(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(zeros) → MARK(cons(0, zeros))
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(U11(tt, L)) → MARK(U12(tt, L))
ACTIVE(U11(tt, L)) → U121(tt, L)
ACTIVE(U12(tt, L)) → MARK(s(length(L)))
ACTIVE(U12(tt, L)) → S(length(L))
ACTIVE(U12(tt, L)) → LENGTH(L)
ACTIVE(U21(tt, IL, M, N)) → MARK(U22(tt, IL, M, N))
ACTIVE(U21(tt, IL, M, N)) → U221(tt, IL, M, N)
ACTIVE(U22(tt, IL, M, N)) → MARK(U23(tt, IL, M, N))
ACTIVE(U22(tt, IL, M, N)) → U231(tt, IL, M, N)
ACTIVE(U23(tt, IL, M, N)) → MARK(cons(N, take(M, IL)))
ACTIVE(U23(tt, IL, M, N)) → CONS(N, take(M, IL))
ACTIVE(U23(tt, IL, M, N)) → TAKE(M, IL)
ACTIVE(length(nil)) → MARK(0)
ACTIVE(length(cons(N, L))) → MARK(U11(tt, L))
ACTIVE(length(cons(N, L))) → U111(tt, L)
ACTIVE(take(0, IL)) → MARK(nil)
ACTIVE(take(s(M), cons(N, IL))) → MARK(U21(tt, IL, M, N))
ACTIVE(take(s(M), cons(N, IL))) → U211(tt, IL, M, N)
MARK(zeros) → ACTIVE(zeros)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(0) → ACTIVE(0)
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
MARK(U11(X1, X2)) → U111(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(U12(X1, X2)) → ACTIVE(U12(mark(X1), X2))
MARK(U12(X1, X2)) → U121(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(U21(X1, X2, X3, X4)) → ACTIVE(U21(mark(X1), X2, X3, X4))
MARK(U21(X1, X2, X3, X4)) → U211(mark(X1), X2, X3, X4)
MARK(U21(X1, X2, X3, X4)) → MARK(X1)
MARK(U22(X1, X2, X3, X4)) → ACTIVE(U22(mark(X1), X2, X3, X4))
MARK(U22(X1, X2, X3, X4)) → U221(mark(X1), X2, X3, X4)
MARK(U22(X1, X2, X3, X4)) → MARK(X1)
MARK(U23(X1, X2, X3, X4)) → ACTIVE(U23(mark(X1), X2, X3, X4))
MARK(U23(X1, X2, X3, X4)) → U231(mark(X1), X2, X3, X4)
MARK(U23(X1, X2, X3, X4)) → MARK(X1)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(nil) → ACTIVE(nil)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
U111(X1, mark(X2)) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)
U121(mark(X1), X2) → U121(X1, X2)
U121(X1, mark(X2)) → U121(X1, X2)
U121(active(X1), X2) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)
S(mark(X)) → S(X)
S(active(X)) → S(X)
LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)
U211(mark(X1), X2, X3, X4) → U211(X1, X2, X3, X4)
U211(X1, mark(X2), X3, X4) → U211(X1, X2, X3, X4)
U211(X1, X2, mark(X3), X4) → U211(X1, X2, X3, X4)
U211(X1, X2, X3, mark(X4)) → U211(X1, X2, X3, X4)
U211(active(X1), X2, X3, X4) → U211(X1, X2, X3, X4)
U211(X1, active(X2), X3, X4) → U211(X1, X2, X3, X4)
U211(X1, X2, active(X3), X4) → U211(X1, X2, X3, X4)
U211(X1, X2, X3, active(X4)) → U211(X1, X2, X3, X4)
U221(mark(X1), X2, X3, X4) → U221(X1, X2, X3, X4)
U221(X1, mark(X2), X3, X4) → U221(X1, X2, X3, X4)
U221(X1, X2, mark(X3), X4) → U221(X1, X2, X3, X4)
U221(X1, X2, X3, mark(X4)) → U221(X1, X2, X3, X4)
U221(active(X1), X2, X3, X4) → U221(X1, X2, X3, X4)
U221(X1, active(X2), X3, X4) → U221(X1, X2, X3, X4)
U221(X1, X2, active(X3), X4) → U221(X1, X2, X3, X4)
U221(X1, X2, X3, active(X4)) → U221(X1, X2, X3, X4)
U231(mark(X1), X2, X3, X4) → U231(X1, X2, X3, X4)
U231(X1, mark(X2), X3, X4) → U231(X1, X2, X3, X4)
U231(X1, X2, mark(X3), X4) → U231(X1, X2, X3, X4)
U231(X1, X2, X3, mark(X4)) → U231(X1, X2, X3, X4)
U231(active(X1), X2, X3, X4) → U231(X1, X2, X3, X4)
U231(X1, active(X2), X3, X4) → U231(X1, X2, X3, X4)
U231(X1, X2, active(X3), X4) → U231(X1, X2, X3, X4)
U231(X1, X2, X3, active(X4)) → U231(X1, X2, X3, X4)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 10 SCCs with 24 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
TAKE1 > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
zeros > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
take > [U21, U22, U23] > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]

