(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(nil) → 0
a__length(cons(N, L)) → a__U11(tt, L)
a__take(0, IL) → nil
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(U11(x1, x2)) = x1 + x2   
POL(U12(x1, x2)) = x1 + x2   
POL(U21(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(U22(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(U23(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(a__U11(x1, x2)) = x1 + x2   
POL(a__U12(x1, x2)) = x1 + x2   
POL(a__U21(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(a__U22(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(a__U23(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(a__length(x1)) = 1 + x1   
POL(a__take(x1, x2)) = 1 + x1 + x2   
POL(a__zeros) = 0   
POL(cons(x1, x2)) = x1 + x2   
POL(length(x1)) = 1 + x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(take(x1, x2)) = 1 + x1 + x2   
POL(tt) = 1   
POL(zeros) = 0   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a__length(nil) → 0
a__take(0, IL) → nil


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, L) → A__U12(tt, L)
A__U12(tt, L) → A__LENGTH(mark(L))
A__U12(tt, L) → MARK(L)
A__U21(tt, IL, M, N) → A__U22(tt, IL, M, N)
A__U22(tt, IL, M, N) → A__U23(tt, IL, M, N)
A__U23(tt, IL, M, N) → MARK(N)
A__LENGTH(cons(N, L)) → A__U11(tt, L)
A__TAKE(s(M), cons(N, IL)) → A__U21(tt, IL, M, N)
MARK(zeros) → A__ZEROS
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(U21(X1, X2, X3, X4)) → A__U21(mark(X1), X2, X3, X4)
MARK(U21(X1, X2, X3, X4)) → MARK(X1)
MARK(U22(X1, X2, X3, X4)) → A__U22(mark(X1), X2, X3, X4)
MARK(U22(X1, X2, X3, X4)) → MARK(X1)
MARK(U23(X1, X2, X3, X4)) → A__U23(mark(X1), X2, X3, X4)
MARK(U23(X1, X2, X3, X4)) → MARK(X1)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U11(tt, L)
A__U11(tt, L) → A__U12(tt, L)
A__U12(tt, L) → MARK(L)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(U21(X1, X2, X3, X4)) → A__U21(mark(X1), X2, X3, X4)
A__U21(tt, IL, M, N) → A__U22(tt, IL, M, N)
A__U22(tt, IL, M, N) → A__U23(tt, IL, M, N)
A__U23(tt, IL, M, N) → MARK(N)
MARK(U21(X1, X2, X3, X4)) → MARK(X1)
MARK(U22(X1, X2, X3, X4)) → A__U22(mark(X1), X2, X3, X4)
MARK(U22(X1, X2, X3, X4)) → MARK(X1)
MARK(U23(X1, X2, X3, X4)) → A__U23(mark(X1), X2, X3, X4)
MARK(U23(X1, X2, X3, X4)) → MARK(X1)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__TAKE(s(M), cons(N, IL)) → A__U21(tt, IL, M, N)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

A__U12(tt, L) → MARK(L)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(length(X)) → MARK(X)


Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(A__LENGTH(x1)) = 1 + x1   
POL(A__TAKE(x1, x2)) = x1 + x2   
POL(A__U11(x1, x2)) = 1 + x1 + x2   
POL(A__U12(x1, x2)) = 1 + x1 + x2   
POL(A__U21(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(A__U22(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(A__U23(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(MARK(x1)) = x1   
POL(U11(x1, x2)) = 2 + x1 + x2   
POL(U12(x1, x2)) = 2 + x1 + x2   
POL(U21(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(U22(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(U23(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(a__U11(x1, x2)) = 2 + x1 + x2   
POL(a__U12(x1, x2)) = 2 + x1 + x2   
POL(a__U21(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(a__U22(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(a__U23(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(a__length(x1)) = 2 + x1   
POL(a__take(x1, x2)) = x1 + x2   
POL(a__zeros) = 0   
POL(cons(x1, x2)) = x1 + x2   
POL(length(x1)) = 2 + x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(take(x1, x2)) = x1 + x2   
POL(tt) = 0   
POL(zeros) = 0   

