(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__and(tt, X) → mark(X)
a__length(nil) → 0
a__length(cons(N, L)) → s(a__length(mark(L)))
a__take(0, IL) → nil
a__take(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))
mark(zeros) → a__zeros
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(X)) → s(mark(X))
a__zeros → zeros
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__AND(tt, X) → MARK(X)
A__LENGTH(cons(N, L)) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → MARK(L)
A__TAKE(s(M), cons(N, IL)) → MARK(N)
MARK(zeros) → A__ZEROS
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__and(tt, X) → mark(X)
a__length(nil) → 0
a__length(cons(N, L)) → s(a__length(mark(L)))
a__take(0, IL) → nil
a__take(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))
mark(zeros) → a__zeros
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(X)) → s(mark(X))
a__zeros → zeros
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__AND(tt, X) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
A__LENGTH(cons(N, L)) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → MARK(L)
MARK(length(X)) → MARK(X)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__TAKE(s(M), cons(N, IL)) → MARK(N)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__and(tt, X) → mark(X)
a__length(nil) → 0
a__length(cons(N, L)) → s(a__length(mark(L)))
a__take(0, IL) → nil
a__take(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))
mark(zeros) → a__zeros
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(X)) → s(mark(X))
a__zeros → zeros
a__and(X1, X2) → and(X1, X2)
a__length(X) → length(X)
a__take(X1, X2) → take(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.