Status:
TAKE1: [1]
mark1: [1]
active1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
TAKE1 > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
zeros > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
take > [U21, U22, U23] > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]

Status:
TAKE1: [1]
mark1: [1]
active1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U231(X1, mark(X2), X3, X4) → U231(X1, X2, X3, X4)
U231(mark(X1), X2, X3, X4) → U231(X1, X2, X3, X4)
U231(X1, X2, mark(X3), X4) → U231(X1, X2, X3, X4)
U231(X1, X2, X3, mark(X4)) → U231(X1, X2, X3, X4)
U231(active(X1), X2, X3, X4) → U231(X1, X2, X3, X4)
U231(X1, active(X2), X3, X4) → U231(X1, X2, X3, X4)
U231(X1, X2, active(X3), X4) → U231(X1, X2, X3, X4)
U231(X1, X2, X3, active(X4)) → U231(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U231(X1, X2, X3, mark(X4)) → U231(X1, X2, X3, X4)
U231(X1, X2, X3, active(X4)) → U231(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U231(x1, x2, x3, x4)  =  x4
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
zeros > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
take > [U21, U22, U23] > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]

Status:
mark1: [1]
active1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U231(X1, mark(X2), X3, X4) → U231(X1, X2, X3, X4)
U231(mark(X1), X2, X3, X4) → U231(X1, X2, X3, X4)
U231(X1, X2, mark(X3), X4) → U231(X1, X2, X3, X4)
U231(active(X1), X2, X3, X4) → U231(X1, X2, X3, X4)
U231(X1, active(X2), X3, X4) → U231(X1, X2, X3, X4)
U231(X1, X2, active(X3), X4) → U231(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U231(mark(X1), X2, X3, X4) → U231(X1, X2, X3, X4)
U231(active(X1), X2, X3, X4) → U231(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U231(x1, x2, x3, x4)  =  U231(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
U23^11 > [mark1, active1, cons, 0, U11, tt, U12, s, nil]
zeros > [mark1, active1, cons, 0, U11, tt, U12, s, nil]
length > [mark1, active1, cons, 0, U11, tt, U12, s, nil]
[U21, U22, U23, take] > [mark1, active1, cons, 0, U11, tt, U12, s, nil]

Status:
U23^11: [1]
mark1: [1]
active1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U231(X1, mark(X2), X3, X4) → U231(X1, X2, X3, X4)
U231(X1, X2, mark(X3), X4) → U231(X1, X2, X3, X4)
U231(X1, active(X2), X3, X4) → U231(X1, X2, X3, X4)
U231(X1, X2, active(X3), X4) → U231(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U231(X1, mark(X2), X3, X4) → U231(X1, X2, X3, X4)
U231(X1, X2, mark(X3), X4) → U231(X1, X2, X3, X4)
U231(X1, active(X2), X3, X4) → U231(X1, X2, X3, X4)
U231(X1, X2, active(X3), X4) → U231(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U231(x1, x2, x3, x4)  =  U231(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
U23^12 > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
zeros > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
take > [U21, U22, U23] > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]

Status:
U23^12: [2,1]
mark1: [1]
active1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(18) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(20) TRUE

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(X1, mark(X2), X3, X4) → U221(X1, X2, X3, X4)
U221(mark(X1), X2, X3, X4) → U221(X1, X2, X3, X4)
U221(X1, X2, mark(X3), X4) → U221(X1, X2, X3, X4)
U221(X1, X2, X3, mark(X4)) → U221(X1, X2, X3, X4)
U221(active(X1), X2, X3, X4) → U221(X1, X2, X3, X4)
U221(X1, active(X2), X3, X4) → U221(X1, X2, X3, X4)
U221(X1, X2, active(X3), X4) → U221(X1, X2, X3, X4)
U221(X1, X2, X3, active(X4)) → U221(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(X1, X2, X3, mark(X4)) → U221(X1, X2, X3, X4)
U221(X1, X2, X3, active(X4)) → U221(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2, x3, x4)  =  x4
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
zeros > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
take > [U21, U22, U23] > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]