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U11(tt, L)
A__U11(tt, L) → A__U12(tt, L)
MARK(U21(X1, X2, X3, X4)) → A__U21(mark(X1), X2, X3, X4)
A__U21(tt, IL, M, N) → A__U22(tt, IL, M, N)
A__U22(tt, IL, M, N) → A__U23(tt, IL, M, N)
A__U23(tt, IL, M, N) → MARK(N)
MARK(U21(X1, X2, X3, X4)) → MARK(X1)
MARK(U22(X1, X2, X3, X4)) → A__U22(mark(X1), X2, X3, X4)
MARK(U22(X1, X2, X3, X4)) → MARK(X1)
MARK(U23(X1, X2, X3, X4)) → A__U23(mark(X1), X2, X3, X4)
MARK(U23(X1, X2, X3, X4)) → MARK(X1)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__TAKE(s(M), cons(N, IL)) → A__U21(tt, IL, M, N)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(10) Complex Obligation (AND)

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U21(tt, IL, M, N) → A__U22(tt, IL, M, N)
A__U22(tt, IL, M, N) → A__U23(tt, IL, M, N)
A__U23(tt, IL, M, N) → MARK(N)
MARK(U21(X1, X2, X3, X4)) → A__U21(mark(X1), X2, X3, X4)
MARK(U21(X1, X2, X3, X4)) → MARK(X1)
MARK(U22(X1, X2, X3, X4)) → A__U22(mark(X1), X2, X3, X4)
MARK(U22(X1, X2, X3, X4)) → MARK(X1)
MARK(U23(X1, X2, X3, X4)) → A__U23(mark(X1), X2, X3, X4)
MARK(U23(X1, X2, X3, X4)) → MARK(X1)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__TAKE(s(M), cons(N, IL)) → A__U21(tt, IL, M, N)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

A__U21(tt, IL, M, N) → A__U22(tt, IL, M, N)
A__U22(tt, IL, M, N) → A__U23(tt, IL, M, N)
A__U23(tt, IL, M, N) → MARK(N)
MARK(U21(X1, X2, X3, X4)) → A__U21(mark(X1), X2, X3, X4)
MARK(U21(X1, X2, X3, X4)) → MARK(X1)
MARK(U22(X1, X2, X3, X4)) → A__U22(mark(X1), X2, X3, X4)
MARK(U22(X1, X2, X3, X4)) → MARK(X1)
MARK(U23(X1, X2, X3, X4)) → A__U23(mark(X1), X2, X3, X4)
MARK(U23(X1, X2, X3, X4)) → MARK(X1)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__TAKE(s(M), cons(N, IL)) → A__U21(tt, IL, M, N)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)


Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(A__TAKE(x1, x2)) = 4 + x1 + x2   
POL(A__U21(x1, x2, x3, x4)) = 3 + x1 + x2 + x3 + x4   
POL(A__U22(x1, x2, x3, x4)) = 2 + x1 + x2 + x3 + x4   
POL(A__U23(x1, x2, x3, x4)) = 1 + x1 + x2 + x3 + x4   
POL(MARK(x1)) = x1   
POL(U11(x1, x2)) = x1 + x2   
POL(U12(x1, x2)) = x1 + x2   
POL(U21(x1, x2, x3, x4)) = 5 + x1 + x2 + x3 + x4   
POL(U22(x1, x2, x3, x4)) = 5 + x1 + x2 + x3 + x4   
POL(U23(x1, x2, x3, x4)) = 5 + x1 + x2 + x3 + x4   
POL(a__U11(x1, x2)) = x1 + x2   
POL(a__U12(x1, x2)) = x1 + x2   
POL(a__U21(x1, x2, x3, x4)) = 5 + x1 + x2 + x3 + x4   
POL(a__U22(x1, x2, x3, x4)) = 5 + x1 + x2 + x3 + x4   
POL(a__U23(x1, x2, x3, x4)) = 5 + x1 + x2 + x3 + x4   
POL(a__length(x1)) = x1   
POL(a__take(x1, x2)) = 5 + x1 + x2   
POL(a__zeros) = 0   
POL(cons(x1, x2)) = x1 + x2   
POL(length(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(take(x1, x2)) = 5 + x1 + x2   
POL(tt) = 0   
POL(zeros) = 0   

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MARK(cons(X1, X2)) → MARK(X1)
    The graph contains the following edges 1 > 1

  • MARK(s(X)) → MARK(X)
    The graph contains the following edges 1 > 1

(17) TRUE

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__LENGTH(cons(N, L)) → A__U11(tt, L)
A__U11(tt, L) → A__U12(tt, L)
A__U12(tt, L) → A__LENGTH(mark(L))

