(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(X, __(Y, Z))
__1(__(X, Y), Z) → __1(Y, Z)
U111(tt, V) → U121(isNeList(activate(V)))
U111(tt, V) → ISNELIST(activate(V))
U111(tt, V) → ACTIVATE(V)
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
U211(tt, V1, V2) → ISLIST(activate(V1))
U211(tt, V1, V2) → ACTIVATE(V1)
U211(tt, V1, V2) → ACTIVATE(V2)
U221(tt, V2) → U231(isList(activate(V2)))
U221(tt, V2) → ISLIST(activate(V2))
U221(tt, V2) → ACTIVATE(V2)
U311(tt, V) → U321(isQid(activate(V)))
U311(tt, V) → ISQID(activate(V))
U311(tt, V) → ACTIVATE(V)
U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))
U411(tt, V1, V2) → ISLIST(activate(V1))
U411(tt, V1, V2) → ACTIVATE(V1)
U411(tt, V1, V2) → ACTIVATE(V2)
U421(tt, V2) → U431(isNeList(activate(V2)))
U421(tt, V2) → ISNELIST(activate(V2))
U421(tt, V2) → ACTIVATE(V2)
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
U511(tt, V1, V2) → ISNELIST(activate(V1))
U511(tt, V1, V2) → ACTIVATE(V1)
U511(tt, V1, V2) → ACTIVATE(V2)
U521(tt, V2) → U531(isList(activate(V2)))
U521(tt, V2) → ISLIST(activate(V2))
U521(tt, V2) → ACTIVATE(V2)
U611(tt, V) → U621(isQid(activate(V)))
U611(tt, V) → ISQID(activate(V))
U611(tt, V) → ACTIVATE(V)
U711(tt, V) → U721(isNePal(activate(V)))
U711(tt, V) → ISNEPAL(activate(V))
U711(tt, V) → ACTIVATE(V)
AND(tt, X) → ACTIVATE(X)
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
ISLIST(V) → ISPALLISTKIND(activate(V))
ISLIST(V) → ACTIVATE(V)
ISLIST(n____(V1, V2)) → U211(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
ISLIST(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISLIST(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISLIST(n____(V1, V2)) → ACTIVATE(V1)
ISLIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(V) → U311(isPalListKind(activate(V)), activate(V))
ISNELIST(V) → ISPALLISTKIND(activate(V))
ISNELIST(V) → ACTIVATE(V)
ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
ISNELIST(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISNELIST(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISNELIST(n____(V1, V2)) → ACTIVATE(V1)
ISNELIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
ISNEPAL(V) → ISPALLISTKIND(activate(V))
ISNEPAL(V) → ACTIVATE(V)
ISNEPAL(n____(I, __(P, I))) → AND(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
ISNEPAL(n____(I, __(P, I))) → AND(isQid(activate(I)), n__isPalListKind(activate(I)))
ISNEPAL(n____(I, __(P, I))) → ISQID(activate(I))
ISNEPAL(n____(I, __(P, I))) → ACTIVATE(I)
ISNEPAL(n____(I, __(P, I))) → ISPAL(activate(P))
ISNEPAL(n____(I, __(P, I))) → ACTIVATE(P)
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
ISPAL(V) → ISPALLISTKIND(activate(V))
ISPAL(V) → ACTIVATE(V)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)
ACTIVATE(n__nil) → NIL
ACTIVATE(n____(X1, X2)) → __1(X1, X2)
ACTIVATE(n__isPalListKind(X)) → ISPALLISTKIND(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
ACTIVATE(n__a) → A
ACTIVATE(n__e) → E
ACTIVATE(n__i) → I
ACTIVATE(n__o) → O
ACTIVATE(n__u) → U

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 52 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x1, x2)
__(x1, x2)  =  __(x1, x2)
nil  =  nil
U11(x1, x2)  =  U11
tt  =  tt
U12(x1)  =  U12
isNeList(x1)  =  isNeList(x1)
activate(x1)  =  activate(x1)
U21(x1, x2, x3)  =  U21
U22(x1, x2)  =  U22
isList(x1)  =  isList
U23(x1)  =  U23
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
isQid(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U42(x1, x2)  =  x2
U43(x1)  =  U43
U51(x1, x2, x3)  =  x1
U52(x1, x2)  =  U52
U53(x1)  =  U53
U61(x1, x2)  =  x2
U62(x1)  =  U62
U71(x1, x2)  =  U71
U72(x1)  =  U72
isNePal(x1)  =  isNePal(x1)
and(x1, x2)  =  and(x2)
isPalListKind(x1)  =  isPalListKind(x1)
n__nil  =  n__nil
n____(x1, x2)  =  n____(x1, x2)
n__isPalListKind(x1)  =  n__isPalListKind(x1)
n__and(x1, x2)  =  n__and(x2)
isPal(x1)  =  isPal(x1)
n__a  =  n__a
n__e  =  n__e
n__i  =  n__i
n__o  =  n__o
n__u  =  n__u
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic Path Order [LPO].