Status:
mark1: [1]
active1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(X1, mark(X2), X3, X4) → U221(X1, X2, X3, X4)
U221(mark(X1), X2, X3, X4) → U221(X1, X2, X3, X4)
U221(X1, X2, mark(X3), X4) → U221(X1, X2, X3, X4)
U221(active(X1), X2, X3, X4) → U221(X1, X2, X3, X4)
U221(X1, active(X2), X3, X4) → U221(X1, X2, X3, X4)
U221(X1, X2, active(X3), X4) → U221(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X1), X2, X3, X4) → U221(X1, X2, X3, X4)
U221(active(X1), X2, X3, X4) → U221(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2, x3, x4)  =  U221(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
U22^11 > [mark1, active1, cons, 0, U11, tt, U12, s, nil]
zeros > [mark1, active1, cons, 0, U11, tt, U12, s, nil]
length > [mark1, active1, cons, 0, U11, tt, U12, s, nil]
[U21, U22, U23, take] > [mark1, active1, cons, 0, U11, tt, U12, s, nil]

Status:
U22^11: [1]
mark1: [1]
active1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(X1, mark(X2), X3, X4) → U221(X1, X2, X3, X4)
U221(X1, X2, mark(X3), X4) → U221(X1, X2, X3, X4)
U221(X1, active(X2), X3, X4) → U221(X1, X2, X3, X4)
U221(X1, X2, active(X3), X4) → U221(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(X1, mark(X2), X3, X4) → U221(X1, X2, X3, X4)
U221(X1, X2, mark(X3), X4) → U221(X1, X2, X3, X4)
U221(X1, active(X2), X3, X4) → U221(X1, X2, X3, X4)
U221(X1, X2, active(X3), X4) → U221(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2, x3, x4)  =  U221(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
U22^12 > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
zeros > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
take > [U21, U22, U23] > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]

Status:
U22^12: [2,1]
mark1: [1]
active1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(27) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(29) TRUE

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2), X3, X4) → U211(X1, X2, X3, X4)
U211(mark(X1), X2, X3, X4) → U211(X1, X2, X3, X4)
U211(X1, X2, mark(X3), X4) → U211(X1, X2, X3, X4)
U211(X1, X2, X3, mark(X4)) → U211(X1, X2, X3, X4)
U211(active(X1), X2, X3, X4) → U211(X1, X2, X3, X4)
U211(X1, active(X2), X3, X4) → U211(X1, X2, X3, X4)
U211(X1, X2, active(X3), X4) → U211(X1, X2, X3, X4)
U211(X1, X2, X3, active(X4)) → U211(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, X2, X3, mark(X4)) → U211(X1, X2, X3, X4)
U211(X1, X2, X3, active(X4)) → U211(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2, x3, x4)  =  x4
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
zeros > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
take > [U21, U22, U23] > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]

Status:
mark1: [1]
active1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2), X3, X4) → U211(X1, X2, X3, X4)
U211(mark(X1), X2, X3, X4) → U211(X1, X2, X3, X4)
U211(X1, X2, mark(X3), X4) → U211(X1, X2, X3, X4)
U211(active(X1), X2, X3, X4) → U211(X1, X2, X3, X4)
U211(X1, active(X2), X3, X4) → U211(X1, X2, X3, X4)
U211(X1, X2, active(X3), X4) → U211(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2, X3, X4) → U211(X1, X2, X3, X4)
U211(active(X1), X2, X3, X4) → U211(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2, x3, x4)  =  U211(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
U21^11 > [mark1, active1, cons, 0, U11, tt, U12, s, nil]
zeros > [mark1, active1, cons, 0, U11, tt, U12, s, nil]
length > [mark1, active1, cons, 0, U11, tt, U12, s, nil]
[U21, U22, U23, take] > [mark1, active1, cons, 0, U11, tt, U12, s, nil]

Status:
U21^11: [1]
mark1: [1]
active1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2), X3, X4) → U211(X1, X2, X3, X4)
U211(X1, X2, mark(X3), X4) → U211(X1, X2, X3, X4)
U211(X1, active(X2), X3, X4) → U211(X1, X2, X3, X4)
U211(X1, X2, active(X3), X4) → U211(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, mark(X2), X3, X4) → U211(X1, X2, X3, X4)
U211(X1, X2, mark(X3), X4) → U211(X1, X2, X3, X4)
U211(X1, active(X2), X3, X4) → U211(X1, X2, X3, X4)
U211(X1, X2, active(X3), X4) → U211(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2, x3, x4)  =  U211(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
U21^12 > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
zeros > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
take > [U21, U22, U23] > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]

