(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(nil) → 0
length(cons(N, L)) → U11(tt, activate(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(U11(x1, x2)) = x1 + x2   
POL(U12(x1, x2)) = x1 + x2   
POL(U21(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(U22(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(U23(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = x1 + x2   
POL(length(x1)) = 1 + x1   
POL(n__take(x1, x2)) = 1 + x1 + x2   
POL(n__zeros) = 0   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(take(x1, x2)) = 1 + x1 + x2   
POL(tt) = 1   
POL(zeros) = 0   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

length(nil) → 0
take(0, IL) → nil


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(cons(N, L)) → U11(tt, activate(L))
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, L) → U121(tt, activate(L))
U111(tt, L) → ACTIVATE(L)
U121(tt, L) → LENGTH(activate(L))
U121(tt, L) → ACTIVATE(L)
U211(tt, IL, M, N) → U221(tt, activate(IL), activate(M), activate(N))
U211(tt, IL, M, N) → ACTIVATE(IL)
U211(tt, IL, M, N) → ACTIVATE(M)
U211(tt, IL, M, N) → ACTIVATE(N)
U221(tt, IL, M, N) → U231(tt, activate(IL), activate(M), activate(N))
U221(tt, IL, M, N) → ACTIVATE(IL)
U221(tt, IL, M, N) → ACTIVATE(M)
U221(tt, IL, M, N) → ACTIVATE(N)
U231(tt, IL, M, N) → ACTIVATE(N)
U231(tt, IL, M, N) → ACTIVATE(M)
U231(tt, IL, M, N) → ACTIVATE(IL)
LENGTH(cons(N, L)) → U111(tt, activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
TAKE(s(M), cons(N, IL)) → U211(tt, activate(IL), M, N)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
ACTIVATE(n__zeros) → ZEROS
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(cons(N, L)) → U11(tt, activate(L))
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 4 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(tt, IL, M, N) → U231(tt, activate(IL), activate(M), activate(N))
U231(tt, IL, M, N) → ACTIVATE(N)
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
TAKE(s(M), cons(N, IL)) → U211(tt, activate(IL), M, N)
U211(tt, IL, M, N) → U221(tt, activate(IL), activate(M), activate(N))
U221(tt, IL, M, N) → ACTIVATE(IL)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
U221(tt, IL, M, N) → ACTIVATE(M)
U221(tt, IL, M, N) → ACTIVATE(N)
U211(tt, IL, M, N) → ACTIVATE(IL)
U211(tt, IL, M, N) → ACTIVATE(M)
U211(tt, IL, M, N) → ACTIVATE(N)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
U231(tt, IL, M, N) → ACTIVATE(M)
U231(tt, IL, M, N) → ACTIVATE(IL)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(cons(N, L)) → U11(tt, activate(L))
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(tt, IL, M, N) → U231(tt, activate(IL), activate(M), activate(N))
U231(tt, IL, M, N) → ACTIVATE(N)
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
TAKE(s(M), cons(N, IL)) → U211(tt, activate(IL), M, N)
U211(tt, IL, M, N) → U221(tt, activate(IL), activate(M), activate(N))
U221(tt, IL, M, N) → ACTIVATE(IL)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
U221(tt, IL, M, N) → ACTIVATE(M)
U221(tt, IL, M, N) → ACTIVATE(N)
U211(tt, IL, M, N) → ACTIVATE(IL)
U211(tt, IL, M, N) → ACTIVATE(M)
U211(tt, IL, M, N) → ACTIVATE(N)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
U231(tt, IL, M, N) → ACTIVATE(M)
U231(tt, IL, M, N) → ACTIVATE(IL)

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
take(X1, X2) → n__take(X1, X2)
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
zeroscons(0, n__zeros)
zerosn__zeros

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

TAKE(s(M), cons(N, IL)) → U211(tt, activate(IL), M, N)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
The following rules are removed from R:

take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
Used ordering: POLO with Polynomial interpretation [POLO]:

POL(0) = 0   
POL(ACTIVATE(x1)) = x1   
POL(TAKE(x1, x2)) = x1 + 2·x2   
POL(U21(x1, x2, x3, x4)) = 2·x1 + 2·x2 + 2·x3 + 2·x4   
POL(U211(x1, x2, x3, x4)) = 2·x1 + x2 + x3 + 2·x4   
POL(U22(x1, x2, x3, x4)) = 2·x1 + 2·x2 + 2·x3 + 2·x4   
POL(U221(x1, x2, x3, x4)) = 2·x1 + x2 + x3 + x4   
POL(U23(x1, x2, x3, x4)) = 2·x1 + 2·x2 + 2·x3 + 2·x4   
POL(U231(x1, x2, x3, x4)) = x1 + x2 + x3 + x4   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = x1 + x2   
POL(n__take(x1, x2)) = x1 + 2·x2   
POL(n__zeros) = 0   
POL(s(x1)) = 2·x1   
POL(take(x1, x2)) = x1 + 2·x2   
POL(tt) = 0   
POL(zeros) = 0   

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(tt, IL, M, N) → U231(tt, activate(IL), activate(M), activate(N))
U231(tt, IL, M, N) → ACTIVATE(N)
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
U211(tt, IL, M, N) → U221(tt, activate(IL), activate(M), activate(N))
U221(tt, IL, M, N) → ACTIVATE(IL)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
U221(tt, IL, M, N) → ACTIVATE(M)
U221(tt, IL, M, N) → ACTIVATE(N)
U211(tt, IL, M, N) → ACTIVATE(IL)
U211(tt, IL, M, N) → ACTIVATE(M)
U211(tt, IL, M, N) → ACTIVATE(N)
U231(tt, IL, M, N) → ACTIVATE(M)
U231(tt, IL, M, N) → ACTIVATE(IL)

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(X1, X2) → n__take(X1, X2)
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
zeroscons(0, n__zeros)
zerosn__zeros

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 12 less nodes.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(X1, X2) → n__take(X1, X2)
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
zeroscons(0, n__zeros)
zerosn__zeros

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
    The graph contains the following edges 1 > 1

  • ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
    The graph contains the following edges 1 > 1

(17) TRUE

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → U111(tt, activate(L))
U111(tt, L) → U121(tt, activate(L))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
length(cons(N, L)) → U11(tt, activate(L))
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → U111(tt, activate(L))
U111(tt, L) → U121(tt, activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
take(X1, X2) → n__take(X1, X2)
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
zeroscons(0, n__zeros)
zerosn__zeros

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

No dependency pairs are removed.

