL(x1)
activate(x1)  =  activate(x1)
ISNEPAL(x1)  =  x1
n____(x1, x2)  =  n____(x1, x2)
__(x1, x2)  =  __(x1, x2)
isQid(x1)  =  x1
nil  =  nil
U11(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  U22(x1)
isList(x1)  =  isList(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  x1
U42(x1)  =  U42
isNeList(x1)  =  isNeList(x1)
U51(x1, x2)  =  x1
U52(x1)  =  U52
U61(x1)  =  U61
U71(x1, x2)  =  U71
U72(x1)  =  U72
isPal(x1)  =  isPal
U81(x1)  =  U81
n__nil  =  n__nil
isNePal(x1)  =  isNePal
n__a  =  n__a
n__e  =  n__e
n__i  =  n__i
n__o  =  n__o
n__u  =  n__u
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Recursive path order with status [RPO].
Quasi-Precedence:
[n2, 2] > U71^11 > [ISPAL1, activate1, U311]
[n2, 2] > U212 > U221 > [ISPAL1, activate1, U311]
[n2, 2] > U212 > isList1 > isNeList1 > [ISPAL1, activate1, U311]
[nil, nnil] > [tt, U42, U52, U72, na, ni, no, nu, a, i, o, u] > U221 > [ISPAL1, activate1, U311]
[nil, nnil] > [tt, U42, U52, U72, na, ni, no, nu, a, i, o, u] > isList1 > isNeList1 > [ISPAL1, activate1, U311]
isPal > [U61, U71, isNePal] > [tt, U42, U52, U72, na, ni, no, nu, a, i, o, u] > U221 > [ISPAL1, activate1, U311]
isPal > [U61, U71, isNePal] > [tt, U42, U52, U72, na, ni, no, nu, a, i, o, u] > isList1 > isNeList1 > [ISPAL1, activate1, U311]
isPal > U81 > [tt, U42, U52, U72, na, ni, no, nu, a, i, o, u] > U221 > [ISPAL1, activate1, U311]
isPal > U81 > [tt, U42, U52, U72, na, ni, no, nu, a, i, o, u] > isList1 > isNeList1 > [ISPAL1, activate1, U311]
[ne, e] > [tt, U42, U52, U72, na, ni, no, nu, a, i, o, u] > U221 > [ISPAL1, activate1, U311]
[ne, e] > [tt, U42, U52, U72, na, ni, no, nu, a, i, o, u] > isList1 > isNeList1 > [ISPAL1, activate1, U311]

Status:
U71^11: multiset
tt: multiset
ISPAL1: multiset
activate1: multiset
n2: [1,2]
_2: [1,2]
nil: multiset
U212: multiset
U221: multiset
isList1: [1]
U311: [1]
U42: multiset
isNeList1: [1]
U52: multiset
U61: []
U71: []
U72: multiset
isPal: multiset
U81: []
nnil: multiset
isNePal: []
na: multiset
ne: multiset
ni: multiset
no: multiset
nu: multiset
a: multiset
e: multiset
i: multiset
o: multiset
u: multiset


The following usable rules [FROCOS05] were oriented:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISPAL(V) → ISNEPAL(activate(V))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(tt, V2) → ISLIST(activate(V2))
ISLIST(V) → ISNELIST(activate(V))
ISNELIST(n____(V1, V2)) → U411(isList(activate(V1)), activate(V2))
U411(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(n____(V1, V2)) → U211(isList(activate(V1)), activate(V2))
ISLIST(n____(V1, V2)) → ISLIST(activate(V1))
ISNELIST(n____(V1, V2)) → U511(isNeList(activate(V1)), activate(V2))
U511(tt, V2) → ISLIST(activate(V2))
ISNELIST(n____(V1, V2)) → ISNELIST(activate(V1))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(tt, V2) → ISLIST(activate(V2))
ISLIST(V) → ISNELIST(activate(V))
ISNELIST(n____(V1, V2)) → U411(isList(activate(V1)), activate(V2))
U411(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(n____(V1, V2)) → U211(isList(activate(V1)), activate(V2))
ISLIST(n____(V1, V2)) → ISLIST(activate(V1))
ISNELIST(n____(V1, V2)) → U511(isNeList(activate(V1)), activate(V2))
U511(tt, V2) → ISLIST(activate(V2))
ISNELIST(n____(V1, V2)) → ISNELIST(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1, x2)
tt  =  tt
ISLIST(x1)  =  ISLIST(x1)
activate(x1)  =  x1
ISNELIST(x1)  =  x1
n____(x1, x2)  =  n____(x1, x2)
U411(x1, x2)  =  U411(x1, x2)
isList(x1)  =  x1
U511(x1, x2)  =  U511(x2)
isNeList(x1)  =  isNeList(x1)
__(x1, x2)  =  __(x1, x2)
nil  =  nil
U11(x1)  =  U11
U21(x1, x2)  =  x1
U22(x1)  =  U22
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x2)
U42(x1)  =  x1
U51(x1, x2)  =  x2
U52(x1)  =  x1
U61(x1)  =  U61
U71(x1, x2)  =  U71
U72(x1)  =  U72
isPal(x1)  =  isPal(x1)
U81(x1)  =  U81(x1)
n__nil  =  n__nil
isQid(x1)  =  isQid
isNePal(x1)  =  isNePal
n__a  =  n__a
n__e  =  n__e
n__i  =  n__i
n__o  =  n__o
n__u  =  n__u
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Recursive path order with status [RPO].
Quasi-Precedence:
[U21^12, n2, 2] > U41^12 > [tt, nil, U11, U22, U811, nnil, isQid, nu, u]
[U21^12, n2, 2] > U51^11 > ISLIST1 > [tt, nil, U11, U22, U811, nnil, isQid, nu, u]
[U21^12, n2, 2] > U411 > isNeList1 > U311 > [tt, nil, U11, U22, U811, nnil, isQid, nu, u]
isPal1 > [U71, isNePal] > U61 > [tt, nil, U11, U22, U811, nnil, isQid, nu, u]
isPal1 > [U71, isNePal] > U72 > [tt, nil, U11, U22, U811, nnil, isQid, nu, u]
[na, a] > [tt, nil, U11, U22, U811, nnil, isQid, nu, u]
[ne, e] > [tt, nil, U11, U22, U811, nnil, isQid, nu, u]
[ni, i] > [tt, nil, U11, U22, U811, nnil, isQid, nu, u]
[no, o] > [tt, nil, U11, U22, U811, nnil, isQid, nu, u]

Status:
U21^12: [1,2]
tt: multiset
ISLIST1: multiset
n2: [1,2]
U41^12: multiset
U51^11: multiset
isNeList1: multiset
_2: [1,2]
nil: multiset
U11: multiset
U22: multiset
U311: [1]
U411: multiset
U61: multiset
U71: multiset
U72: []
isPal1: [1]
U811: [1]
nnil: multiset
isQid: multiset
isNePal: multiset
na: multiset
ne: multiset
ni: multiset
no: multiset
nu: multiset
a: multiset
e: multiset
i: multiset
o: multiset
u: multiset


The following usable rules [FROCOS05] were oriented:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE