(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(X, __(Y, Z))
__1(__(X, Y), Z) → __1(Y, Z)
U111(tt, V) → U121(isNeList(activate(V)))
U111(tt, V) → ISNELIST(activate(V))
U111(tt, V) → ACTIVATE(V)
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
U211(tt, V1, V2) → ISLIST(activate(V1))
U211(tt, V1, V2) → ACTIVATE(V1)
U211(tt, V1, V2) → ACTIVATE(V2)
U221(tt, V2) → U231(isList(activate(V2)))
U221(tt, V2) → ISLIST(activate(V2))
U221(tt, V2) → ACTIVATE(V2)
U311(tt, V) → U321(isQid(activate(V)))
U311(tt, V) → ISQID(activate(V))
U311(tt, V) → ACTIVATE(V)
U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))
U411(tt, V1, V2) → ISLIST(activate(V1))
U411(tt, V1, V2) → ACTIVATE(V1)
U411(tt, V1, V2) → ACTIVATE(V2)
U421(tt, V2) → U431(isNeList(activate(V2)))
U421(tt, V2) → ISNELIST(activate(V2))
U421(tt, V2) → ACTIVATE(V2)
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
U511(tt, V1, V2) → ISNELIST(activate(V1))
U511(tt, V1, V2) → ACTIVATE(V1)
U511(tt, V1, V2) → ACTIVATE(V2)
U521(tt, V2) → U531(isList(activate(V2)))
U521(tt, V2) → ISLIST(activate(V2))
U521(tt, V2) → ACTIVATE(V2)
U611(tt, V) → U621(isQid(activate(V)))
U611(tt, V) → ISQID(activate(V))
U611(tt, V) → ACTIVATE(V)
U711(tt, V) → U721(isNePal(activate(V)))
U711(tt, V) → ISNEPAL(activate(V))
U711(tt, V) → ACTIVATE(V)
AND(tt, X) → ACTIVATE(X)
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
ISLIST(V) → ISPALLISTKIND(activate(V))
ISLIST(V) → ACTIVATE(V)
ISLIST(n____(V1, V2)) → U211(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
ISLIST(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISLIST(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISLIST(n____(V1, V2)) → ACTIVATE(V1)
ISLIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(V) → U311(isPalListKind(activate(V)), activate(V))
ISNELIST(V) → ISPALLISTKIND(activate(V))
ISNELIST(V) → ACTIVATE(V)
ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
ISNELIST(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISNELIST(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISNELIST(n____(V1, V2)) → ACTIVATE(V1)
ISNELIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
ISNEPAL(V) → ISPALLISTKIND(activate(V))
ISNEPAL(V) → ACTIVATE(V)
ISNEPAL(n____(I, n____(P, I))) → AND(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
ISNEPAL(n____(I, n____(P, I))) → AND(isQid(activate(I)), n__isPalListKind(activate(I)))
ISNEPAL(n____(I, n____(P, I))) → ISQID(activate(I))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
ISPAL(V) → ISPALLISTKIND(activate(V))
ISPAL(V) → ACTIVATE(V)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)
ACTIVATE(n__nil) → NIL
ACTIVATE(n____(X1, X2)) → __1(activate(X1), activate(X2))
ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__isPalListKind(X)) → ISPALLISTKIND(X)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isPal(X)) → ISPAL(X)
ACTIVATE(n__a) → A
ACTIVATE(n__e) → E
ACTIVATE(n__i) → I
ACTIVATE(n__o) → O
ACTIVATE(n__u) → U

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 41 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
_^12 > [2, n2]

Status:
_2: [1,2]
_^12: [1,2]
n2: [1,2]
nil: []


The following usable rules [FROCOS05] were oriented:

__(X1, X2) → n____(X1, X2)
__(X, nil) → X
__(__(X, Y), Z) → __(X, __(Y, Z))
__(nil, X) → X

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__isPalListKind(X)) → ISPALLISTKIND(X)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
U711(tt, V) → ISNEPAL(activate(V))
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
U611(tt, V) → ACTIVATE(V)
ISNEPAL(V) → ISPALLISTKIND(activate(V))
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)
ISNEPAL(V) → ACTIVATE(V)
ISNEPAL(n____(I, n____(P, I))) → AND(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
ISNEPAL(n____(I, n____(P, I))) → AND(isQid(activate(I)), n__isPalListKind(activate(I)))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
U711(tt, V) → ACTIVATE(V)
ISPAL(V) → ISPALLISTKIND(activate(V))
ISPAL(V) → ACTIVATE(V)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__isPalListKind(X)) → ISPALLISTKIND(X)
ISPALLISTKIND(n____(V1, V2)) → AND(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)
ISNEPAL(n____(I, n____(P, I))) → AND(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
ISNEPAL(n____(I, n____(P, I))) → AND(isQid(activate(I)), n__isPalListKind(activate(I)))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE(x1)
n____(x1, x2)  =  n____(x1, x2)
n__isPalListKind(x1)  =  n__isPalListKind(x1)
ISPALLISTKIND(x1)  =  ISPALLISTKIND(x1)
AND(x1, x2)  =  AND(x2)
isPalListKind(x1)  =  isPalListKind(x1)
activate(x1)  =  x1
tt  =  tt
n__and(x1, x2)  =  n__and(x1, x2)
n__isPal(x1)  =  x1
ISPAL(x1)  =  ISPAL(x1)
U711(x1, x2)  =  U711(x2)
ISNEPAL(x1)  =  ISNEPAL(x1)
U611(x1, x2)  =  U611(x2)
and(x1, x2)  =  and(x1, x2)
isQid(x1)  =  x1
o  =  o
n__o  =  n__o
i  =  i
n__i  =  n__i
e  =  e
n__e  =  n__e
a  =  a
n__a  =  n__a
__(x1, x2)  =  __(x1, x2)
n__nil  =  n__nil
nil  =  nil
u  =  u
n__u  =  n__u
isPal(x1)  =  x1
isNePal(x1)  =  isNePal(x1)
U71(x1, x2)  =  x2
U61(x1, x2)  =  U61(x1)
U72(x1)  =  U72
U62(x1)  =  U62

Lexicographic path order with status [LPO].
Quasi-Precedence:
[ACTIVATE1, n2, ISPALLISTKIND1, AND1, ISPAL1, U71^11, ISNEPAL1, U61^11, 2] > [nisPalListKind1, isPalListKind1] > [nand2, and2] > [tt, i, ni, U72]
[o, no] > [tt, i, ni, U72]
[e, ne] > [tt, i, ni, U72]
[a, na] > [tt, i, ni, U72]
[nnil, nil] > [tt, i, ni, U72]
[u, nu] > [tt, i, ni, U72]
isNePal1 > [nisPalListKind1, isPalListKind1] > [nand2, and2] > [tt, i, ni, U72]
isNePal1 > [U611, U62] > [tt, i, ni, U72]

Status:
i: []
_2: [1,2]
nu: []
ni: []
nnil: []
and2: [1,2]
na: []
tt: []
ISPAL1: [1]
isPalListKind1: [1]
U72: []
nil: []
ACTIVATE1: [1]
a: []
U611: [1]
U62: []
AND1: [1]
e: []
ne: []
isNePal1: [1]
o: []
n2: [1,2]
nand2: [1,2]
no: []
u: []
ISPALLISTKIND1: [1]
U61^11: [1]
U71^11: [1]
nisPalListKind1: [1]
ISNEPAL1: [1]


The following usable rules [FROCOS05] were oriented:

on__o
in__i
en__e
an__a
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
and(tt, X) → activate(X)
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__nil) → nil
un__u
activate(n__e) → e
activate(n__a) → a
activate(n__isPal(X)) → isPal(X)
__(X, nil) → X
activate(X) → X
__(__(X, Y), Z) → __(X, __(Y, Z))
activate(n__u) → u
activate(n__o) → o
__(nil, X) → X
activate(n__i) → i
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
isPal(X) → n__isPal(X)
and(X1, X2) → n__and(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
__(X1, X2) → n____(X1, X2)
niln__nil
isQid(n__u) → tt
isQid(n__o) → tt
isQid(n__i) → tt
isQid(n__e) → tt
isQid(n__a) → tt
isPalListKind(n__u) → tt
isPalListKind(n__o) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__i) → tt
isPalListKind(n__e) → tt

