(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(tt, X) → ACTIVATE(X)
LENGTH(cons(N, L)) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
ACTIVATE(n__zeros) → ZEROS
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE(x1)
n__take(x1, x2)  =  n__take(x1, x2)
TAKE(x1, x2)  =  x2
s(x1)  =  x1
cons(x1, x2)  =  cons(x2)
zeros  =  zeros
0  =  0
n__zeros  =  n__zeros
and(x1, x2)  =  and(x2)
tt  =  tt
activate(x1)  =  activate(x1)
length(x1)  =  length
nil  =  nil
take(x1, x2)  =  take(x1, x2)

Recursive path order with status [RPO].
Quasi-Precedence:
and1 > [tt, activate1, take2] > zeros > cons1 > ACTIVATE1 > [0, length, nil]
and1 > [tt, activate1, take2] > zeros > cons1 > ntake2 > [0, length, nil]
and1 > [tt, activate1, take2] > zeros > nzeros > [0, length, nil]

Status:
ACTIVATE1: multiset
ntake2: multiset
cons1: multiset
zeros: multiset
0: multiset
nzeros: multiset
and1: multiset
tt: multiset
activate1: [1]
length: []
nil: multiset
take2: [2,1]


The following usable rules [FROCOS05] were oriented:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.