(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(U41(tt, V2)) → U421(isNatIList(V2))
ACTIVE(U41(tt, V2)) → ISNATILIST(V2)
ACTIVE(U51(tt, V2)) → U521(isNatList(V2))
ACTIVE(U51(tt, V2)) → ISNATLIST(V2)
ACTIVE(U61(tt, V2)) → U621(isNatIList(V2))
ACTIVE(U61(tt, V2)) → ISNATILIST(V2)
ACTIVE(U71(tt, L, N)) → U721(isNat(N), L)
ACTIVE(U71(tt, L, N)) → ISNAT(N)
ACTIVE(U72(tt, L)) → S(length(L))
ACTIVE(U72(tt, L)) → LENGTH(L)
ACTIVE(U91(tt, IL, M, N)) → U921(isNat(M), IL, M, N)
ACTIVE(U91(tt, IL, M, N)) → ISNAT(M)
ACTIVE(U92(tt, IL, M, N)) → U931(isNat(N), IL, M, N)
ACTIVE(U92(tt, IL, M, N)) → ISNAT(N)
ACTIVE(U93(tt, IL, M, N)) → CONS(N, take(M, IL))
ACTIVE(U93(tt, IL, M, N)) → TAKE(M, IL)
ACTIVE(isNat(length(V1))) → U111(isNatList(V1))
ACTIVE(isNat(length(V1))) → ISNATLIST(V1)
ACTIVE(isNat(s(V1))) → U211(isNat(V1))
ACTIVE(isNat(s(V1))) → ISNAT(V1)
ACTIVE(isNatIList(V)) → U311(isNatList(V))
ACTIVE(isNatIList(V)) → ISNATLIST(V)
ACTIVE(isNatIList(cons(V1, V2))) → U411(isNat(V1), V2)
ACTIVE(isNatIList(cons(V1, V2))) → ISNAT(V1)
ACTIVE(isNatList(cons(V1, V2))) → U511(isNat(V1), V2)
ACTIVE(isNatList(cons(V1, V2))) → ISNAT(V1)
ACTIVE(isNatList(take(V1, V2))) → U611(isNat(V1), V2)
ACTIVE(isNatList(take(V1, V2))) → ISNAT(V1)
ACTIVE(length(cons(N, L))) → U711(isNatList(L), L, N)
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
ACTIVE(take(0, IL)) → U811(isNatIList(IL))
ACTIVE(take(0, IL)) → ISNATILIST(IL)
ACTIVE(take(s(M), cons(N, IL))) → U911(isNatIList(IL), IL, M, N)
ACTIVE(take(s(M), cons(N, IL))) → ISNATILIST(IL)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X)) → U111(active(X))
ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(U21(X)) → U211(active(X))
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X)) → U311(active(X))
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → U411(active(X1), X2)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → U421(active(X))
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → U511(active(X1), X2)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X)) → U521(active(X))
ACTIVE(U52(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → U611(active(X1), X2)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U62(X)) → U621(active(X))
ACTIVE(U62(X)) → ACTIVE(X)
ACTIVE(U71(X1, X2, X3)) → U711(active(X1), X2, X3)
ACTIVE(U71(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → U721(active(X1), X2)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → LENGTH(active(X))
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(U81(X)) → U811(active(X))
ACTIVE(U81(X)) → ACTIVE(X)
ACTIVE(U91(X1, X2, X3, X4)) → U911(active(X1), X2, X3, X4)
ACTIVE(U91(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U92(X1, X2, X3, X4)) → U921(active(X1), X2, X3, X4)
ACTIVE(U92(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U93(X1, X2, X3, X4)) → U931(active(X1), X2, X3, X4)
ACTIVE(U93(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → TAKE(active(X1), X2)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → TAKE(X1, active(X2))
ACTIVE(take(X1, X2)) → ACTIVE(X2)
CONS(mark(X1), X2) → CONS(X1, X2)
U111(mark(X)) → U111(X)
U211(mark(X)) → U211(X)
U311(mark(X)) → U311(X)
U411(mark(X1), X2) → U411(X1, X2)
U421(mark(X)) → U421(X)
U511(mark(X1), X2) → U511(X1, X2)
U521(mark(X)) → U521(X)
U611(mark(X1), X2) → U611(X1, X2)
U621(mark(X)) → U621(X)
U711(mark(X1), X2, X3) → U711(X1, X2, X3)
U721(mark(X1), X2) → U721(X1, X2)
S(mark(X)) → S(X)
LENGTH(mark(X)) → LENGTH(X)
U811(mark(X)) → U811(X)
U911(mark(X1), X2, X3, X4) → U911(X1, X2, X3, X4)
U921(mark(X1), X2, X3, X4) → U921(X1, X2, X3, X4)
U931(mark(X1), X2, X3, X4) → U931(X1, X2, X3, X4)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(U11(X)) → U111(proper(X))
PROPER(U11(X)) → PROPER(X)
PROPER(U21(X)) → U211(proper(X))