The following rules are removed from R:

take(s(M), cons(N, IL)) → U21(tt, activate(IL), M, N)
U21(tt, IL, M, N) → U22(tt, activate(IL), activate(M), activate(N))
U22(tt, IL, M, N) → U23(tt, activate(IL), activate(M), activate(N))
U23(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
Used ordering: POLO with Polynomial interpretation [POLO]:

POL(0) = 0   
POL(LENGTH(x1)) = 1 + 2·x1   
POL(U111(x1, x2)) = x1 + 2·x2   
POL(U121(x1, x2)) = x1 + 2·x2   
POL(U21(x1, x2, x3, x4)) = 2 + 2·x1 + x2 + 2·x3 + 2·x4   
POL(U22(x1, x2, x3, x4)) = 2 + x1 + x2 + 2·x3 + 2·x4   
POL(U23(x1, x2, x3, x4)) = 1 + x1 + x2 + 2·x3 + 2·x4   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(n__take(x1, x2)) = 2·x1 + x2   
POL(n__zeros) = 0   
POL(s(x1)) = 2 + x1   
POL(take(x1, x2)) = 2·x1 + x2   
POL(tt) = 1   
POL(zeros) = 0   

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → U111(tt, activate(L))
U111(tt, L) → U121(tt, activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(X1, X2) → n__take(X1, X2)
zeroscons(0, n__zeros)
zerosn__zeros

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) Narrowing (EQUIVALENT transformation)

By narrowing [LPAR04] the rule U121(tt, L) → LENGTH(activate(L)) at position [0] we obtained the following new rules [LPAR04]:

U121(tt, n__zeros) → LENGTH(zeros)
U121(tt, n__take(x0, x1)) → LENGTH(take(activate(x0), activate(x1)))
U121(tt, x0) → LENGTH(x0)

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → U111(tt, activate(L))
U111(tt, L) → U121(tt, activate(L))
U121(tt, n__zeros) → LENGTH(zeros)
U121(tt, n__take(x0, x1)) → LENGTH(take(activate(x0), activate(x1)))
U121(tt, x0) → LENGTH(x0)

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(X1, X2) → n__take(X1, X2)
zeroscons(0, n__zeros)
zerosn__zeros

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) Narrowing (EQUIVALENT transformation)

By narrowing [LPAR04] the rule U121(tt, n__zeros) → LENGTH(zeros) at position [0] we obtained the following new rules [LPAR04]:

U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U121(tt, n__zeros) → LENGTH(n__zeros)

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → U111(tt, activate(L))
U111(tt, L) → U121(tt, activate(L))
U121(tt, n__take(x0, x1)) → LENGTH(take(activate(x0), activate(x1)))
U121(tt, x0) → LENGTH(x0)
U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U121(tt, n__zeros) → LENGTH(n__zeros)

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(X1, X2) → n__take(X1, X2)
zeroscons(0, n__zeros)
zerosn__zeros

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, L) → U121(tt, activate(L))
U121(tt, n__take(x0, x1)) → LENGTH(take(activate(x0), activate(x1)))
LENGTH(cons(N, L)) → U111(tt, activate(L))
U121(tt, x0) → LENGTH(x0)
U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(X1, X2) → n__take(X1, X2)
zeroscons(0, n__zeros)
zerosn__zeros

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

U121(tt, n__take(x0, x1)) → LENGTH(take(activate(x0), activate(x1)))


Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(LENGTH(x1)) = x1   
POL(U111(x1, x2)) = 2·x1 + 2·x2   
POL(U121(x1, x2)) = 2·x1 + 2·x2   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(n__take(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(n__zeros) = 0   
POL(take(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(tt) = 0   
POL(zeros) = 0   

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, L) → U121(tt, activate(L))
LENGTH(cons(N, L)) → U111(tt, activate(L))
U121(tt, x0) → LENGTH(x0)
U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(X1, X2) → n__take(X1, X2)
zeroscons(0, n__zeros)
zerosn__zeros

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = U121(tt, activate(activate(n__zeros))) evaluates to t =U121(tt, activate(activate(n__zeros)))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

U121(tt, activate(activate(n__zeros)))U121(tt, activate(n__zeros))
with rule activate(X) → X at position [1] and matcher [X / activate(n__zeros)]

U121(tt, activate(n__zeros))U121(tt, n__zeros)
with rule activate(X) → X at position [1] and matcher [X / n__zeros]

U121(tt, n__zeros)LENGTH(cons(0, n__zeros))
with rule U121(tt, n__zeros) → LENGTH(cons(0, n__zeros)) at position [] and matcher [ ]

LENGTH(cons(0, n__zeros))U111(tt, activate(n__zeros))
with rule LENGTH(cons(N, L')) → U111(tt, activate(L')) at position [] and matcher [N / 0, L' / n__zeros]

U111(tt, activate(n__zeros))U121(tt, activate(activate(n__zeros)))
with rule U111(tt, L) → U121(tt, activate(L))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(32) FALSE