(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(U11(tt, L)) → U121(tt, L)
ACTIVE(U12(tt, L)) → S(length(L))
ACTIVE(U12(tt, L)) → LENGTH(L)
ACTIVE(U21(tt, IL, M, N)) → U221(tt, IL, M, N)
ACTIVE(U22(tt, IL, M, N)) → U231(tt, IL, M, N)
ACTIVE(U23(tt, IL, M, N)) → CONS(N, take(M, IL))
ACTIVE(U23(tt, IL, M, N)) → TAKE(M, IL)
ACTIVE(length(cons(N, L))) → U111(tt, L)
ACTIVE(take(s(M), cons(N, IL))) → U211(tt, IL, M, N)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X1, X2)) → U111(active(X1), X2)
ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(U12(X1, X2)) → U121(active(X1), X2)
ACTIVE(U12(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → LENGTH(active(X))
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2, X3, X4)) → U211(active(X1), X2, X3, X4)
ACTIVE(U21(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U22(X1, X2, X3, X4)) → U221(active(X1), X2, X3, X4)
ACTIVE(U22(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U23(X1, X2, X3, X4)) → U231(active(X1), X2, X3, X4)
ACTIVE(U23(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → TAKE(active(X1), X2)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → TAKE(X1, active(X2))
ACTIVE(take(X1, X2)) → ACTIVE(X2)
CONS(mark(X1), X2) → CONS(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
U121(mark(X1), X2) → U121(X1, X2)
S(mark(X)) → S(X)
LENGTH(mark(X)) → LENGTH(X)
U211(mark(X1), X2, X3, X4) → U211(X1, X2, X3, X4)
U221(mark(X1), X2, X3, X4) → U221(X1, X2, X3, X4)
U231(mark(X1), X2, X3, X4) → U231(X1, X2, X3, X4)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(U11(X1, X2)) → U111(proper(X1), proper(X2))
PROPER(U11(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(U12(X1, X2)) → U121(proper(X1), proper(X2))
PROPER(U12(X1, X2)) → PROPER(X1)
PROPER(U12(X1, X2)) → PROPER(X2)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(length(X)) → LENGTH(proper(X))
PROPER(length(X)) → PROPER(X)
PROPER(U21(X1, X2, X3, X4)) → U211(proper(X1), proper(X2), proper(X3), proper(X4))
PROPER(U21(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U21(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U21(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U21(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U22(X1, X2, X3, X4)) → U221(proper(X1), proper(X2), proper(X3), proper(X4))
PROPER(U22(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U22(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U22(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U22(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U23(X1, X2, X3, X4)) → U231(proper(X1), proper(X2), proper(X3), proper(X4))
PROPER(U23(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U23(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U23(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U23(X1, X2, X3, X4)) → PROPER(X4)
PROPER(take(X1, X2)) → TAKE(proper(X1), proper(X2))
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
U111(ok(X1), ok(X2)) → U111(X1, X2)
U121(ok(X1), ok(X2)) → U121(X1, X2)
S(ok(X)) → S(X)
LENGTH(ok(X)) → LENGTH(X)
U211(ok(X1), ok(X2), ok(X3), ok(X4)) → U211(X1, X2, X3, X4)
U221(ok(X1), ok(X2), ok(X3), ok(X4)) → U221(X1, X2, X3, X4)
U231(ok(X1), ok(X2), ok(X3), ok(X4)) → U231(X1, X2, X3, X4)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 12 SCCs with 31 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Recursive Path Order [RPO].
Precedence:
[TAKE1, mark1, ok1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U231(ok(X1), ok(X2), ok(X3), ok(X4)) → U231(X1, X2, X3, X4)
U231(mark(X1), X2, X3, X4) → U231(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U231(ok(X1), ok(X2), ok(X3), ok(X4)) → U231(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U231(x1, x2, x3, x4)  =  U231(x4)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > [U23^11, ok1]


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U231(mark(X1), X2, X3, X4) → U231(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U231(mark(X1), X2, X3, X4) → U231(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U231(x1, x2, x3, x4)  =  U231(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
[U23^11, mark1]


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(ok(X1), ok(X2), ok(X3), ok(X4)) → U221(X1, X2, X3, X4)
U221(mark(X1), X2, X3, X4) → U221(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(ok(X1), ok(X2), ok(X3), ok(X4)) → U221(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2, x3, x4)  =  U221(x4)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > [U22^11, ok1]


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(mark(X1), X2, X3, X4) → U221(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X1), X2, X3, X4) → U221(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2, x3, x4)  =  U221(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
[U22^11, mark1]