PROPER(U21(X)) → PROPER(X)
PROPER(U31(X)) → U311(proper(X))
PROPER(U31(X)) → PROPER(X)
PROPER(U41(X1, X2)) → U411(proper(X1), proper(X2))
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(U42(X)) → U421(proper(X))
PROPER(U42(X)) → PROPER(X)
PROPER(isNatIList(X)) → ISNATILIST(proper(X))
PROPER(isNatIList(X)) → PROPER(X)
PROPER(U51(X1, X2)) → U511(proper(X1), proper(X2))
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X)) → U521(proper(X))
PROPER(U52(X)) → PROPER(X)
PROPER(isNatList(X)) → ISNATLIST(proper(X))
PROPER(isNatList(X)) → PROPER(X)
PROPER(U61(X1, X2)) → U611(proper(X1), proper(X2))
PROPER(U61(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(U62(X)) → U621(proper(X))
PROPER(U62(X)) → PROPER(X)
PROPER(U71(X1, X2, X3)) → U711(proper(X1), proper(X2), proper(X3))
PROPER(U71(X1, X2, X3)) → PROPER(X1)
PROPER(U71(X1, X2, X3)) → PROPER(X2)
PROPER(U71(X1, X2, X3)) → PROPER(X3)
PROPER(U72(X1, X2)) → U721(proper(X1), proper(X2))
PROPER(U72(X1, X2)) → PROPER(X1)
PROPER(U72(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → ISNAT(proper(X))
PROPER(isNat(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(length(X)) → LENGTH(proper(X))
PROPER(length(X)) → PROPER(X)
PROPER(U81(X)) → U811(proper(X))
PROPER(U81(X)) → PROPER(X)
PROPER(U91(X1, X2, X3, X4)) → U911(proper(X1), proper(X2), proper(X3), proper(X4))
PROPER(U91(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U91(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U91(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U91(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U92(X1, X2, X3, X4)) → U921(proper(X1), proper(X2), proper(X3), proper(X4))
PROPER(U92(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U92(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U92(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U92(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U93(X1, X2, X3, X4)) → U931(proper(X1), proper(X2), proper(X3), proper(X4))
PROPER(U93(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U93(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U93(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U93(X1, X2, X3, X4)) → PROPER(X4)
PROPER(take(X1, X2)) → TAKE(proper(X1), proper(X2))
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
U111(ok(X)) → U111(X)
U211(ok(X)) → U211(X)
U311(ok(X)) → U311(X)
U411(ok(X1), ok(X2)) → U411(X1, X2)
U421(ok(X)) → U421(X)
ISNATILIST(ok(X)) → ISNATILIST(X)
U511(ok(X1), ok(X2)) → U511(X1, X2)
U521(ok(X)) → U521(X)
ISNATLIST(ok(X)) → ISNATLIST(X)
U611(ok(X1), ok(X2)) → U611(X1, X2)
U621(ok(X)) → U621(X)
U711(ok(X1), ok(X2), ok(X3)) → U711(X1, X2, X3)
U721(ok(X1), ok(X2)) → U721(X1, X2)
ISNAT(ok(X)) → ISNAT(X)
S(ok(X)) → S(X)
LENGTH(ok(X)) → LENGTH(X)
U811(ok(X)) → U811(X)
U911(ok(X1), ok(X2), ok(X3), ok(X4)) → U911(X1, X2, X3, X4)
U921(ok(X1), ok(X2), ok(X3), ok(X4)) → U921(X1, X2, X3, X4)
U931(ok(X1), ok(X2), ok(X3), ok(X4)) → U931(X1, X2, X3, X4)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 25 SCCs with 79 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(ok(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(ok(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  x1
ok(x1)  =  ok(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATLIST(ok(X)) → ISNATLIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATLIST(ok(X)) → ISNATLIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATLIST(x1)  =  x1
ok(x1)  =  ok(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(ok(X)) → ISNATILIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATILIST(ok(X)) → ISNATILIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATILIST(x1)  =  x1
ok(x1)  =  ok(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Recursive Path Order [RPO].
Precedence:
[TAKE1, mark1, ok1]


