(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(length(cons(N, L))) → S(length(L))
ACTIVE(length(cons(N, L))) → LENGTH(L)
ACTIVE(take(s(M), cons(N, IL))) → CONS(N, take(M, IL))
ACTIVE(take(s(M), cons(N, IL))) → TAKE(M, IL)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(length(X)) → LENGTH(active(X))
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → TAKE(active(X1), X2)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → TAKE(X1, active(X2))
ACTIVE(take(X1, X2)) → ACTIVE(X2)
CONS(mark(X1), X2) → CONS(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
LENGTH(mark(X)) → LENGTH(X)
S(mark(X)) → S(X)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(length(X)) → LENGTH(proper(X))
PROPER(length(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(take(X1, X2)) → TAKE(proper(X1), proper(X2))
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)
LENGTH(ok(X)) → LENGTH(X)
S(ok(X)) → S(X)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 8 SCCs with 18 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x1, x2)
mark(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  x2
0  =  0
and(x1, x2)  =  and(x1, x2)
tt  =  tt
length(x1)  =  x1
nil  =  nil
s(x1)  =  s(x1)
take(x1, x2)  =  take(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Precedence:
zeros > 0 > ok1
top > active1 > and2 > ok1
top > active1 > nil > 0 > ok1
top > active1 > s1 > take2 > ok1
top > proper1 > and2 > ok1
top > proper1 > tt > ok1
top > proper1 > nil > 0 > ok1
top > proper1 > s1 > take2 > ok1

Status:
ok1: [1]
and2: [1,2]
take2: [2,1]
0: []
TAKE2: [1,2]
active1: [1]
tt: []
zeros: []
s1: [1]
proper1: [1]
top: []
nil: []

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
and(x1, x2)  =  and(x1, x2)
tt  =  tt
length(x1)  =  length(x1)
nil  =  nil
s(x1)  =  s(x1)
take(x1, x2)  =  take(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Precedence:
TAKE1 > mark1
active1 > zeros > mark1
active1 > and2 > ok > cons2 > s1 > mark1
active1 > and2 > ok > take2 > mark1
active1 > length1 > 0 > mark1
active1 > length1 > ok > cons2 > s1 > mark1
active1 > length1 > ok > take2 > mark1
active1 > nil > 0 > mark1
active1 > nil > ok > cons2 > s1 > mark1
active1 > nil > ok > take2 > mark1
proper1 > zeros > mark1
proper1 > and2 > ok > cons2 > s1 > mark1
proper1 > and2 > ok > take2 > mark1
proper1 > tt > mark1
proper1 > length1 > 0 > mark1
proper1 > length1 > ok > cons2 > s1 > mark1
proper1 > length1 > ok > take2 > mark1
top > mark1

Status:
TAKE1: [1]
mark1: [1]
and2: [1,2]
take2: [1,2]
0: []
cons2: [2,1]
active1: [1]
tt: []
zeros: []
s1: [1]
ok: []
proper1: [1]
length1: [1]
top: []
nil: []

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
and(x1, x2)  =  and(x1, x2)
tt  =  tt
length(x1)  =  length(x1)
nil  =  nil
s(x1)  =  s(x1)
take(x1, x2)  =  take(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Precedence:
tt > ok > cons2 > take2 > mark1
tt > ok > and2 > mark1
tt > ok > length1 > mark1
top > active1 > zeros
top > active1 > 0 > mark1
top > active1 > and2 > mark1
top > active1 > length1 > mark1
top > active1 > nil > mark1
top > active1 > s1 > cons2 > take2 > mark1
top > proper1 > zeros
top > proper1 > 0 > mark1
top > proper1 > nil > mark1
top > proper1 > s1 > cons2 > take2 > mark1
top > proper1 > ok > cons2 > take2 > mark1
top > proper1 > ok > and2 > mark1
top > proper1 > ok > length1 > mark1

Status:
TAKE1: [1]
mark1: [1]
and2: [1,2]
take2: [1,2]
0: []
cons2: [2,1]
active1: [1]
tt: []
zeros: []
s1: [1]
ok: []
proper1: [1]
length1: [1]
top: []
nil: []

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
and(x1, x2)  =  and(x1, x2)
tt  =  tt
length(x1)  =  x1
nil  =  nil
s(x1)  =  s(x1)
take(x1, x2)  =  take(x1, x2)
proper(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Precedence:
active1 > zeros > mark1
active1 > cons2 > s1 > mark1
active1 > 0 > nil > mark1
active1 > and2 > mark1
active1 > take2 > nil > mark1

Status:
mark1: [1]
and2: [1,2]
take2: [2,1]
0: []
active1: [1]
cons2: [2,1]
tt: []
zeros: []
s1: [1]
top: []
nil: []
S1: [1]

