(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(X, __(Y, Z))
__1(__(X, Y), Z) → __1(Y, Z)
U111(tt, V) → U121(isNeList(activate(V)))
U111(tt, V) → ISNELIST(activate(V))
U111(tt, V) → ACTIVATE(V)
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
U211(tt, V1, V2) → ISLIST(activate(V1))
U211(tt, V1, V2) → ACTIVATE(V1)
U211(tt, V1, V2) → ACTIVATE(V2)
U221(tt, V2) → U231(isList(activate(V2)))
U221(tt, V2) → ISLIST(activate(V2))
U221(tt, V2) → ACTIVATE(V2)
U311(tt, V) → U321(isQid(activate(V)))
U311(tt, V) → ISQID(activate(V))
U311(tt, V) → ACTIVATE(V)
U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))
U411(tt, V1, V2) → ISLIST(activate(V1))
U411(tt, V1, V2) → ACTIVATE(V1)
U411(tt, V1, V2) → ACTIVATE(V2)
U421(tt, V2) → U431(isNeList(activate(V2)))
U421(tt, V2) → ISNELIST(activate(V2))
U421(tt, V2) → ACTIVATE(V2)
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
U511(tt, V1, V2) → ISNELIST(activate(V1))
U511(tt, V1, V2) → ACTIVATE(V1)
U511(tt, V1, V2) → ACTIVATE(V2)
U521(tt, V2) → U531(isList(activate(V2)))
U521(tt, V2) → ISLIST(activate(V2))
U521(tt, V2) → ACTIVATE(V2)
U611(tt, V) → U621(isQid(activate(V)))
U611(tt, V) → ISQID(activate(V))
U611(tt, V) → ACTIVATE(V)
U711(tt, V) → U721(isNePal(activate(V)))
U711(tt, V) → ISNEPAL(activate(V))
U711(tt, V) → ACTIVATE(V)
AND(tt, X) → ACTIVATE(X)
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
ISLIST(V) → ISPALLISTKIND(activate(V))
ISLIST(V) → ACTIVATE(V)
ISLIST(n____(V1, V2)) → U211(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
ISLIST(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISLIST(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISLIST(n____(V1, V2)) → ACTIVATE(V1)
ISLIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(V) → U311(isPalListKind(activate(V)), activate(V))
ISNELIST(V) → ISPALLISTKIND(activate(V))
ISNELIST(V) → ACTIVATE(V)
ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
ISNELIST(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISNELIST(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISNELIST(n____(V1, V2)) → ACTIVATE(V1)
ISNELIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
ISNEPAL(V) → ISPALLISTKIND(activate(V))
ISNEPAL(V) → ACTIVATE(V)
ISNEPAL(n____(I, __(P, I))) → AND(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
ISNEPAL(n____(I, __(P, I))) → AND(isQid(activate(I)), n__isPalListKind(activate(I)))
ISNEPAL(n____(I, __(P, I))) → ISQID(activate(I))
ISNEPAL(n____(I, __(P, I))) → ACTIVATE(I)
ISNEPAL(n____(I, __(P, I))) → ISPAL(activate(P))
ISNEPAL(n____(I, __(P, I))) → ACTIVATE(P)
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
ISPAL(V) → ISPALLISTKIND(activate(V))
ISPAL(V) → ACTIVATE(V)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)
ACTIVATE(n__nil) → NIL
ACTIVATE(n____(X1, X2)) → __1(X1, X2)
ACTIVATE(n__isPalListKind(X)) → ISPALLISTKIND(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
ACTIVATE(n__a) → A
ACTIVATE(n__e) → E
ACTIVATE(n__i) → I
ACTIVATE(n__o) → O
ACTIVATE(n__u) → U