The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(26) TRUE

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U931(ok(X1), ok(X2), ok(X3), ok(X4)) → U931(X1, X2, X3, X4)
U931(mark(X1), X2, X3, X4) → U931(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U931(ok(X1), ok(X2), ok(X3), ok(X4)) → U931(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U931(x1, x2, x3, x4)  =  U931(x4)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > [U93^11, ok1]


The following usable rules [FROCOS05] were oriented: none

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U931(mark(X1), X2, X3, X4) → U931(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U931(mark(X1), X2, X3, X4) → U931(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U931(x1, x2, x3, x4)  =  U931(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
[U93^11, mark1]


The following usable rules [FROCOS05] were oriented: none

(31) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(33) TRUE

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U921(ok(X1), ok(X2), ok(X3), ok(X4)) → U921(X1, X2, X3, X4)
U921(mark(X1), X2, X3, X4) → U921(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U921(ok(X1), ok(X2), ok(X3), ok(X4)) → U921(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U921(x1, x2, x3, x4)  =  U921(x4)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > [U92^11, ok1]


The following usable rules [FROCOS05] were oriented: none

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U921(mark(X1), X2, X3, X4) → U921(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U921(mark(X1), X2, X3, X4) → U921(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U921(x1, x2, x3, x4)  =  U921(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
[U92^11, mark1]


The following usable rules [FROCOS05] were oriented: none

(38) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(40) TRUE

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U911(ok(X1), ok(X2), ok(X3), ok(X4)) → U911(X1, X2, X3, X4)
U911(mark(X1), X2, X3, X4) → U911(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U911(ok(X1), ok(X2), ok(X3), ok(X4)) → U911(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U911(x1, x2, x3, x4)  =  U911(x4)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > [U91^11, ok1]


The following usable rules [FROCOS05] were oriented: none

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U911(mark(X1), X2, X3, X4) → U911(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U911(mark(X1), X2, X3, X4) → U911(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U911(x1, x2, x3, x4)  =  U911(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
[U91^11, mark1]


The following usable rules [FROCOS05] were oriented: none

(45) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(47) TRUE

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(ok(X)) → U811(X)
U811(mark(X)) → U811(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(ok(X)) → U811(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(mark(X)) → U811(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(mark(X)) → U811(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(52) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(54) TRUE

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(ok(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(ok(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(mark(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(59) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(61) TRUE

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(66) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(68) TRUE

(69) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U721(ok(X1), ok(X2)) → U721(X1, X2)
U721(mark(X1), X2) → U721(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U721(ok(X1), ok(X2)) → U721(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U721(x1, x2)  =  U721(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
[U72^11, ok1, mark1]


The following usable rules [FROCOS05] were oriented: none

(71) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U721(mark(X1), X2) → U721(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(72) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U721(mark(X1), X2) → U721(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U721(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(73) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(74) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(75) TRUE

(76) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(ok(X1), ok(X2), ok(X3)) → U711(X1, X2, X3)
U711(mark(X1), X2, X3) → U711(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(77) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(ok(X1), ok(X2), ok(X3)) → U711(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2, x3)  =  U711(x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
[U71^11, ok1, mark1]


The following usable rules [FROCOS05] were oriented: none

(78) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(mark(X1), X2, X3) → U711(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(79) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(mark(X1), X2, X3) → U711(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(80) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(81) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(82) TRUE

(83) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(ok(X)) → U621(X)
U621(mark(X)) → U621(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(ok(X)) → U621(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(85) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(mark(X)) → U621(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(86) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(mark(X)) → U621(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(87) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(88) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(89) TRUE

(90) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(ok(X1), ok(X2)) → U611(X1, X2)
U611(mark(X1), X2) → U611(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(91) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(ok(X1), ok(X2)) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  U611(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
[U61^11, ok1, mark1]


The following usable rules [FROCOS05] were oriented: none

(92) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2) → U611(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(93) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X1), X2) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(94) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(95) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(96) TRUE

(97) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(ok(X)) → U521(X)
U521(mark(X)) → U521(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(ok(X)) → U521(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(99) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(mark(X)) → U521(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(100) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(mark(X)) → U521(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(101) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(102) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(103) TRUE

(104) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2)) → U511(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(105) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(ok(X1), ok(X2)) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
[U51^11, ok1, mark1]


The following usable rules [FROCOS05] were oriented: none

(106) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(mark(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(107) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(108) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(109) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(110) TRUE

(111) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(ok(X)) → U421(X)
U421(mark(X)) → U421(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(112) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U421(ok(X)) → U421(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U421(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(113) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(mark(X)) → U421(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(114) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U421(mark(X)) → U421(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U421(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(115) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(116) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(117) TRUE