The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2), ok(X3), ok(X4)) → U211(X1, X2, X3, X4)
U211(mark(X1), X2, X3, X4) → U211(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(ok(X1), ok(X2), ok(X3), ok(X4)) → U211(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2, x3, x4)  =  U211(x4)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > [U21^11, ok1]


The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2, X3, X4) → U211(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2, X3, X4) → U211(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2, x3, x4)  =  U211(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
[U21^11, mark1]


The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(32) TRUE

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(ok(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(ok(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(mark(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(37) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(39) TRUE

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(44) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(46) TRUE

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(ok(X1), ok(X2)) → U121(X1, X2)
U121(mark(X1), X2) → U121(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(ok(X1), ok(X2)) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2)  =  U121(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
[U12^11, ok1, mark1]


The following usable rules [FROCOS05] were oriented: none

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X1), X2) → U121(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X1), X2) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(51) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(53) TRUE

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2)) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X1), ok(X2)) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  U111(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
[U11^11, ok1, mark1]


The following usable rules [FROCOS05] were oriented: none

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(58) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(60) TRUE

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
[CONS1, ok1, mark1]


The following usable rules [FROCOS05] were oriented: none

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(65) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(67) TRUE

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(U12(X1, X2)) → PROPER(X1)
PROPER(U12(X1, X2)) → PROPER(X2)
PROPER(s(X)) → PROPER(X)
PROPER(length(X)) → PROPER(X)
PROPER(U21(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U21(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U21(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U21(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U22(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U22(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U22(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U22(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U23(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U23(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U23(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U23(X1, X2, X3, X4)) → PROPER(X4)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(U12(X1, X2)) → PROPER(X1)
PROPER(U12(X1, X2)) → PROPER(X2)
PROPER(s(X)) → PROPER(X)
PROPER(length(X)) → PROPER(X)
PROPER(U21(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U21(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U21(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U21(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U22(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U22(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U22(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U22(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U23(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U23(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U23(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U23(X1, X2, X3, X4)) → PROPER(X4)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
cons2 > [PROPER1, length1]
U112 > [PROPER1, length1]
U122 > [PROPER1, length1]
s1 > [PROPER1, length1]
U214 > [PROPER1, length1]
U224 > [PROPER1, length1]
U234 > [PROPER1, length1]
take2 > [PROPER1, length1]


The following usable rules [FROCOS05] were oriented: none

(70) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(72) TRUE

(73) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U12(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U22(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U23(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(74) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U23(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1, x2)  =  x1
cons(x1, x2)  =  x1
U12(x1, x2)  =  x1
s(x1)  =  x1
length(x1)  =  x1
U21(x1, x2, x3, x4)  =  x1
U22(x1, x2, x3, x4)  =  x1
U23(x1, x2, x3, x4)  =  U23(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)

Recursive Path Order [RPO].
Precedence:
U234 > [ACTIVE1, take2]


The following usable rules [FROCOS05] were oriented: none

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U12(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U22(X1, X2, X3, X4)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(76) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U12(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U22(X1, X2, X3, X4)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1, x2)  =  U11(x1, x2)
cons(x1, x2)  =  cons(x1)
U12(x1, x2)  =  U12(x1, x2)
s(x1)  =  s(x1)
length(x1)  =  length(x1)
U21(x1, x2, x3, x4)  =  U21(x1)
U22(x1, x2, x3, x4)  =  U22(x1)

Recursive Path Order [RPO].
Precedence:
[ACTIVE1, cons1, s1, length1, U211]


The following usable rules [FROCOS05] were oriented: none

(77) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(79) TRUE

(80) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(U12(tt, L))
active(U12(tt, L)) → mark(s(length(L)))
active(U21(tt, IL, M, N)) → mark(U22(tt, IL, M, N))
active(U22(tt, IL, M, N)) → mark(U23(tt, IL, M, N))
active(U23(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(tt, L))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(U21(tt, IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X1, X2)) → U12(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X1, X2, X3, X4)) → U21(active(X1), X2, X3, X4)
active(U22(X1, X2, X3, X4)) → U22(active(X1), X2, X3, X4)
active(U23(X1, X2, X3, X4)) → U23(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X1), X2) → mark(U12(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X1), X2, X3, X4) → mark(U21(X1, X2, X3, X4))
U22(mark(X1), X2, X3, X4) → mark(U22(X1, X2, X3, X4))
U23(mark(X1), X2, X3, X4) → mark(U23(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X1, X2, X3, X4)) → U21(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U22(X1, X2, X3, X4)) → U22(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U23(X1, X2, X3, X4)) → U23(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U21(X1, X2, X3, X4))
U22(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U22(X1, X2, X3, X4))
U23(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U23(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.