Precedence:
_^12 > [2, isPalListKind1, n2, nisPalListKind1] > U413 > [activate1, and1, nand1] > nil > nnil > [tt, U43, U52, U53, U62, U71, U72, isPal1]
[U21, isList] > [U11, U12, isNeList1] > [2, isPalListKind1, n2, nisPalListKind1] > U413 > [activate1, and1, nand1] > nil > nnil > [tt, U43, U52, U53, U62, U71, U72, isPal1]
[U21, isList] > [U11, U12, isNeList1] > U312 > [activate1, and1, nand1] > nil > nnil > [tt, U43, U52, U53, U62, U71, U72, isPal1]
[U21, isList] > [U22, U23] > [activate1, and1, nand1] > nil > nnil > [tt, U43, U52, U53, U62, U71, U72, isPal1]
isNePal1 > [2, isPalListKind1, n2, nisPalListKind1] > U413 > [activate1, and1, nand1] > nil > nnil > [tt, U43, U52, U53, U62, U71, U72, isPal1]
[na, a] > [tt, U43, U52, U53, U62, U71, U72, isPal1]
[ne, e] > [tt, U43, U52, U53, U62, U71, U72, isPal1]
[ni, i] > [tt, U43, U52, U53, U62, U71, U72, isPal1]
[no, o] > [tt, U43, U52, U53, U62, U71, U72, isPal1]
[nu, u] > [tt, U43, U52, U53, U62, U71, U72, isPal1]


The following usable rules [FROCOS05] were oriented:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__isPalListKind(X)) → ISPALLISTKIND(X)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__isPalListKind(X)) → ISPALLISTKIND(X)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE(x1)
n__isPalListKind(x1)  =  x1
ISPALLISTKIND(x1)  =  x1
n____(x1, x2)  =  n____(x1, x2)
AND(x1, x2)  =  AND(x2)
isPalListKind(x1)  =  x1
activate(x1)  =  activate(x1)
tt  =  tt
n__and(x1, x2)  =  x2
__(x1, x2)  =  __(x1, x2)
nil  =  nil
U11(x1, x2)  =  x2
U12(x1)  =  U12
isNeList(x1)  =  isNeList(x1)
U21(x1, x2, x3)  =  U21(x1, x3)
U22(x1, x2)  =  U22(x2)
isList(x1)  =  isList(x1)
U23(x1)  =  U23
U31(x1, x2)  =  U31
U32(x1)  =  U32
isQid(x1)  =  isQid
U41(x1, x2, x3)  =  x2
U42(x1, x2)  =  U42
U43(x1)  =  U43
U51(x1, x2, x3)  =  x3
U52(x1, x2)  =  U52
U53(x1)  =  U53
U61(x1, x2)  =  U61
U62(x1)  =  U62
U71(x1, x2)  =  U71(x1, x2)
U72(x1)  =  x1
isNePal(x1)  =  x1
and(x1, x2)  =  and(x2)
n__nil  =  n__nil
isPal(x1)  =  isPal(x1)
n__a  =  n__a
n__e  =  n__e
n__i  =  n__i
n__o  =  n__o
n__u  =  n__u
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic Path Order [LPO].