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
U711(tt, V) → ISNEPAL(activate(V))
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
U611(tt, V) → ACTIVATE(V)
ISNEPAL(V) → ISPALLISTKIND(activate(V))
ISNEPAL(V) → ACTIVATE(V)
U711(tt, V) → ACTIVATE(V)
ISPAL(V) → ISPALLISTKIND(activate(V))
ISPAL(V) → ACTIVATE(V)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
U711(tt, V) → ISNEPAL(activate(V))
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
U611(tt, V) → ACTIVATE(V)
ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → ACTIVATE(V)
ISNEPAL(V) → ACTIVATE(V)
U711(tt, V) → ACTIVATE(V)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__isPal(X)) → ISPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISPAL(x1)  =  ISPAL(x1)
U711(x1, x2)  =  U711(x2)
isPalListKind(x1)  =  x1
activate(x1)  =  x1
tt  =  tt
ISNEPAL(x1)  =  ISNEPAL(x1)
U611(x1, x2)  =  U611(x2)
ACTIVATE(x1)  =  ACTIVATE(x1)
n__isPal(x1)  =  n__isPal(x1)
o  =  o
n__o  =  n__o
i  =  i
n__i  =  n__i
e  =  e
n__e  =  n__e
a  =  a
n__a  =  n__a
n__isPalListKind(x1)  =  x1
n__and(x1, x2)  =  n__and(x1, x2)
and(x1, x2)  =  and(x1, x2)
n____(x1, x2)  =  n____(x1, x2)
__(x1, x2)  =  __(x1, x2)
n__nil  =  n__nil
nil  =  nil
u  =  u
n__u  =  n__u
isPal(x1)  =  isPal(x1)
isNePal(x1)  =  x1
isQid(x1)  =  isQid(x1)
U71(x1, x2)  =  x1
U61(x1, x2)  =  x1
U72(x1)  =  U72
U62(x1)  =  U62

Lexicographic path order with status [LPO].
Quasi-Precedence:
[tt, o, no, i, ni, e, ne, a, na, nnil, nil, u, nu, U72, U62] > [ISPAL1, U71^11, ISNEPAL1, U61^11, ACTIVATE1]
[tt, o, no, i, ni, e, ne, a, na, nnil, nil, u, nu, U72, U62] > [nisPal1, n2, 2, isPal1, isQid1] > [nand2, and2]

Status:
i: []
nu: []
_2: [1,2]
ni: []
nnil: []
and2: [2,1]
na: []
tt: []
ISPAL1: [1]
U72: []
nil: []
ACTIVATE1: [1]
a: []
U62: []
nisPal1: [1]
e: []
ne: []
n2: [1,2]
o: []
isQid1: [1]
nand2: [2,1]
isPal1: [1]
no: []
u: []
U61^11: [1]
U71^11: [1]
ISNEPAL1: [1]


The following usable rules [FROCOS05] were oriented:

on__o
in__i
en__e
an__a
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
and(tt, X) → activate(X)
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__nil) → nil
un__u
activate(n__e) → e
activate(n__a) → a
activate(n__isPal(X)) → isPal(X)
activate(X) → X
__(X, nil) → X
activate(n__u) → u
__(__(X, Y), Z) → __(X, __(Y, Z))
activate(n__o) → o
activate(n__i) → i
__(nil, X) → X
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
isPal(X) → n__isPal(X)
and(X1, X2) → n__and(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
__(X1, X2) → n____(X1, X2)
niln__nil
isQid(n__u) → tt
isQid(n__o) → tt
isQid(n__i) → tt
isQid(n__e) → tt
isQid(n__a) → tt
isPalListKind(n__u) → tt
isPalListKind(n__o) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__i) → tt
isPalListKind(n__e) → tt