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x2)
0  =  0
and(x1, x2)  =  x2
tt  =  tt
length(x1)  =  x1
nil  =  nil
s(x1)  =  x1
take(x1, x2)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Precedence:
S1 > mark
proper1 > zeros > cons1 > ok1 > active1 > mark
proper1 > zeros > 0 > nil > mark
proper1 > tt > mark
top > active1 > mark

Status:
active1: [1]
cons1: [1]
tt: []
zeros: []
mark: []
ok1: [1]
proper1: [1]
top: []
0: []
nil: []
S1: [1]

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(18) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(20) TRUE

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(ok(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(mark(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  LENGTH(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
and(x1, x2)  =  and(x1, x2)
tt  =  tt
length(x1)  =  x1
nil  =  nil
s(x1)  =  s(x1)
take(x1, x2)  =  take(x1, x2)
proper(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Precedence:
active1 > zeros > mark1
active1 > cons2 > s1 > mark1
active1 > 0 > nil > mark1
active1 > and2 > mark1
active1 > take2 > nil > mark1

Status:
LENGTH1: [1]
mark1: [1]
and2: [1,2]
take2: [2,1]
0: []
active1: [1]
cons2: [2,1]
tt: []
zeros: []
s1: [1]
top: []
nil: []

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(ok(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(ok(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  LENGTH(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x2)
0  =  0
and(x1, x2)  =  x2
tt  =  tt
length(x1)  =  x1
nil  =  nil
s(x1)  =  x1
take(x1, x2)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Precedence:
LENGTH1 > mark
proper1 > zeros > cons1 > ok1 > active1 > mark
proper1 > zeros > 0 > nil > mark
proper1 > tt > mark
top > active1 > mark

Status:
LENGTH1: [1]
active1: [1]
cons1: [1]
tt: []
zeros: []
mark: []
ok1: [1]
proper1: [1]
top: []
0: []
nil: []

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(25) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(27) TRUE

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(ok(X1), ok(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
and(x1, x2)  =  and(x1, x2)
tt  =  tt
length(x1)  =  x1
nil  =  nil
s(x1)  =  s(x1)
take(x1, x2)  =  take(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Precedence:
active1 > 0 > nil
active1 > and2 > mark1
active1 > s1 > cons2 > mark1
active1 > take2 > cons2 > mark1
active1 > take2 > nil
zeros > cons2 > mark1
zeros > 0 > nil
proper1 > 0 > nil
proper1 > and2 > mark1
proper1 > tt > mark1
proper1 > s1 > cons2 > mark1
proper1 > take2 > cons2 > mark1
proper1 > take2 > nil

Status:
mark1: [1]
and2: [2,1]
take2: [1,2]
0: []
active1: [1]
cons2: [2,1]
tt: []
zeros: []
s1: [1]
proper1: [1]
top: []
nil: []

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(ok(X1), ok(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(ok(X1), ok(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x2)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x1
0  =  0
and(x1, x2)  =  x1
tt  =  tt
length(x1)  =  x1
nil  =  nil
s(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Precedence:
active1 > zeros
active1 > 0 > mark
active1 > take2 > ok1 > top
active1 > take2 > mark
nil > ok1 > top
nil > 0 > mark
proper1 > zeros
proper1 > 0 > mark
proper1 > tt
proper1 > take2 > ok1 > top
proper1 > take2 > mark

Status:
active1: [1]
tt: []
AND1: [1]
zeros: []
mark: []
ok1: [1]
proper1: [1]
take2: [1,2]
top: []
0: []
nil: []

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(32) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(34) TRUE

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
and(x1, x2)  =  and(x1, x2)
tt  =  tt
length(x1)  =  x1
nil  =  nil
s(x1)  =  s(x1)
take(x1, x2)  =  take(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Precedence:
active1 > 0 > nil
active1 > and2 > mark1
active1 > s1 > cons2 > mark1
active1 > take2 > cons2 > mark1
active1 > take2 > nil
zeros > cons2 > mark1
zeros > 0 > nil
proper1 > 0 > nil
proper1 > and2 > mark1
proper1 > tt > mark1
proper1 > s1 > cons2 > mark1
proper1 > take2 > cons2 > mark1
proper1 > take2 > nil

Status:
mark1: [1]
and2: [2,1]
take2: [1,2]
0: []
active1: [1]
cons2: [2,1]
tt: []
zeros: []
s1: [1]
proper1: [1]
top: []
nil: []

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x1
0  =  0
and(x1, x2)  =  x1
tt  =  tt
length(x1)  =  x1
nil  =  nil
s(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Precedence:
active1 > zeros
active1 > 0 > mark
active1 > take2 > ok1 > top
active1 > take2 > mark
nil > ok1 > top
nil > 0 > mark
proper1 > zeros
proper1 > 0 > mark
proper1 > tt
proper1 > take2 > ok1 > top
proper1 > take2 > mark