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) Narrowing (EQUIVALENT transformation)

By narrowing [LPAR04] the rule A__U12(tt, L) → A__LENGTH(mark(L)) at position [0] we obtained the following new rules [LPAR04]:

A__U12(tt, zeros) → A__LENGTH(a__zeros)
A__U12(tt, U11(x0, x1)) → A__LENGTH(a__U11(mark(x0), x1))
A__U12(tt, U12(x0, x1)) → A__LENGTH(a__U12(mark(x0), x1))
A__U12(tt, length(x0)) → A__LENGTH(a__length(mark(x0)))
A__U12(tt, U21(x0, x1, x2, x3)) → A__LENGTH(a__U21(mark(x0), x1, x2, x3))
A__U12(tt, U22(x0, x1, x2, x3)) → A__LENGTH(a__U22(mark(x0), x1, x2, x3))
A__U12(tt, U23(x0, x1, x2, x3)) → A__LENGTH(a__U23(mark(x0), x1, x2, x3))
A__U12(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U12(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))
A__U12(tt, 0) → A__LENGTH(0)
A__U12(tt, tt) → A__LENGTH(tt)
A__U12(tt, s(x0)) → A__LENGTH(s(mark(x0)))
A__U12(tt, nil) → A__LENGTH(nil)

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__LENGTH(cons(N, L)) → A__U11(tt, L)
A__U11(tt, L) → A__U12(tt, L)
A__U12(tt, zeros) → A__LENGTH(a__zeros)
A__U12(tt, U11(x0, x1)) → A__LENGTH(a__U11(mark(x0), x1))
A__U12(tt, U12(x0, x1)) → A__LENGTH(a__U12(mark(x0), x1))
A__U12(tt, length(x0)) → A__LENGTH(a__length(mark(x0)))
A__U12(tt, U21(x0, x1, x2, x3)) → A__LENGTH(a__U21(mark(x0), x1, x2, x3))
A__U12(tt, U22(x0, x1, x2, x3)) → A__LENGTH(a__U22(mark(x0), x1, x2, x3))
A__U12(tt, U23(x0, x1, x2, x3)) → A__LENGTH(a__U23(mark(x0), x1, x2, x3))
A__U12(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U12(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))
A__U12(tt, 0) → A__LENGTH(0)
A__U12(tt, tt) → A__LENGTH(tt)
A__U12(tt, s(x0)) → A__LENGTH(s(mark(x0)))
A__U12(tt, nil) → A__LENGTH(nil)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, L) → A__U12(tt, L)
A__U12(tt, zeros) → A__LENGTH(a__zeros)
A__LENGTH(cons(N, L)) → A__U11(tt, L)
A__U12(tt, U11(x0, x1)) → A__LENGTH(a__U11(mark(x0), x1))
A__U12(tt, U12(x0, x1)) → A__LENGTH(a__U12(mark(x0), x1))
A__U12(tt, length(x0)) → A__LENGTH(a__length(mark(x0)))
A__U12(tt, U21(x0, x1, x2, x3)) → A__LENGTH(a__U21(mark(x0), x1, x2, x3))
A__U12(tt, U22(x0, x1, x2, x3)) → A__LENGTH(a__U22(mark(x0), x1, x2, x3))
A__U12(tt, U23(x0, x1, x2, x3)) → A__LENGTH(a__U23(mark(x0), x1, x2, x3))
A__U12(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U12(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) Narrowing (EQUIVALENT transformation)

By narrowing [LPAR04] the rule A__U12(tt, zeros) → A__LENGTH(a__zeros) at position [0] we obtained the following new rules [LPAR04]:

A__U12(tt, zeros) → A__LENGTH(cons(0, zeros))
A__U12(tt, zeros) → A__LENGTH(zeros)