Status:
U21^12: [2,1]
mark1: [1]
active1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(36) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(38) TRUE

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(active(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(mark(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  LENGTH(x1)
active(x1)  =  x1
mark(x1)  =  mark(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12(x1)
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23(x1)
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
LENGTH1 > [0, s, nil]
zeros > [mark1, cons, tt, U121, U231] > [0, s, nil]
length > U11 > [mark1, cons, tt, U121, U231] > [0, s, nil]
take > U21 > U22 > [mark1, cons, tt, U121, U231] > [0, s, nil]

Status:
LENGTH1: [1]
mark1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U121: [1]
s: []
length: []
U21: []
U22: []
U231: [1]
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(active(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(active(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  LENGTH(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark(x1)
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
LENGTH1 > [cons, 0, U11, U12, s, U21, U22, U23, nil]
zeros > [active1, mark1] > [cons, 0, U11, U12, s, U21, U22, U23, nil]
tt > length > [active1, mark1] > [cons, 0, U11, U12, s, U21, U22, U23, nil]
tt > take > [active1, mark1] > [cons, 0, U11, U12, s, U21, U22, U23, nil]

Status:
LENGTH1: [1]
active1: [1]
zeros: []
mark1: [1]
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(43) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(45) TRUE

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
active(x1)  =  x1
mark(x1)  =  mark(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12(x1)
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23(x1)
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
S1 > [0, s, nil]
zeros > [mark1, cons, tt, U121, U231] > [0, s, nil]
length > U11 > [mark1, cons, tt, U121, U231] > [0, s, nil]
take > U21 > U22 > [mark1, cons, tt, U121, U231] > [0, s, nil]

Status:
S1: [1]
mark1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U121: [1]
s: []
length: []
U21: []
U22: []
U231: [1]
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark(x1)
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
S1 > [cons, 0, U11, U12, s, U21, U22, U23, nil]
zeros > [active1, mark1] > [cons, 0, U11, U12, s, U21, U22, U23, nil]
tt > length > [active1, mark1] > [cons, 0, U11, U12, s, U21, U22, U23, nil]
tt > take > [active1, mark1] > [cons, 0, U11, U12, s, U21, U22, U23, nil]

Status:
S1: [1]
active1: [1]
zeros: []
mark1: [1]
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(50) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(52) TRUE

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, mark(X2)) → U121(X1, X2)
U121(mark(X1), X2) → U121(X1, X2)
U121(active(X1), X2) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, mark(X2)) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2)  =  U121(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
U12^11 > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
zeros > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
take > [U21, U22, U23] > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]

Status:
U12^11: [1]
mark1: [1]
active1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X1), X2) → U121(X1, X2)
U121(active(X1), X2) → U121(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X1), X2) → U121(X1, X2)
U121(active(X1), X2) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2)  =  U121(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
U12^11 > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
zeros > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
take > [U21, U22, U23] > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]

Status:
U12^11: [1]
mark1: [1]
active1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(57) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(59) TRUE

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2)) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, mark(X2)) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  U111(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
U11^11 > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
zeros > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
take > [U21, U22, U23] > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]

Status:
U11^11: [1]
mark1: [1]
active1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  U111(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
U11^11 > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
zeros > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
take > [U21, U22, U23] > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]

Status:
U11^11: [1]
mark1: [1]
active1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(64) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(66) TRUE

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
CONS1 > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
zeros > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
take > [U21, U22, U23] > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]

Status:
CONS1: [1]
mark1: [1]
active1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(69) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
CONS1 > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
zeros > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]
take > [U21, U22, U23] > [mark1, active1, cons, 0, U11, tt, U12, s, length, nil]

Status:
CONS1: [1]
mark1: [1]
active1: [1]
zeros: []
cons: []
0: []
U11: []
tt: []
U12: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(71) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(72) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(73) TRUE