Precedence:
[n2, 2] > [ACTIVATE1, AND1] > [tt, U12, isNeList1, U31, U32, U42, U43, U52, U53, U61, U62, na]
[n2, 2] > [activate1, and1] > nil > nnil > [tt, U12, isNeList1, U31, U32, U42, U43, U52, U53, U61, U62, na]
[n2, 2] > [activate1, and1] > a > [tt, U12, isNeList1, U31, U32, U42, U43, U52, U53, U61, U62, na]
[n2, 2] > [activate1, and1] > o > no > [tt, U12, isNeList1, U31, U32, U42, U43, U52, U53, U61, U62, na]
[n2, 2] > [activate1, and1] > u > nu > [tt, U12, isNeList1, U31, U32, U42, U43, U52, U53, U61, U62, na]
[n2, 2] > isQid > [tt, U12, isNeList1, U31, U32, U42, U43, U52, U53, U61, U62, na]
isList1 > U212 > U221 > [activate1, and1] > nil > nnil > [tt, U12, isNeList1, U31, U32, U42, U43, U52, U53, U61, U62, na]
isList1 > U212 > U221 > [activate1, and1] > a > [tt, U12, isNeList1, U31, U32, U42, U43, U52, U53, U61, U62, na]
isList1 > U212 > U221 > [activate1, and1] > o > no > [tt, U12, isNeList1, U31, U32, U42, U43, U52, U53, U61, U62, na]
isList1 > U212 > U221 > [activate1, and1] > u > nu > [tt, U12, isNeList1, U31, U32, U42, U43, U52, U53, U61, U62, na]
isList1 > U212 > U221 > U23 > [tt, U12, isNeList1, U31, U32, U42, U43, U52, U53, U61, U62, na]
isPal1 > U712 > [activate1, and1] > nil > nnil > [tt, U12, isNeList1, U31, U32, U42, U43, U52, U53, U61, U62, na]
isPal1 > U712 > [activate1, and1] > a > [tt, U12, isNeList1, U31, U32, U42, U43, U52, U53, U61, U62, na]
isPal1 > U712 > [activate1, and1] > o > no > [tt, U12, isNeList1, U31, U32, U42, U43, U52, U53, U61, U62, na]
isPal1 > U712 > [activate1, and1] > u > nu > [tt, U12, isNeList1, U31, U32, U42, U43, U52, U53, U61, U62, na]
[ne, e] > [tt, U12, isNeList1, U31, U32, U42, U43, U52, U53, U61, U62, na]
[ni, i] > [tt, U12, isNeList1, U31, U32, U42, U43, U52, U53, U61, U62, na]


The following usable rules [FROCOS05] were oriented:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  x2
tt  =  tt
ACTIVATE(x1)  =  x1
n__and(x1, x2)  =  n__and(x2)
__(x1, x2)  =  __(x1, x2)
nil  =  nil
U11(x1, x2)  =  U11
U12(x1)  =  U12
isNeList(x1)  =  isNeList(x1)
activate(x1)  =  activate(x1)
U21(x1, x2, x3)  =  U21
U22(x1, x2)  =  U22
isList(x1)  =  isList
U23(x1)  =  U23
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  U32(x1)
isQid(x1)  =  isQid
U41(x1, x2, x3)  =  U41(x2, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  U43
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2)  =  U52
U53(x1)  =  U53
U61(x1, x2)  =  U61(x1, x2)
U62(x1)  =  x1
U71(x1, x2)  =  x1
U72(x1)  =  U72
isNePal(x1)  =  isNePal(x1)
and(x1, x2)  =  and(x2)
isPalListKind(x1)  =  x1
n__nil  =  n__nil
n____(x1, x2)  =  n____(x1, x2)
n__isPalListKind(x1)  =  x1
isPal(x1)  =  isPal(x1)
n__a  =  n__a
n__e  =  n__e
n__i  =  n__i
n__o  =  n__o
n__u  =  n__u
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic Path Order [LPO].
