(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
[2, n2] > U212 > isList1 > U111
[2, n2] > U212 > isList1 > isNeList1 > [activate1, u] > nil > nnil > tt > U221
[2, n2] > U212 > isList1 > isNeList1 > [activate1, u] > [na, a]
[2, n2] > U212 > isList1 > isNeList1 > [activate1, u] > [ne, e]
[2, n2] > U212 > isList1 > isNeList1 > [activate1, u] > nu > tt > U221
[2, n2] > U212 > isList1 > isNeList1 > [activate1, u] > i > ni
[2, n2] > U212 > isList1 > isNeList1 > U311 > tt > U221
[2, n2] > U212 > isList1 > isNeList1 > isQid1 > tt > U221
[2, n2] > U412 > U421 > tt > U221
[2, n2] > U412 > isNeList1 > [activate1, u] > nil > nnil > tt > U221
[2, n2] > U412 > isNeList1 > [activate1, u] > [na, a]
[2, n2] > U412 > isNeList1 > [activate1, u] > [ne, e]
[2, n2] > U412 > isNeList1 > [activate1, u] > nu > tt > U221
[2, n2] > U412 > isNeList1 > [activate1, u] > i > ni
[2, n2] > U412 > isNeList1 > U311 > tt > U221
[2, n2] > U412 > isNeList1 > isQid1 > tt > U221
[2, n2] > U512 > isList1 > U111
[2, n2] > U512 > isList1 > isNeList1 > [activate1, u] > nil > nnil > tt > U221
[2, n2] > U512 > isList1 > isNeList1 > [activate1, u] > [na, a]
[2, n2] > U512 > isList1 > isNeList1 > [activate1, u] > [ne, e]
[2, n2] > U512 > isList1 > isNeList1 > [activate1, u] > nu > tt > U221
[2, n2] > U512 > isList1 > isNeList1 > [activate1, u] > i > ni
[2, n2] > U512 > isList1 > isNeList1 > U311 > tt > U221
[2, n2] > U512 > isList1 > isNeList1 > isQid1 > tt > U221
[2, n2] > U512 > U521 > tt > U221
[2, n2] > U712 > U721 > tt > U221
[2, n2] > U712 > isPal1 > U811 > tt > U221
[2, n2] > U712 > isPal1 > isNePal1 > [activate1, u] > nil > nnil > tt > U221
[2, n2] > U712 > isPal1 > isNePal1 > [activate1, u] > [na, a]
[2, n2] > U712 > isPal1 > isNePal1 > [activate1, u] > [ne, e]
[2, n2] > U712 > isPal1 > isNePal1 > [activate1, u] > nu > tt > U221
[2, n2] > U712 > isPal1 > isNePal1 > [activate1, u] > i > ni
[2, n2] > U712 > isPal1 > isNePal1 > U611 > tt > U221
[2, n2] > U712 > isPal1 > isNePal1 > isQid1 > tt > U221
[no, o] > tt > U221

Status:
i: multiset
_2: [1,2]
nu: multiset
U811: multiset
ni: multiset
activate1: multiset
nnil: multiset
U212: multiset
U512: multiset
U712: multiset
na: multiset
tt: multiset
U521: [1]
U721: multiset
U111: [1]
nil: multiset
a: multiset
isList1: multiset
U611: multiset
e: multiset
ne: multiset
isNePal1: multiset
n2: [1,2]
o: multiset
isQid1: multiset
isPal1: multiset
U221: [1]
no: multiset
U311: multiset
U412: [2,1]
u: multiset
U421: multiset
isNeList1: multiset

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
in__i
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

__(X1, X2) → n____(X1, X2)
an__a
en__e
on__o

Q is empty.

(3) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
_2 > n2
[a, na] > n2
e > ne > n2
[o, no] > n2

Status:
a: multiset
no: multiset
_2: [1,2]
e: multiset
ne: multiset
o: multiset
n2: [2,1]
na: multiset

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

__(X1, X2) → n____(X1, X2)
en__e


(4) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

an__a
on__o

Q is empty.

(5) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
a > na
o > no

Status:
no: multiset
a: multiset
o: multiset
na: multiset

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

an__a
on__o


(6) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(7) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(8) TRUE