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, L) → A__U12(tt, L)
A__LENGTH(cons(N, L)) → A__U11(tt, L)
A__U12(tt, U11(x0, x1)) → A__LENGTH(a__U11(mark(x0), x1))
A__U12(tt, U12(x0, x1)) → A__LENGTH(a__U12(mark(x0), x1))
A__U12(tt, length(x0)) → A__LENGTH(a__length(mark(x0)))
A__U12(tt, U21(x0, x1, x2, x3)) → A__LENGTH(a__U21(mark(x0), x1, x2, x3))
A__U12(tt, U22(x0, x1, x2, x3)) → A__LENGTH(a__U22(mark(x0), x1, x2, x3))
A__U12(tt, U23(x0, x1, x2, x3)) → A__LENGTH(a__U23(mark(x0), x1, x2, x3))
A__U12(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U12(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))
A__U12(tt, zeros) → A__LENGTH(cons(0, zeros))
A__U12(tt, zeros) → A__LENGTH(zeros)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, U11(x0, x1)) → A__LENGTH(a__U11(mark(x0), x1))
A__LENGTH(cons(N, L)) → A__U11(tt, L)
A__U11(tt, L) → A__U12(tt, L)
A__U12(tt, U12(x0, x1)) → A__LENGTH(a__U12(mark(x0), x1))
A__U12(tt, length(x0)) → A__LENGTH(a__length(mark(x0)))
A__U12(tt, U21(x0, x1, x2, x3)) → A__LENGTH(a__U21(mark(x0), x1, x2, x3))
A__U12(tt, U22(x0, x1, x2, x3)) → A__LENGTH(a__U22(mark(x0), x1, x2, x3))
A__U12(tt, U23(x0, x1, x2, x3)) → A__LENGTH(a__U23(mark(x0), x1, x2, x3))
A__U12(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U12(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))
A__U12(tt, zeros) → A__LENGTH(cons(0, zeros))

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U12(tt, U12(x0, x1)) → A__LENGTH(a__U12(mark(x0), x1))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(A__U12(x1, x2)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(tt) =
/0\
\0/

POL(U11(x1, x2)) =
/0\
\0/
+
/00\
\01/
·x1 +
/00\
\00/
·x2

POL(A__LENGTH(x1)) =
/0\
\0/
+
/01\
\00/
·x1

POL(a__U11(x1, x2)) =
/0\
\0/
+
/10\
\01/
·x1 +
/00\
\00/
·x2

POL(mark(x1)) =
/0\
\1/
+
/00\
\00/
·x1

POL(cons(x1, x2)) =
/0\
\1/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(A__U11(x1, x2)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(U12(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(a__U12(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(length(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(a__length(x1)) =
/0\
\1/
+
/00\
\00/
·x1

POL(U21(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U21(x1, x2, x3, x4)) =
/0\
\1/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(U22(x1, x2, x3, x4)) =
/0\
\1/
+
/10\
\10/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U22(x1, x2, x3, x4)) =
/0\
\1/
+
/10\
\10/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(U23(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U23(x1, x2, x3, x4)) =
/0\
\1/
+
/10\
\10/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(take(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(a__take(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/10\
\11/
·x2

POL(zeros) =
/0\
\0/

POL(0) =
/0\
\0/

POL(a__zeros) =
/0\
\1/

POL(s(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(nil) =
/0\
\1/

The following usable rules [FROCOS05] were oriented:

a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(length(X)) → a__length(mark(X))
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(zeros) → a__zeros
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
a__U11(X1, X2) → U11(X1, X2)
a__zeroszeros
mark(nil) → nil
mark(s(X)) → s(mark(X))
mark(tt) → tt
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, U11(x0, x1)) → A__LENGTH(a__U11(mark(x0), x1))
A__LENGTH(cons(N, L)) → A__U11(tt, L)
A__U11(tt, L) → A__U12(tt, L)
A__U12(tt, length(x0)) → A__LENGTH(a__length(mark(x0)))
A__U12(tt, U21(x0, x1, x2, x3)) → A__LENGTH(a__U21(mark(x0), x1, x2, x3))
A__U12(tt, U22(x0, x1, x2, x3)) → A__LENGTH(a__U22(mark(x0), x1, x2, x3))
A__U12(tt, U23(x0, x1, x2, x3)) → A__LENGTH(a__U23(mark(x0), x1, x2, x3))
A__U12(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U12(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))
A__U12(tt, zeros) → A__LENGTH(cons(0, zeros))

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U12(tt, U11(x0, x1)) → A__LENGTH(a__U11(mark(x0), x1))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(A__U12(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/11\
\00/
·x2

POL(tt) =
/0\
\0/

POL(U11(x1, x2)) =
/1\
\1/
+
/00\
\00/
·x1 +
/01\
\10/
·x2

POL(A__LENGTH(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(a__U11(x1, x2)) =
/1\
\1/
+
/00\
\00/
·x1 +
/01\
\11/
·x2

