(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
nil → n__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
a → n__a
e → n__e
i → n__i
o → n__o
u → n__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Lexicographic path order with status [LPO].
Quasi-Precedence:
[2, n2] > U213 > U222 > isList1 > U112 > U121 > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[2, n2] > U213 > U222 > isList1 > U112 > isNeList1 > U312 > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[2, n2] > U213 > U222 > U231 > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[2, n2] > U413 > isList1 > U112 > U121 > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[2, n2] > U413 > isList1 > U112 > isNeList1 > U312 > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[2, n2] > U413 > U422 > isNeList1 > U312 > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[2, n2] > U413 > U422 > U431 > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[2, n2] > U513 > U522 > isList1 > U112 > U121 > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[2, n2] > U513 > U522 > isList1 > U112 > isNeList1 > U312 > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[2, n2] > U513 > U522 > U531 > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[2, n2] > isPal1 > U712 > U721 > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[2, n2] > isPal1 > U712 > isNePal1 > U612 > U621 > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[2, n2] > isPal1 > U712 > isNePal1 > [and2, nand2] > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[nil, nnil] > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[na, a] > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[ne, e] > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[ni, i] > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[no, o] > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
[nu, u] > [tt, activate1, U321, isQid1, isPalListKind1, nisPalListKind1]
Status:
_2: [1,2]
nil: []
U112: [2,1]
tt: []
U121: [1]
isNeList1: [1]
activate1: [1]
U213: [2,1,3]
U222: [2,1]
isList1: [1]
U231: [1]
U312: [2,1]
U321: [1]
isQid1: [1]
U413: [2,1,3]
U422: [2,1]
U431: [1]
U513: [2,1,3]
U522: [2,1]
U531: [1]
U612: [2,1]
U621: [1]
U712: [2,1]
U721: [1]
isNePal1: [1]
and2: [2,1]
isPalListKind1: [1]
nnil: []
n2: [1,2]
nisPalListKind1: [1]
nand2: [2,1]
isPal1: [1]
na: []
ne: []
ni: []
no: []
nu: []
a: []
e: []
i: []
o: []
u: []
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
nil → n__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
a → n__a
e → n__e
i → n__i
o → n__o
u → n__u
Q is empty.
(3) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Lexicographic path order with status [LPO].
Quasi-Precedence:
[nil, nnil]
[2, n2]
[isPalListKind1, nisPalListKind1]
[and2, nand2]
[a, na]
[e, ne]
[i, ni]
[o, no]
u > nu
Status:
nil: []
nnil: []
_2: [1,2]
n2: [1,2]
isPalListKind1: [1]
nisPalListKind1: [1]
and2: [1,2]
nand2: [1,2]
a: []
na: []
e: []
ne: []
i: []
ni: []
o: []
no: []
u: []
nu: []
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
u → n__u
(4) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
nil → n__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
a → n__a
e → n__e
i → n__i
o → n__o
Q is empty.
(5) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Lexicographic path order with status [LPO].
Quasi-Precedence:
nil > nnil
_2 > n2
[isPalListKind1, nisPalListKind1]
and2 > nand2
[a, na]
e > ne
i > ni
o > no
Status:
nil: []
nnil: []
_2: [1,2]
n2: [1,2]
isPalListKind1: [1]
nisPalListKind1: [1]
and2: [1,2]
nand2: [1,2]
a: []
na: []
e: []
ne: []
i: []
ni: []
o: []
no: []
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
nil → n__nil
__(X1, X2) → n____(X1, X2)
and(X1, X2) → n__and(X1, X2)
e → n__e
i → n__i
o → n__o
(6) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
isPalListKind(X) → n__isPalListKind(X)
a → n__a
Q is empty.
(7) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Lexicographic path order with status [LPO].
Quasi-Precedence:
isPalListKind1 > nisPalListKind1
a > na
Status:
isPalListKind1: [1]
nisPalListKind1: [1]
a: []
na: []
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
isPalListKind(X) → n__isPalListKind(X)
a → n__a
(8) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(9) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(10) TRUE