(74) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(U11(tt, L)) → MARK(U12(tt, L))
MARK(cons(X1, X2)) → MARK(X1)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(U12(tt, L)) → MARK(s(length(L)))
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X1, X2)) → ACTIVE(U12(mark(X1), X2))
ACTIVE(U21(tt, IL, M, N)) → MARK(U22(tt, IL, M, N))
MARK(U12(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(U22(tt, IL, M, N)) → MARK(U23(tt, IL, M, N))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(U23(tt, IL, M, N)) → MARK(cons(N, take(M, IL)))
MARK(length(X)) → MARK(X)
MARK(U21(X1, X2, X3, X4)) → ACTIVE(U21(mark(X1), X2, X3, X4))
ACTIVE(length(cons(N, L))) → MARK(U11(tt, L))
MARK(U21(X1, X2, X3, X4)) → MARK(X1)
MARK(U22(X1, X2, X3, X4)) → ACTIVE(U22(mark(X1), X2, X3, X4))
ACTIVE(take(s(M), cons(N, IL))) → MARK(U21(tt, IL, M, N))
MARK(U22(X1, X2, X3, X4)) → MARK(X1)
MARK(U23(X1, X2, X3, X4)) → ACTIVE(U23(mark(X1), X2, X3, X4))
MARK(U23(X1, X2, X3, X4)) → MARK(X1)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
cons(x1, x2)  =  cons
ACTIVE(x1)  =  x1
mark(x1)  =  x1
U11(x1, x2)  =  U11
tt  =  tt
U12(x1, x2)  =  U12
zeros  =  zeros
0  =  0
s(x1)  =  s
length(x1)  =  length
U21(x1, x2, x3, x4)  =  U21
U22(x1, x2, x3, x4)  =  U22
U23(x1, x2, x3, x4)  =  U23
take(x1, x2)  =  take
active(x1)  =  x1
nil  =  nil

Lexicographic path order with status [LPO].
Quasi-Precedence:
tt > [MARK, U11, U12, zeros, length, U21, U22, U23, take] > [cons, 0, s, nil]

Status:
MARK: []
cons: []
U11: []
tt: []
U12: []
zeros: []
0: []
s: []
length: []
U21: []
U22: []
U23: []
take: []
nil: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(76) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, L)) → MARK(U12(tt, L))
MARK(cons(X1, X2)) → MARK(X1)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(U12(tt, L)) → MARK(s(length(L)))
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X1, X2)) → ACTIVE(U12(mark(X1), X2))
ACTIVE(U21(tt, IL, M, N)) → MARK(U22(tt, IL, M, N))
MARK(U12(X1, X2)) → MARK(X1)
ACTIVE(U22(tt, IL, M, N)) → MARK(U23(tt, IL, M, N))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(U23(tt, IL, M, N)) → MARK(cons(N, take(M, IL)))
MARK(length(X)) → MARK(X)
MARK(U21(X1, X2, X3, X4)) → ACTIVE(U21(mark(X1), X2, X3, X4))
ACTIVE(length(cons(N, L))) → MARK(U11(tt, L))
MARK(U21(X1, X2, X3, X4)) → MARK(X1)
MARK(U22(X1, X2, X3, X4)) → ACTIVE(U22(mark(X1), X2, X3, X4))
ACTIVE(take(s(M), cons(N, IL))) → MARK(U21(tt, IL, M, N))
MARK(U22(X1, X2, X3, X4)) → MARK(X1)
MARK(U23(X1, X2, X3, X4)) → ACTIVE(U23(mark(X1), X2, X3, X4))
MARK(U23(X1, X2, X3, X4)) → MARK(X1)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X1, X2, X3, X4)) → active(U21(mark(X1), X2, X3, X4))
mark(U22(X1, X2, X3, X4)) → active(U22(mark(X1), X2, X3, X4))
mark(U23(X1, X2, X3, X4)) → active(U23(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, mark(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, mark(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, mark(X4)) → U21(X1, X2, X3, X4)
U21(active(X1), X2, X3, X4) → U21(X1, X2, X3, X4)
U21(X1, active(X2), X3, X4) → U21(X1, X2, X3, X4)
U21(X1, X2, active(X3), X4) → U21(X1, X2, X3, X4)
U21(X1, X2, X3, active(X4)) → U21(X1, X2, X3, X4)
U22(mark(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, mark(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, mark(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, mark(X4)) → U22(X1, X2, X3, X4)
U22(active(X1), X2, X3, X4) → U22(X1, X2, X3, X4)
U22(X1, active(X2), X3, X4) → U22(X1, X2, X3, X4)
U22(X1, X2, active(X3), X4) → U22(X1, X2, X3, X4)
U22(X1, X2, X3, active(X4)) → U22(X1, X2, X3, X4)
U23(mark(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, mark(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, mark(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, mark(X4)) → U23(X1, X2, X3, X4)
U23(active(X1), X2, X3, X4) → U23(X1, X2, X3, X4)
U23(X1, active(X2), X3, X4) → U23(X1, X2, X3, X4)
U23(X1, X2, active(X3), X4) → U23(X1, X2, X3, X4)
U23(X1, X2, X3, active(X4)) → U23(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.