POL(mark(x1)) =
/1\
\0/
+
/11\
\11/
·x1

POL(cons(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/11\
\00/
·x2

POL(A__U11(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/11\
\00/
·x2

POL(length(x1)) =
/1\
\1/
+
/11\
\11/
·x1

POL(a__length(x1)) =
/1\
\1/
+
/11\
\11/
·x1

POL(U21(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U21(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(U22(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U22(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(U23(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U23(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(take(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(a__take(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(zeros) =
/0\
\0/

POL(0) =
/1\
\0/

POL(a__zeros) =
/1\
\0/

POL(a__U12(x1, x2)) =
/0\
\1/
+
/00\
\00/
·x1 +
/01\
\01/
·x2

POL(s(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(U12(x1, x2)) =
/0\
\1/
+
/00\
\00/
·x1 +
/01\
\01/
·x2

POL(nil) =
/0\
\0/

The following usable rules [FROCOS05] were oriented:

a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(length(X)) → a__length(mark(X))
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(zeros) → a__zeros
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
a__U11(X1, X2) → U11(X1, X2)
a__zeroszeros
mark(nil) → nil
mark(s(X)) → s(mark(X))
mark(tt) → tt
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__LENGTH(cons(N, L)) → A__U11(tt, L)
A__U11(tt, L) → A__U12(tt, L)
A__U12(tt, length(x0)) → A__LENGTH(a__length(mark(x0)))
A__U12(tt, U21(x0, x1, x2, x3)) → A__LENGTH(a__U21(mark(x0), x1, x2, x3))
A__U12(tt, U22(x0, x1, x2, x3)) → A__LENGTH(a__U22(mark(x0), x1, x2, x3))
A__U12(tt, U23(x0, x1, x2, x3)) → A__LENGTH(a__U23(mark(x0), x1, x2, x3))
A__U12(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U12(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))
A__U12(tt, zeros) → A__LENGTH(cons(0, zeros))

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U12(tt, U21(x0, x1, x2, x3)) → A__LENGTH(a__U21(mark(x0), x1, x2, x3))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(A__LENGTH(x1)) =
/0\
\1/
+
/01\
\00/
·x1

POL(cons(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/10\
\10/
·x2

POL(A__U11(x1, x2)) =
/0\
\1/
+
/00\
\00/
·x1 +
/10\
\00/
·x2

POL(tt) =
/0\
\0/

POL(A__U12(x1, x2)) =
/0\
\1/
+
/00\
\00/
·x1 +
/10\
\00/
·x2

POL(length(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(a__length(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(mark(x1)) =
/1\
\0/
+
/01\
\01/
·x1

POL(U21(x1, x2, x3, x4)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U21(x1, x2, x3, x4)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(U22(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U22(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(U23(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U23(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(take(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(a__take(x1, x2)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(zeros) =
/0\
\0/

POL(0) =
/1\
\0/

POL(a__U11(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(a__zeros) =
/0\
\0/

POL(a__U12(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(s(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(U12(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(U11(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(nil) =
/0\
\0/

The following usable rules [FROCOS05] were oriented:

a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(length(X)) → a__length(mark(X))
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
a__U11(X1, X2) → U11(X1, X2)
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__LENGTH(cons(N, L)) → A__U11(tt, L)
A__U11(tt, L) → A__U12(tt, L)
A__U12(tt, length(x0)) → A__LENGTH(a__length(mark(x0)))
A__U12(tt, U22(x0, x1, x2, x3)) → A__LENGTH(a__U22(mark(x0), x1, x2, x3))
A__U12(tt, U23(x0, x1, x2, x3)) → A__LENGTH(a__U23(mark(x0), x1, x2, x3))
A__U12(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U12(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))
A__U12(tt, zeros) → A__LENGTH(cons(0, zeros))

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U12(tt, length(x0)) → A__LENGTH(a__length(mark(x0)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(A__LENGTH(x1)) =
/0\
\0/
+
/01\
\00/
·x1

POL(cons(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/10\
\10/
·x2

POL(A__U11(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/10\
\00/
·x2

POL(tt) =
/0\
\0/

POL(A__U12(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/10\
\00/
·x2

POL(length(x1)) =
/1\
\0/
+
/00\
\00/
·x1

POL(a__length(x1)) =
/1\
\0/
+
/00\
\00/
·x1

POL(mark(x1)) =
/0\
\0/
+
/11\
\01/
·x1

POL(U22(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U22(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(U23(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U23(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(take(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(a__take(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(zeros) =
/1\
\1/