Precedence:
[isNeList1, U513] > [2, U11, U12, isList, U412, n2] > [nand1, and1] > [activate1, ne, e] > [nil, nnil] > [tt, U52, U53, U72, na, ni, nu, a, i, u]
[isNeList1, U513] > [2, U11, U12, isList, U412, n2] > [nand1, and1] > [activate1, ne, e] > o > no > [tt, U52, U53, U72, na, ni, nu, a, i, u]
[isNeList1, U513] > [2, U11, U12, isList, U412, n2] > [U21, U22] > [activate1, ne, e] > [nil, nnil] > [tt, U52, U53, U72, na, ni, nu, a, i, u]
[isNeList1, U513] > [2, U11, U12, isList, U412, n2] > [U21, U22] > [activate1, ne, e] > o > no > [tt, U52, U53, U72, na, ni, nu, a, i, u]
[isNeList1, U513] > [2, U11, U12, isList, U412, n2] > [U21, U22] > U23 > [tt, U52, U53, U72, na, ni, nu, a, i, u]
[isNeList1, U513] > [2, U11, U12, isList, U412, n2] > isQid > [tt, U52, U53, U72, na, ni, nu, a, i, u]
[isNeList1, U513] > [2, U11, U12, isList, U412, n2] > U422 > [activate1, ne, e] > [nil, nnil] > [tt, U52, U53, U72, na, ni, nu, a, i, u]
[isNeList1, U513] > [2, U11, U12, isList, U412, n2] > U422 > [activate1, ne, e] > o > no > [tt, U52, U53, U72, na, ni, nu, a, i, u]
[isNeList1, U513] > [2, U11, U12, isList, U412, n2] > U422 > U43 > [tt, U52, U53, U72, na, ni, nu, a, i, u]
[isNeList1, U513] > U312 > [activate1, ne, e] > [nil, nnil] > [tt, U52, U53, U72, na, ni, nu, a, i, u]
[isNeList1, U513] > U312 > [activate1, ne, e] > o > no > [tt, U52, U53, U72, na, ni, nu, a, i, u]
[isNeList1, U513] > U312 > U321 > [tt, U52, U53, U72, na, ni, nu, a, i, u]
[isNeList1, U513] > U312 > isQid > [tt, U52, U53, U72, na, ni, nu, a, i, u]
isNePal1 > [nand1, and1] > [activate1, ne, e] > [nil, nnil] > [tt, U52, U53, U72, na, ni, nu, a, i, u]
isNePal1 > [nand1, and1] > [activate1, ne, e] > o > no > [tt, U52, U53, U72, na, ni, nu, a, i, u]
isNePal1 > U612 > [activate1, ne, e] > [nil, nnil] > [tt, U52, U53, U72, na, ni, nu, a, i, u]
isNePal1 > U612 > [activate1, ne, e] > o > no > [tt, U52, U53, U72, na, ni, nu, a, i, u]
isNePal1 > U612 > isQid > [tt, U52, U53, U72, na, ni, nu, a, i, u]
isPal1 > [activate1, ne, e] > [nil, nnil] > [tt, U52, U53, U72, na, ni, nu, a, i, u]
isPal1 > [activate1, ne, e] > o > no > [tt, U52, U53, U72, na, ni, nu, a, i, u]


The following usable rules [FROCOS05] were oriented:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(tt, X) → ACTIVATE(X)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(n____(I, __(P, I))) → ISPAL(activate(P))
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
U711(tt, V) → ISNEPAL(activate(V))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(n____(I, __(P, I))) → ISPAL(activate(P))
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNEPAL(x1)  =  x1
n____(x1, x2)  =  n____(x1, x2)
__(x1, x2)  =  __(x1, x2)
ISPAL(x1)  =  ISPAL(x1)
activate(x1)  =  activate(x1)
U711(x1, x2)  =  U711(x2)