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 52 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x1)
__(x1, x2)  =  __(x1, x2)
nil  =  nil
U11(x1, x2)  =  x1
tt  =  tt
U12(x1)  =  U12
isNeList(x1)  =  isNeList(x1)
activate(x1)  =  activate(x1)
U21(x1, x2, x3)  =  U21(x1, x2, x3)
U22(x1, x2)  =  U22(x2)
isList(x1)  =  isList(x1)
U23(x1)  =  U23
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  U32
isQid(x1)  =  isQid
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U42(x1, x2)  =  U42
U43(x1)  =  U43
U51(x1, x2, x3)  =  U51(x3)
U52(x1, x2)  =  U52
U53(x1)  =  U53
U61(x1, x2)  =  x1
U62(x1)  =  U62
U71(x1, x2)  =  x1
U72(x1)  =  U72
isNePal(x1)  =  isNePal(x1)
and(x1, x2)  =  and(x2)
isPalListKind(x1)  =  x1
n__nil  =  n__nil
n____(x1, x2)  =  n____(x1, x2)
n__isPalListKind(x1)  =  x1
n__and(x1, x2)  =  x2
isPal(x1)  =  isPal(x1)
n__a  =  n__a
n__e  =  n__e
n__i  =  n__i
n__o  =  n__o
n__u  =  n__u
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic path order with status [LPO].
Quasi-Precedence:
[2, U213, isList1, n2] > _^11
[2, U213, isList1, n2] > [activate1, and1, isPal1] > [na, a] > [tt, U12, U43, U62, U72]
[2, U213, isList1, n2] > [activate1, and1, isPal1] > o > no > [tt, U12, U43, U62, U72]
[2, U213, isList1, n2] > [activate1, and1, isPal1] > u > nu > [tt, U12, U43, U62, U72]
[2, U213, isList1, n2] > [U221, U23] > [tt, U12, U43, U62, U72]
[2, U213, isList1, n2] > isQid > [tt, U12, U43, U62, U72]
[2, U213, isList1, n2] > U413 > U42 > [tt, U12, U43, U62, U72]
[2, U213, isList1, n2] > [U511, U52, U53] > [tt, U12, U43, U62, U72]
[nil, nnil] > [tt, U12, U43, U62, U72]
isNeList1 > [activate1, and1, isPal1] > [na, a] > [tt, U12, U43, U62, U72]
isNeList1 > [activate1, and1, isPal1] > o > no > [tt, U12, U43, U62, U72]
isNeList1 > [activate1, and1, isPal1] > u > nu > [tt, U12, U43, U62, U72]
isNeList1 > [U312, U32] > [tt, U12, U43, U62, U72]
isNeList1 > U413 > U42 > [tt, U12, U43, U62, U72]
isNeList1 > [U511, U52, U53] > [tt, U12, U43, U62, U72]
isNePal1 > [activate1, and1, isPal1] > [na, a] > [tt, U12, U43, U62, U72]
isNePal1 > [activate1, and1, isPal1] > o > no > [tt, U12, U43, U62, U72]
isNePal1 > [activate1, and1, isPal1] > u > nu > [tt, U12, U43, U62, U72]
isNePal1 > isQid > [tt, U12, U43, U62, U72]
[ne, e] > [tt, U12, U43, U62, U72]
[ni, i] > [tt, U12, U43, U62, U72]

Status:
i: []
_2: [1,2]
nu: []
U413: [2,3,1]
U42: []
ni: []
activate1: [1]
nnil: []
na: []
tt: []
U72: []
U23: []
isQid: []
U43: []
U213: [2,1,3]
nil: []
a: []
isList1: [1]
U312: [2,1]
U62: []
U32: []
e: []
U52: []
U53: []
U12: []
ne: []
_^11: [1]
isNePal1: [1]
n2: [1,2]
o: []
isPal1: [1]
U221: [1]
no: []
u: []
isNeList1: [1]
and1: [1]
U511: [1]