POL(0) =
/1\
\1/

POL(a__U21(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U11(x1, x2)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(a__zeros) =
/0\
\0/

POL(a__U12(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(s(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(U21(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(U12(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(U11(x1, x2)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(nil) =
/1\
\0/

The following usable rules [FROCOS05] were oriented:

a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(length(X)) → a__length(mark(X))
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
a__U11(X1, X2) → U11(X1, X2)
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__LENGTH(cons(N, L)) → A__U11(tt, L)
A__U11(tt, L) → A__U12(tt, L)
A__U12(tt, U22(x0, x1, x2, x3)) → A__LENGTH(a__U22(mark(x0), x1, x2, x3))
A__U12(tt, U23(x0, x1, x2, x3)) → A__LENGTH(a__U23(mark(x0), x1, x2, x3))
A__U12(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U12(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))
A__U12(tt, zeros) → A__LENGTH(cons(0, zeros))

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U12(tt, cons(x0, x1)) → A__LENGTH(cons(mark(x0), x1))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(A__LENGTH(x1)) =
/1\
\0/
+
/01\
\00/
·x1

POL(cons(x1, x2)) =
/0\
\1/
+
/00\
\00/
·x1 +
/01\
\01/
·x2

POL(A__U11(x1, x2)) =
/1\
\0/
+
/10\
\00/
·x1 +
/01\
\00/
·x2

POL(tt) =
/1\
\0/

POL(A__U12(x1, x2)) =
/1\
\0/
+
/10\
\00/
·x1 +
/01\
\00/
·x2

POL(U22(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U22(x1, x2, x3, x4)) =
/0\
\1/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(mark(x1)) =
/0\
\1/
+
/10\
\10/
·x1

POL(U23(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U23(x1, x2, x3, x4)) =
/0\
\1/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(take(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(a__take(x1, x2)) =
/0\
\1/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(zeros) =
/0\
\1/

POL(0) =
/0\
\1/

POL(a__U21(x1, x2, x3, x4)) =
/0\
\1/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__length(x1)) =
/1\
\0/
+
/00\
\00/
·x1

POL(a__U11(x1, x2)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(a__zeros) =
/0\
\0/

POL(a__U12(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(s(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(U21(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(U12(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(length(x1)) =
/1\
\0/
+
/00\
\00/
·x1

POL(U11(x1, x2)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(nil) =
/0\
\0/

The following usable rules [FROCOS05] were oriented:

a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(length(X)) → a__length(mark(X))
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
a__U11(X1, X2) → U11(X1, X2)
mark(s(X)) → s(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__LENGTH(cons(N, L)) → A__U11(tt, L)
A__U11(tt, L) → A__U12(tt, L)
A__U12(tt, U22(x0, x1, x2, x3)) → A__LENGTH(a__U22(mark(x0), x1, x2, x3))
A__U12(tt, U23(x0, x1, x2, x3)) → A__LENGTH(a__U23(mark(x0), x1, x2, x3))
A__U12(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U12(tt, zeros) → A__LENGTH(cons(0, zeros))

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U12(tt, U23(x0, x1, x2, x3)) → A__LENGTH(a__U23(mark(x0), x1, x2, x3))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(A__LENGTH(x1)) =
/0\
\0/
+
/01\
\00/
·x1

POL(cons(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/10\
\10/
·x2

POL(A__U11(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/10\
\00/
·x2

POL(tt) =
/0\
\0/

POL(A__U12(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/10\
\00/
·x2

POL(U22(x1, x2, x3, x4)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U22(x1, x2, x3, x4)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(mark(x1)) =
/1\
\0/
+
/10\
\10/
·x1

POL(U23(x1, x2, x3, x4)) =
/1\
\0/
+
/10\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U23(x1, x2, x3, x4)) =
/1\
\0/
+
/10\
\01/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(take(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(a__take(x1, x2)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(zeros) =
/0\
\0/

POL(0) =
/1\
\0/

POL(a__U21(x1, x2, x3, x4)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__length(x1)) =
/0\
\0/
+
/10\
\01/
·x1