isPalListKind(x1)  =  isPalListKind(x1)
tt  =  tt
nil  =  nil
U11(x1, x2)  =  x2
U12(x1)  =  U12
isNeList(x1)  =  isNeList
U21(x1, x2, x3)  =  U21
U22(x1, x2)  =  U22
isList(x1)  =  isList(x1)
U23(x1)  =  U23
U31(x1, x2)  =  U31
U32(x1)  =  U32
isQid(x1)  =  isQid
U41(x1, x2, x3)  =  U41
U42(x1, x2)  =  U42
U43(x1)  =  U43
U51(x1, x2, x3)  =  U51
U52(x1, x2)  =  x1
U53(x1)  =  U53
U61(x1, x2)  =  U61
U62(x1)  =  U62
U71(x1, x2)  =  U71
U72(x1)  =  U72
isNePal(x1)  =  isNePal(x1)
and(x1, x2)  =  and(x1, x2)
n__nil  =  n__nil
n__isPalListKind(x1)  =  n__isPalListKind(x1)
n__and(x1, x2)  =  n__and(x1, x2)
isPal(x1)  =  x1
n__a  =  n__a
n__e  =  n__e
n__i  =  n__i
n__o  =  n__o
n__u  =  n__u
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic Path Order [LPO].
Precedence:
[isQid, isNePal1] > [n2, 2, isPalListKind1, nisPalListKind1] > ISPAL1 > [activate1, U71^11, u] > nil > nnil > [tt, U12, U53, U61, U62, U71, U72, nu]
[isQid, isNePal1] > [n2, 2, isPalListKind1, nisPalListKind1] > ISPAL1 > [activate1, U71^11, u] > [ne, e] > [tt, U12, U53, U61, U62, U71, U72, nu]
[isQid, isNePal1] > [n2, 2, isPalListKind1, nisPalListKind1] > [isNeList, U31, U32, U41, U42, U43, U51] > isList1 > U21 > [U22, U23] > [activate1, U71^11, u] > nil > nnil > [tt, U12, U53, U61, U62, U71, U72, nu]
[isQid, isNePal1] > [n2, 2, isPalListKind1, nisPalListKind1] > [isNeList, U31, U32, U41, U42, U43, U51] > isList1 > U21 > [U22, U23] > [activate1, U71^11, u] > [ne, e] > [tt, U12, U53, U61, U62, U71, U72, nu]
[isQid, isNePal1] > [n2, 2, isPalListKind1, nisPalListKind1] > [isNeList, U31, U32, U41, U42, U43, U51] > isList1 > [and2, nand2] > [activate1, U71^11, u] > nil > nnil > [tt, U12, U53, U61, U62, U71, U72, nu]
[isQid, isNePal1] > [n2, 2, isPalListKind1, nisPalListKind1] > [isNeList, U31, U32, U41, U42, U43, U51] > isList1 > [and2, nand2] > [activate1, U71^11, u] > [ne, e] > [tt, U12, U53, U61, U62, U71, U72, nu]
[na, a] > [tt, U12, U53, U61, U62, U71, U72, nu]
[ni, i] > [tt, U12, U53, U61, U62, U71, U72, nu]
[no, o] > [tt, U12, U53, U61, U62, U71, U72, nu]


The following usable rules [FROCOS05] were oriented:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(tt, V) → ISNEPAL(activate(V))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V) → ISNELIST(activate(V))
ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))
U421(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
U521(tt, V2) → ISLIST(activate(V2))
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
ISLIST(n____(V1, V2)) → U211(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
U221(tt, V2) → ISLIST(activate(V2))
U211(tt, V1, V2) → ISLIST(activate(V1))
U511(tt, V1, V2) → ISNELIST(activate(V1))
U411(tt, V1, V2) → ISLIST(activate(V1))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))