The following usable rules [FROCOS05] were oriented:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__isPalListKind(X)) → ISPALLISTKIND(X)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__isPalListKind(x1)  =  n__isPalListKind(x1)
ISPALLISTKIND(x1)  =  ISPALLISTKIND(x1)
n____(x1, x2)  =  n____(x1, x2)
AND(x1, x2)  =  AND(x1, x2)
isPalListKind(x1)  =  isPalListKind(x1)
activate(x1)  =  activate(x1)
tt  =  tt
n__and(x1, x2)  =  n__and(x1, x2)
__(x1, x2)  =  __(x1, x2)
nil  =  nil
U11(x1, x2)  =  U11
U12(x1)  =  U12
isNeList(x1)  =  isNeList(x1)
U21(x1, x2, x3)  =  U21
U22(x1, x2)  =  U22
isList(x1)  =  isList
U23(x1)  =  U23
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
isQid(x1)  =  isQid
U41(x1, x2, x3)  =  U41(x1, x3)
U42(x1, x2)  =  x1
U43(x1)  =  U43
U51(x1, x2, x3)  =  U51
U52(x1, x2)  =  U52
U53(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)
U62(x1)  =  U62
U71(x1, x2)  =  x1
U72(x1)  =  U72
isNePal(x1)  =  isNePal(x1)
and(x1, x2)  =  and(x1, x2)
n__nil  =  n__nil
isPal(x1)  =  isPal(x1)
n__a  =  n__a
n__e  =  n__e
n__i  =  n__i
n__o  =  n__o
n__u  =  n__u
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U11, U12, isNeList1, U21, U22, isList, U23, U412, U51, U52] > [nisPalListKind1, ISPALLISTKIND1, n2, isPalListKind1, 2] > [U312, isQid] > [activate1, and2] > nand2 > AND2
[U11, U12, isNeList1, U21, U22, isList, U23, U412, U51, U52] > [nisPalListKind1, ISPALLISTKIND1, n2, isPalListKind1, 2] > [U312, isQid] > [activate1, and2] > nil > nnil
[U11, U12, isNeList1, U21, U22, isList, U23, U412, U51, U52] > [nisPalListKind1, ISPALLISTKIND1, n2, isPalListKind1, 2] > [U312, isQid] > [activate1, and2] > e > ne
[U11, U12, isNeList1, U21, U22, isList, U23, U412, U51, U52] > [nisPalListKind1, ISPALLISTKIND1, n2, isPalListKind1, 2] > [U312, isQid] > [activate1, and2] > i > ni
[U11, U12, isNeList1, U21, U22, isList, U23, U412, U51, U52] > [nisPalListKind1, ISPALLISTKIND1, n2, isPalListKind1, 2] > [U312, isQid] > [activate1, and2] > u > nu
[U11, U12, isNeList1, U21, U22, isList, U23, U412, U51, U52] > [nisPalListKind1, ISPALLISTKIND1, n2, isPalListKind1, 2] > [U312, isQid] > [tt, U43, U62, U72]
[isNePal1, isPal1] > [nisPalListKind1, ISPALLISTKIND1, n2, isPalListKind1, 2] > [U312, isQid] > [activate1, and2] > nand2 > AND2
[isNePal1, isPal1] > [nisPalListKind1, ISPALLISTKIND1, n2, isPalListKind1, 2] > [U312, isQid] > [activate1, and2] > nil > nnil
[isNePal1, isPal1] > [nisPalListKind1, ISPALLISTKIND1, n2, isPalListKind1, 2] > [U312, isQid] > [activate1, and2] > e > ne
[isNePal1, isPal1] > [nisPalListKind1, ISPALLISTKIND1, n2, isPalListKind1, 2] > [U312, isQid] > [activate1, and2] > i > ni
[isNePal1, isPal1] > [nisPalListKind1, ISPALLISTKIND1, n2, isPalListKind1, 2] > [U312, isQid] > [activate1, and2] > u > nu
[isNePal1, isPal1] > [nisPalListKind1, ISPALLISTKIND1, n2, isPalListKind1, 2] > [U312, isQid] > [tt, U43, U62, U72]
[isNePal1, isPal1] > U612
[na, a] > [tt, U43, U62, U72]
[no, o] > [tt, U43, U62, U72]

Status:
i: []
_2: [1,2]
U22: []
nu: []
ni: []
U11: []
activate1: [1]
and2: [2,1]
nnil: []
na: []
isList: []
tt: []
isPalListKind1: [1]
U72: []
AND2: [1,2]
U23: []
isQid: []
U43: []
nil: []
U21: []
U51: []
a: []
U312: [1,2]
U62: []
e: []
U52: []
U12: []
ne: []
isNePal1: [1]
n2: [1,2]
o: []
nand2: [1,2]
isPal1: [1]
no: []
U612: [1,2]
ISPALLISTKIND1: [1]
U412: [2,1]
u: []
isNeList1: [1]
nisPalListKind1: [1]


