(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(nil) → 0
length(cons(N, L)) → U11(tt, activate(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U111(tt, L) → U121(tt, activate(L))
U111(tt, L) → ACTIVATE(L)
U121(tt, L) → LENGTH(activate(L))
U121(tt, L) → ACTIVATE(L)
U211(tt, IL, M, N) → U221(tt, activate(IL), activate(M), activate(N))
U211(tt, IL, M, N) → ACTIVATE(IL)
U211(tt, IL, M, N) → ACTIVATE(M)
U211(tt, IL, M, N) → ACTIVATE(N)
U221(tt, IL, M, N) → U231(tt, activate(IL), activate(M), activate(N))
U221(tt, IL, M, N) → ACTIVATE(IL)
U221(tt, IL, M, N) → ACTIVATE(M)
U221(tt, IL, M, N) → ACTIVATE(N)
U231(tt, IL, M, N) → ACTIVATE(N)
U231(tt, IL, M, N) → ACTIVATE(M)
U231(tt, IL, M, N) → ACTIVATE(IL)
LENGTH(cons(N, L)) → U111(tt, activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
TAKE(s(M), cons(N, IL)) → U211(tt, activate(IL), M, N)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
ACTIVATE(n__zeros) → ZEROS
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(nil) → 0
length(cons(N, L)) → U11(tt, activate(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 4 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U221(tt, IL, M, N) → U231(tt, activate(IL), activate(M), activate(N))
U231(tt, IL, M, N) → ACTIVATE(N)
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
TAKE(s(M), cons(N, IL)) → U211(tt, activate(IL), M, N)
U211(tt, IL, M, N) → U221(tt, activate(IL), activate(M), activate(N))
U221(tt, IL, M, N) → ACTIVATE(IL)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
U221(tt, IL, M, N) → ACTIVATE(M)
U221(tt, IL, M, N) → ACTIVATE(N)
U211(tt, IL, M, N) → ACTIVATE(IL)
U211(tt, IL, M, N) → ACTIVATE(M)
U211(tt, IL, M, N) → ACTIVATE(N)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
U231(tt, IL, M, N) → ACTIVATE(M)
U231(tt, IL, M, N) → ACTIVATE(IL)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(nil) → 0
length(cons(N, L)) → U11(tt, activate(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U121(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → U111(tt, activate(L))
U111(tt, L) → U121(tt, activate(L))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(nil) → 0
length(cons(N, L)) → U11(tt, activate(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.