U421(tt, V2) → ISNELIST(activate(V2))
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
U211(tt, V1, V2) → ISLIST(activate(V1))
U511(tt, V1, V2) → ISNELIST(activate(V1))
U411(tt, V1, V2) → ISLIST(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  x2
tt  =  tt
ISNELIST(x1)  =  x1
activate(x1)  =  x1
n____(x1, x2)  =  n____(x1, x2)
U411(x1, x2, x3)  =  U411(x2, x3)
and(x1, x2)  =  and(x2)
isPalListKind(x1)  =  isPalListKind(x1)
n__isPalListKind(x1)  =  n__isPalListKind(x1)
U421(x1, x2)  =  U421(x2)
isList(x1)  =  isList(x1)
U511(x1, x2, x3)  =  U511(x2, x3)
U521(x1, x2)  =  x2
isNeList(x1)  =  isNeList
ISLIST(x1)  =  x1
U211(x1, x2, x3)  =  U211(x2, x3)
U221(x1, x2)  =  x2
__(x1, x2)  =  __(x1, x2)
nil  =  nil
U11(x1, x2)  =  U11
U12(x1)  =  U12
U21(x1, x2, x3)  =  x1
U22(x1, x2)  =  U22
U23(x1)  =  U23
U31(x1, x2)  =  U31
U32(x1)  =  U32
isQid(x1)  =  isQid
U41(x1, x2, x3)  =  U41
U42(x1, x2)  =  U42
U43(x1)  =  U43
U51(x1, x2, x3)  =  U51
U52(x1, x2)  =  U52
U53(x1)  =  U53
U61(x1, x2)  =  U61(x2)
U62(x1)  =  x1
U71(x1, x2)  =  U71(x2)
U72(x1)  =  x1
isNePal(x1)  =  isNePal(x1)
n__nil  =  n__nil
n__and(x1, x2)  =  n__and(x2)
isPal(x1)  =  isPal(x1)
n__a  =  n__a
n__e  =  n__e
n__i  =  n__i
n__o  =  n__o
n__u  =  n__u
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic Path Order [LPO].
Precedence:
[n2, U41^12, U51^12, U21^12, 2] > [and1, nand1]
[n2, U41^12, U51^12, U21^12, 2] > U42^11
isList1 > [isNeList, U11, U12, U41, U51] > [isPalListKind1, nisPalListKind1] > [tt, U22, U23] > U42^11
isList1 > [isNeList, U11, U12, U41, U51] > [isPalListKind1, nisPalListKind1] > [and1, nand1]
isList1 > [isNeList, U11, U12, U41, U51] > U31 > U32 > [tt, U22, U23] > U42^11
isList1 > [isNeList, U11, U12, U41, U51] > U42 > U43 > [tt, U22, U23] > U42^11
isList1 > [isNeList, U11, U12, U41, U51] > [U52, U53] > [tt, U22, U23] > U42^11
[nil, nnil]
isPal1 > [U711, isNePal1] > [isPalListKind1, nisPalListKind1] > [tt, U22, U23] > U42^11
isPal1 > [U711, isNePal1] > [isPalListKind1, nisPalListKind1] > [and1, nand1]
isPal1 > [U711, isNePal1] > U611 > isQid > [tt, U22, U23] > U42^11
[na, a]
[ne, e] > [tt, U22, U23] > U42^11
[ni, i] > [tt, U22, U23] > U42^11
[no, o]
[nu, u]


The following usable rules [FROCOS05] were oriented:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V) → ISNELIST(activate(V))
ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U521(tt, V2) → ISLIST(activate(V2))
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
ISLIST(n____(V1, V2)) → U211(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U221(tt, V2) → ISLIST(activate(V2))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, __(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 7 less nodes.

(26) TRUE