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISPAL(V) → U711(isPalListKind(activate(V)), activate(V))
U711(tt, V) → ISNEPAL(activate(V))
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
U611(tt, V) → ACTIVATE(V)
ISPAL(V) → ACTIVATE(V)
ISNEPAL(V) → ACTIVATE(V)
U711(tt, V) → ACTIVATE(V)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 7 less nodes.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V) → ISNELIST(activate(V))
ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))
U421(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
U521(tt, V2) → ISLIST(activate(V2))
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
ISLIST(n____(V1, V2)) → U211(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
U221(tt, V2) → ISLIST(activate(V2))
U211(tt, V1, V2) → ISLIST(activate(V1))
U511(tt, V1, V2) → ISNELIST(activate(V1))
U411(tt, V1, V2) → ISLIST(activate(V1))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(tt, V) → ISNELIST(activate(V))
ISNELIST(n____(V1, V2)) → U411(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U411(tt, V1, V2) → U421(isList(activate(V1)), activate(V2))
U421(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → U511(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U511(tt, V1, V2) → U521(isNeList(activate(V1)), activate(V2))
U521(tt, V2) → ISLIST(activate(V2))
ISLIST(n____(V1, V2)) → U211(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
U211(tt, V1, V2) → U221(isList(activate(V1)), activate(V2))
U211(tt, V1, V2) → ISLIST(activate(V1))
U511(tt, V1, V2) → ISNELIST(activate(V1))
U411(tt, V1, V2) → ISLIST(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  U111(x2)
tt  =  tt
ISNELIST(x1)  =  ISNELIST(x1)
activate(x1)  =  x1
n____(x1, x2)  =  n____(x1, x2)
U411(x1, x2, x3)  =  U411(x1, x2, x3)
and(x1, x2)  =  x2
isPalListKind(x1)  =  isPalListKind
n__isPalListKind(x1)  =  n__isPalListKind
U421(x1, x2)  =  U421(x1, x2)
isList(x1)  =  isList
U511(x1, x2, x3)  =  U511(x2, x3)
U521(x1, x2)  =  U521(x2)
isNeList(x1)  =  isNeList(x1)
ISLIST(x1)  =  ISLIST(x1)
U211(x1, x2, x3)  =  U211(x2, x3)
U221(x1, x2)  =  U221(x2)
U51(x1, x2, x3)  =  U51(x2)
U52(x1, x2)  =  x1
U43(x1)  =  x1
U53(x1)  =  U53
U32(x1)  =  x1
U31(x1, x2)  =  x2
isQid(x1)  =  x1
U42(x1, x2)  =  U42(x1, x2)
U41(x1, x2, x3)  =  U41(x2, x3)
U21(x1, x2, x3)  =  x1
U22(x1, x2)  =  x1
U12(x1)  =  U12
U23(x1)  =  U23
__(x1, x2)  =  __(x1, x2)
nil  =  nil
U11(x1, x2)  =  U11
isPal(x1)  =  isPal(x1)
n__nil  =  n__nil
n__a  =  n__a
isNePal(x1)  =  isNePal
n__and(x1, x2)  =  x2
n__isPal(x1)  =  n__isPal(x1)
U71(x1, x2)  =  x1
U61(x1, x2)  =  U61
U72(x1)  =  U72
U62(x1)  =  U62
n__u  =  n__u
n__o  =  n__o
n__i  =  n__i
n__e  =  n__e
o  =  o
i  =  i
e  =  e
a  =  a
u  =  u

Lexicographic path order with status [LPO].
Quasi-Precedence:
[n2, 2] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U42^12 > ISNELIST1
[n2, 2] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U52^11 > [U11^11, ISLIST1, U22^11] > ISNELIST1
[n2, 2] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U422 > [isNeList1, U511]
[n2, 2] > U41^13 > [U11^11, ISLIST1, U22^11] > ISNELIST1
[n2, 2] > U41^13 > U42^12 > ISNELIST1
[n2, 2] > U51^12 > U52^11 > [U11^11, ISLIST1, U22^11] > ISNELIST1
[n2, 2] > U51^12 > [isNeList1, U511]
[n2, 2] > U21^12 > [U11^11, ISLIST1, U22^11] > ISNELIST1
[nil, nnil]
[na, a] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U42^12 > ISNELIST1
[na, a] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U52^11 > [U11^11, ISLIST1, U22^11] > ISNELIST1
[na, a] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U422 > [isNeList1, U511]
[isNePal, U61] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U42^12 > ISNELIST1
[isNePal, U61] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U52^11 > [U11^11, ISLIST1, U22^11] > ISNELIST1
[isNePal, U61] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U422 > [isNeList1, U511]
[nu, u] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U42^12 > ISNELIST1
[nu, u] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U52^11 > [U11^11, ISLIST1, U22^11] > ISNELIST1
[nu, u] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U422 > [isNeList1, U511]
[no, o] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U42^12 > ISNELIST1
[no, o] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U52^11 > [U11^11, ISLIST1, U22^11] > ISNELIST1
[no, o] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U422 > [isNeList1, U511]
[ne, e] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U42^12 > ISNELIST1
[ne, e] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U52^11 > [U11^11, ISLIST1, U22^11] > ISNELIST1
[ne, e] > [tt, isPalListKind, nisPalListKind, isList, U53, U412, U12, U23, U11, isPal1, nisPal1, U72, U62, ni, i] > U422 > [isNeList1, U511]