The following usable rules [FROCOS05] were oriented:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__isPalListKind(X)) → ISPALLISTKIND(X)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(n____(I, __(P, I))) → ISPAL(activate(P))
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
U711(tt, V) → ISNEPAL(activate(V))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(n____(I, __(P, I))) → ISPAL(activate(P))
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
U711(tt, V) → ISNEPAL(activate(V))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNEPAL(x1)  =  x1
n____(x1, x2)  =  n____(x1, x2)
__(x1, x2)  =  __(x1, x2)
ISPAL(x1)  =  ISPAL(x1)
activate(x1)  =  activate(x1)
U711(x1, x2)  =  U711(x1, x2)
isPalListKind(x1)  =  isPalListKind(x1)
tt  =  tt
nil  =  nil
U11(x1, x2)  =  U11(x2)
U12(x1)  =  U12
isNeList(x1)  =  isNeList(x1)
U21(x1, x2, x3)  =  U21(x1, x2, x3)
U22(x1, x2)  =  x1
isList(x1)  =  isList(x1)
U23(x1)  =  U23
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  U32
isQid(x1)  =  isQid
U41(x1, x2, x3)  =  U41(x1, x2)
U42(x1, x2)  =  U42(x1)
U43(x1)  =  U43
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2)  =  U52(x2)
U53(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)
U62(x1)  =  x1
U71(x1, x2)  =  U71
U72(x1)  =  U72
isNePal(x1)  =  isNePal(x1)
and(x1, x2)  =  and(x1, x2)
n__nil  =  n__nil
n__isPalListKind(x1)  =  n__isPalListKind(x1)
n__and(x1, x2)  =  n__and(x1, x2)
isPal(x1)  =  isPal(x1)
n__a  =  n__a
n__e  =  n__e
n__i  =  n__i
n__o  =  n__o
n__u  =  n__u
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic path order with status [LPO].
Quasi-Precedence:
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > ISPAL1 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > nnil > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > ISPAL1 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > nand2
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > ISPAL1 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > ne > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > ISPAL1 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > a > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > ISPAL1 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > i > ni
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > ISPAL1 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > o > no > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > ISPAL1 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > u > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > ISPAL1 > [isPalListKind1, isList1, nisPalListKind1] > U111 > U12 > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U213 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > nnil > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U213 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > nand2
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U213 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > ne > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U213 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > a > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U213 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > i > ni
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U213 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > o > no > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U213 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > u > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U213 > [isPalListKind1, isList1, nisPalListKind1] > U111 > U12 > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U312 > U32 > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U421 > U43 > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U521 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > nnil > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U521 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > nand2
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U521 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > ne > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U521 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > a > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U521 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > i > ni
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U521 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > o > no > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U521 > [isPalListKind1, isList1, nisPalListKind1] > [activate1, U71^12, nil, and2, e] > u > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U521 > [isPalListKind1, isList1, nisPalListKind1] > U111 > U12 > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > U612
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > [U71, U72] > [activate1, U71^12, nil, and2, e] > nnil > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > [U71, U72] > [activate1, U71^12, nil, and2, e] > nand2
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > [U71, U72] > [activate1, U71^12, nil, and2, e] > ne > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > [U71, U72] > [activate1, U71^12, nil, and2, e] > a > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > [U71, U72] > [activate1, U71^12, nil, and2, e] > i > ni
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > [U71, U72] > [activate1, U71^12, nil, and2, e] > o > no > [tt, U23, isQid, na, nu]
[n2, 2, isNeList1, U412, U513, isNePal1, isPal1] > [U71, U72] > [activate1, U71^12, nil, and2, e] > u > [tt, U23, isQid, na, nu]

Status:
i: []
_2: [1,2]
nu: []
U71^12: [2,1]
ni: []
activate1: [1]
and2: [2,1]
nnil: []
na: []
tt: []
ISPAL1: [1]
isPalListKind1: [1]
U72: []
U521: [1]
U111: [1]
U23: []
isQid: []
U43: []
U213: [2,1,3]
U513: [2,3,1]
nil: []
a: []
isList1: [1]
U312: [2,1]
U32: []
e: []
U12: []
ne: []
isNePal1: [1]
n2: [1,2]
U71: []
o: []
nand2: [1,2]
isPal1: [1]
no: []
U612: [2,1]
U412: [1,2]
u: []
isNeList1: [1]
U421: [1]
nisPalListKind1: [1]