POL(a__U11(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/10\
\10/
·x2

POL(a__zeros) =
/0\
\0/

POL(a__U12(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(s(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(U21(x1, x2, x3, x4)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(U12(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(length(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(U11(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/10\
\10/
·x2

POL(nil) =
/1\
\1/

The following usable rules [FROCOS05] were oriented:

a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(length(X)) → a__length(mark(X))
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(zeros) → a__zeros
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
a__U11(X1, X2) → U11(X1, X2)
a__zeroszeros
mark(nil) → nil
mark(s(X)) → s(mark(X))
mark(tt) → tt
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__LENGTH(cons(N, L)) → A__U11(tt, L)
A__U11(tt, L) → A__U12(tt, L)
A__U12(tt, U22(x0, x1, x2, x3)) → A__LENGTH(a__U22(mark(x0), x1, x2, x3))
A__U12(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U12(tt, zeros) → A__LENGTH(cons(0, zeros))

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U12(tt, U22(x0, x1, x2, x3)) → A__LENGTH(a__U22(mark(x0), x1, x2, x3))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(A__LENGTH(x1)) =
/0\
\0/
+
/01\
\00/
·x1

POL(cons(x1, x2)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\11/
·x2

POL(A__U11(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/11\
\00/
·x2

POL(tt) =
/0\
\0/

POL(A__U12(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/11\
\00/
·x2

POL(U22(x1, x2, x3, x4)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\11/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U22(x1, x2, x3, x4)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\11/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(mark(x1)) =
/0\
\0/
+
/11\
\01/
·x1

POL(take(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/10\
\01/
·x2

POL(a__take(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/10\
\01/
·x2

POL(zeros) =
/0\
\1/

POL(0) =
/1\
\0/

POL(a__U21(x1, x2, x3, x4)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\11/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__U23(x1, x2, x3, x4)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\11/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(a__length(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(a__U11(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(a__zeros) =
/1\
\1/

POL(a__U12(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(s(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(U23(x1, x2, x3, x4)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\11/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(U21(x1, x2, x3, x4)) =
/1\
\0/
+
/00\
\00/
·x1 +
/00\
\11/
·x2 +
/00\
\00/
·x3 +
/00\
\00/
·x4

POL(U12(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(length(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(U11(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2

POL(nil) =
/0\
\0/

The following usable rules [FROCOS05] were oriented:

a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(length(X)) → a__length(mark(X))
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(zeros) → a__zeros
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
a__U11(X1, X2) → U11(X1, X2)
a__zeroszeros
mark(nil) → nil
mark(s(X)) → s(mark(X))
mark(tt) → tt
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__LENGTH(cons(N, L)) → A__U11(tt, L)
A__U11(tt, L) → A__U12(tt, L)
A__U12(tt, take(x0, x1)) → A__LENGTH(a__take(mark(x0), mark(x1)))
A__U12(tt, zeros) → A__LENGTH(cons(0, zeros))

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, L) → a__U12(tt, L)
a__U12(tt, L) → s(a__length(mark(L)))
a__U21(tt, IL, M, N) → a__U22(tt, IL, M, N)
a__U22(tt, IL, M, N) → a__U23(tt, IL, M, N)
a__U23(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U11(tt, L)
a__take(s(M), cons(N, IL)) → a__U21(tt, IL, M, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U21(X1, X2, X3, X4)) → a__U21(mark(X1), X2, X3, X4)
mark(U22(X1, X2, X3, X4)) → a__U22(mark(X1), X2, X3, X4)
mark(U23(X1, X2, X3, X4)) → a__U23(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__length(X) → length(X)
a__U21(X1, X2, X3, X4) → U21(X1, X2, X3, X4)
a__U22(X1, X2, X3, X4) → U22(X1, X2, X3, X4)
a__U23(X1, X2, X3, X4) → U23(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = A__U11(tt, zeros) evaluates to t =A__U11(tt, zeros)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

A__U11(tt, zeros)A__U12(tt, zeros)
with rule A__U11(tt, L) → A__U12(tt, L) at position [] and matcher [L / zeros]

A__U12(tt, zeros)A__LENGTH(cons(0, zeros))
with rule A__U12(tt, zeros) → A__LENGTH(cons(0, zeros)) at position [] and matcher [ ]

A__LENGTH(cons(0, zeros))A__U11(tt, zeros)
with rule A__LENGTH(cons(N, L)) → A__U11(tt, L)

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(42) FALSE