Status:
active1: [1]
tt: []
CONS1: [1]
zeros: []
mark: []
ok1: [1]
proper1: [1]
take2: [1,2]
top: []
0: []
nil: []

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(39) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(41) TRUE

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(length(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
cons(x1, x2)  =  cons(x1, x2)
and(x1, x2)  =  and(x1, x2)
length(x1)  =  x1
s(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  x1
0  =  0
tt  =  tt
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Precedence:
tt > ok > cons2 > take2
tt > ok > and2
top > active1 > zeros > ok > cons2 > take2
top > active1 > zeros > ok > and2
top > active1 > 0 > ok > cons2 > take2
top > active1 > 0 > ok > and2
top > active1 > nil > ok > cons2 > take2
top > active1 > nil > ok > and2
top > proper1 > cons2 > take2
top > proper1 > and2

Status:
PROPER1: [1]
and2: [2,1]
take2: [2,1]
0: []
cons2: [1,2]
active1: [1]
tt: []
zeros: []
ok: []
proper1: [1]
top: []
nil: []

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(length(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(length(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
length(x1)  =  length(x1)
s(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
0  =  0
and(x1, x2)  =  and(x1, x2)
tt  =  tt
nil  =  nil
take(x1, x2)  =  take(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Precedence:
PROPER1 > and2
active1 > zeros > 0 > and2
active1 > cons2 > length1 > and2
active1 > cons2 > take2 > nil > and2
tt > and2
top > and2

Status:
PROPER1: [1]
active1: [1]
cons2: [2,1]
tt: []
zeros: []
and2: [1,2]
length1: [1]
take2: [1,2]
top: []
0: []
nil: []

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
s(x1)  =  s(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x1
0  =  0
and(x1, x2)  =  x1
tt  =  tt
length(x1)  =  length
nil  =  nil
take(x1, x2)  =  take
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Precedence:
zeros > mark > proper1 > s1
zeros > 0 > ok > active1 > s1
tt > mark > proper1 > s1
tt > ok > active1 > s1
length > mark > proper1 > s1
length > 0 > ok > active1 > s1
nil > mark > proper1 > s1
nil > 0 > ok > active1 > s1
take > mark > proper1 > s1
take > ok > active1 > s1
top > active1 > s1
top > proper1 > s1

Status:
PROPER1: [1]
length: []
0: []
take: []
active1: [1]
tt: []
zeros: []
mark: []
ok: []
s1: [1]
proper1: [1]
top: []
nil: []

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(48) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(50) TRUE

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
cons(x1, x2)  =  x1
length(x1)  =  length(x1)
s(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Precedence:
active1 > zeros
active1 > mark > and2
active1 > mark > length1
active1 > mark > take2
nil > 0 > mark > and2
nil > 0 > mark > length1
nil > 0 > mark > take2

Status:
active1: [1]
tt: []
zeros: []
mark: []
and2: [1,2]
length1: [1]
take2: [1,2]
top: []
0: []
nil: []

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(cons(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
cons(x1, x2)  =  cons(x1)
s(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
0  =  0
and(x1, x2)  =  and
tt  =  tt
length(x1)  =  length
nil  =  nil
take(x1, x2)  =  take(x1, x2)
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Precedence:
ACTIVE1 > ok
active1 > cons1 > length > mark > take2 > ok
active1 > cons1 > length > 0 > ok
active1 > zeros > 0 > ok
active1 > and > mark > take2 > ok
active1 > nil > mark > take2 > ok
active1 > nil > 0 > ok
tt > mark > take2 > ok
top > ok

Status:
cons1: [1]
take2: [1,2]
length: []
0: []
ACTIVE1: [1]
active1: [1]
tt: []
zeros: []
mark: []
ok: []
and: []
top: []
nil: []

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
s(x1)  =  s(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x1
0  =  0
and(x1, x2)  =  x1
tt  =  tt
length(x1)  =  length
nil  =  nil
take(x1, x2)  =  take
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Precedence:
zeros > mark > proper1 > s1
zeros > 0 > ok > active1 > s1
tt > mark > proper1 > s1
tt > ok > active1 > s1
length > mark > proper1 > s1
length > 0 > ok > active1 > s1
nil > mark > proper1 > s1
nil > 0 > ok > active1 > s1
take > mark > proper1 > s1
take > ok > active1 > s1
top > active1 > s1
top > proper1 > s1

Status:
length: []
0: []
take: []
ACTIVE1: [1]
active1: [1]
tt: []
zeros: []
mark: []
ok: []
s1: [1]
proper1: [1]
top: []
nil: []

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(57) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(59) TRUE

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.