The following usable rules [FROCOS05] were oriented:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V) → ISNELIST(activate(V))
ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))
U421(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
U521(tt, V2) → ISLIST(activate(V2))
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
ISLIST(n____(V1, V2)) → U211(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
U221(tt, V2) → ISLIST(activate(V2))
U211(tt, V1, V2) → ISLIST(activate(V1))
U511(tt, V1, V2) → ISNELIST(activate(V1))
U411(tt, V1, V2) → ISLIST(activate(V1))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))
U421(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
U521(tt, V2) → ISLIST(activate(V2))
ISLIST(n____(V1, V2)) → U211(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
U211(tt, V1, V2) → ISLIST(activate(V1))
U511(tt, V1, V2) → ISNELIST(activate(V1))
U411(tt, V1, V2) → ISLIST(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  x2
tt  =  tt
ISNELIST(x1)  =  x1
activate(x1)  =  x1
n____(x1, x2)  =  n____(x1, x2)
U411(x1, x2, x3)  =  U411(x2, x3)
and(x1, x2)  =  x2
isPalListKind(x1)  =  isPalListKind
n__isPalListKind(x1)  =  n__isPalListKind
U421(x1, x2)  =  U421(x2)
isList(x1)  =  isList
U511(x1, x2, x3)  =  U511(x1, x2, x3)
U521(x1, x2)  =  U521(x1, x2)
isNeList(x1)  =  x1
ISLIST(x1)  =  x1
U211(x1, x2, x3)  =  U211(x1, x2, x3)
U221(x1, x2)  =  x2
__(x1, x2)  =  __(x1, x2)
nil  =  nil
U11(x1, x2)  =  x1
U12(x1)  =  U12
U21(x1, x2, x3)  =  U21
U22(x1, x2)  =  x1
U23(x1)  =  x1
U31(x1, x2)  =  x2
U32(x1)  =  x1
isQid(x1)  =  x1
U41(x1, x2, x3)  =  U41
U42(x1, x2)  =  U42
U43(x1)  =  U43
U51(x1, x2, x3)  =  U51(x2, x3)
U52(x1, x2)  =  U52(x1, x2)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  x2
U62(x1)  =  x1
U71(x1, x2)  =  x1
U72(x1)  =  U72
isNePal(x1)  =  x1
n__nil  =  n__nil
n__and(x1, x2)  =  x2
isPal(x1)  =  isPal(x1)
n__a  =  n__a
n__e  =  n__e
n__i  =  n__i
n__o  =  n__o
n__u  =  n__u
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic path order with status [LPO].
Quasi-Precedence:
[nil, nnil]
isPal1 > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > [U41^12, U42^11]
isPal1 > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > [U51^13, U52^12]
isPal1 > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > U21^13
isPal1 > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > [U512, U522, U531]
[ne, e] > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > [U41^12, U42^11]
[ne, e] > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > [U51^13, U52^12]
[ne, e] > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > U21^13
[ne, e] > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > [U512, U522, U531]
[ni, i] > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > [U41^12, U42^11]
[ni, i] > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > [U51^13, U52^12]
[ni, i] > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > U21^13
[ni, i] > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > [U512, U522, U531]
[no, o] > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > [U41^12, U42^11]
[no, o] > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > [U51^13, U52^12]
[no, o] > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > U21^13
[no, o] > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > [U512, U522, U531]
[nu, u] > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > [U41^12, U42^11]
[nu, u] > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > [U51^13, U52^12]
[nu, u] > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > U21^13
[nu, u] > [tt, n2, isPalListKind, nisPalListKind, isList, 2, U12, U21, U41, U42, U43, U72, na, a] > [U512, U522, U531]

Status:
i: []
U52^12: [2,1]
U522: [1,2]
_2: [1,2]
nu: []
isPalListKind: []
U42: []
ni: []
nnil: []
U512: [1,2]
na: []
isList: []
tt: []
U72: []
U41: []
U21^13: [2,1,3]
U43: []
nil: []
U21: []
a: []
e: []
U12: []
ne: []
n2: [1,2]
o: []
U51^13: [3,2,1]
isPal1: [1]
no: []
U41^12: [2,1]
U531: [1]
nisPalListKind: []
u: []
U42^11: [1]


The following usable rules [FROCOS05] were oriented:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V) → ISNELIST(activate(V))
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
U221(tt, V2) → ISLIST(activate(V2))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(24) TRUE