Status:
i: []
U51^12: [1,2]
U11^11: [1]
_2: [1,2]
nu: []
isPalListKind: []
ni: []
U21^12: [1,2]
U11: []
nnil: []
na: []
isList: []
U61: []
tt: []
U22^11: [1]
U72: []
isNePal: []
U23: []
nil: []
a: []
ISNELIST1: [1]
U62: []
U422: [1,2]
nisPal1: [1]
e: []
U53: []
U12: []
ne: []
n2: [1,2]
o: []
U41^13: [1,2,3]
U52^11: [1]
isPal1: [1]
no: []
U42^12: [1,2]
nisPalListKind: []
U412: [1,2]
u: []
isNeList1: [1]
ISLIST1: [1]
U511: [1]


The following usable rules [FROCOS05] were oriented:

U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U43(tt) → tt
U53(tt) → tt
U52(tt, V2) → U53(isList(activate(V2)))
U32(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U42(tt, V2) → U43(isNeList(activate(V2)))
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U12(tt) → tt
U23(tt) → tt
U22(tt, V2) → U23(isList(activate(V2)))
__(X, nil) → X
__(__(X, Y), Z) → __(X, __(Y, Z))
U11(tt, V) → U12(isNeList(activate(V)))
__(nil, X) → X
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isList(V) → U11(isPalListKind(activate(V)), activate(V))
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
isPal(X) → n__isPal(X)
and(X1, X2) → n__and(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
__(X1, X2) → n____(X1, X2)
niln__nil
isQid(n__u) → tt
isQid(n__o) → tt
isQid(n__i) → tt
isQid(n__e) → tt
isQid(n__a) → tt
isPalListKind(n__u) → tt
isPalListKind(n__o) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__i) → tt
isPalListKind(n__e) → tt
on__o
in__i
en__e
an__a
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
and(tt, X) → activate(X)
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__nil) → nil
un__u
activate(n__e) → e
activate(n__a) → a
activate(n__isPal(X)) → isPal(X)
activate(X) → X
activate(n__u) → u
activate(n__o) → o
activate(n__i) → i

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
U221(tt, V2) → ISLIST(activate(V2))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isNeList(activate(V)))
U12(tt) → tt
U21(tt, V1, V2) → U22(isList(activate(V1)), activate(V2))
U22(tt, V2) → U23(isList(activate(V2)))
U23(tt) → tt
U31(tt, V) → U32(isQid(activate(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isList(activate(V1)), activate(V2))
U42(tt, V2) → U43(isNeList(activate(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNeList(activate(V1)), activate(V2))
U52(tt, V2) → U53(isList(activate(V2)))
U53(tt) → tt
U61(tt, V) → U62(isQid(activate(V)))
U62(tt) → tt
U71(tt, V) → U72(isNePal(activate(V)))
U72(tt) → tt
and(tt, X) → activate(X)
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2))), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → and(and(isQid(activate(I)), n__isPalListKind(activate(I))), n__and(n__isPal(activate(P)), n__isPalListKind(activate(P))))
isPal(V) → U71(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → and(isPalListKind(activate(V1)), n__isPalListKind(activate(V2)))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isPalListKind(X) → n__isPalListKind(X)
and(X1, X2) → n__and(X1, X2)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isPalListKind(X)) → isPalListKind(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(23) TRUE