(118) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(119) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(ok(X1), ok(X2)) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
[U41^11, ok1, mark1]


The following usable rules [FROCOS05] were oriented: none

(120) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(121) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X1), X2) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(122) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(123) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(124) TRUE

(125) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X)) → U311(X)
U311(mark(X)) → U311(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(126) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(ok(X)) → U311(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(127) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X)) → U311(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(128) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X)) → U311(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(129) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(130) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(131) TRUE

(132) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X)) → U211(X)
U211(mark(X)) → U211(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(133) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(ok(X)) → U211(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(134) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X)) → U211(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(135) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X)) → U211(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(136) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(137) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(138) TRUE

(139) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X)) → U111(X)
U111(mark(X)) → U111(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(140) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X)) → U111(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(141) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X)) → U111(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(142) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X)) → U111(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(143) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(144) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(145) TRUE

(146) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(147) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
[CONS1, ok1, mark1]


The following usable rules [FROCOS05] were oriented: none

(148) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(149) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(150) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(151) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(152) TRUE

(153) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(U11(X)) → PROPER(X)
PROPER(U21(X)) → PROPER(X)
PROPER(U31(X)) → PROPER(X)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(U42(X)) → PROPER(X)
PROPER(isNatIList(X)) → PROPER(X)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X)) → PROPER(X)
PROPER(isNatList(X)) → PROPER(X)
PROPER(U61(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(U62(X)) → PROPER(X)
PROPER(U71(X1, X2, X3)) → PROPER(X1)
PROPER(U71(X1, X2, X3)) → PROPER(X2)
PROPER(U71(X1, X2, X3)) → PROPER(X3)
PROPER(U72(X1, X2)) → PROPER(X1)
PROPER(U72(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(length(X)) → PROPER(X)
PROPER(U81(X)) → PROPER(X)
PROPER(U91(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U91(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U91(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U91(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U92(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U92(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U92(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U92(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U93(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U93(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U93(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U93(X1, X2, X3, X4)) → PROPER(X4)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(154) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(U11(X)) → PROPER(X)
PROPER(U21(X)) → PROPER(X)
PROPER(U31(X)) → PROPER(X)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(U42(X)) → PROPER(X)
PROPER(isNatIList(X)) → PROPER(X)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X)) → PROPER(X)
PROPER(isNatList(X)) → PROPER(X)
PROPER(U61(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(U62(X)) → PROPER(X)
PROPER(U71(X1, X2, X3)) → PROPER(X1)
PROPER(U71(X1, X2, X3)) → PROPER(X2)
PROPER(U71(X1, X2, X3)) → PROPER(X3)
PROPER(U72(X1, X2)) → PROPER(X1)
PROPER(U72(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → PROPER(X)
PROPER(U81(X)) → PROPER(X)
PROPER(U91(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U91(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U91(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U91(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U92(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U92(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U92(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U92(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U93(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U93(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U93(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U93(X1, X2, X3, X4)) → PROPER(X4)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
U11(x1)  =  U11(x1)
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1, x2)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51(x1, x2)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList(x1)
U61(x1, x2)  =  U61(x1, x2)
U62(x1)  =  U62(x1)
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2)  =  U72(x1, x2)
isNat(x1)  =  isNat(x1)
s(x1)  =  x1
length(x1)  =  x1
U81(x1)  =  U81(x1)
U91(x1, x2, x3, x4)  =  U91(x1, x2, x3, x4)
U92(x1, x2, x3, x4)  =  U92(x1, x2, x3, x4)
U93(x1, x2, x3, x4)  =  U93(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(155) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)
PROPER(length(X)) → PROPER(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(156) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
s(x1)  =  s(x1)
length(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(157) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(length(X)) → PROPER(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(158) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(length(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
length(x1)  =  length(x1)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(159) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(160) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(161) TRUE

(162) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U62(X)) → ACTIVE(X)
ACTIVE(U71(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(U81(X)) → ACTIVE(X)
ACTIVE(U91(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U92(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U93(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(163) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U62(X)) → ACTIVE(X)
ACTIVE(U71(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(U81(X)) → ACTIVE(X)
ACTIVE(U91(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U92(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U93(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
U11(x1)  =  U11(x1)
cons(x1, x2)  =  cons(x1)
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
U61(x1, x2)  =  U61(x1)
U62(x1)  =  U62(x1)
U71(x1, x2, x3)  =  U71(x1)
U72(x1, x2)  =  U72(x1)
s(x1)  =  s(x1)
length(x1)  =  length(x1)
U81(x1)  =  U81(x1)
U91(x1, x2, x3, x4)  =  U91(x1)
U92(x1, x2, x3, x4)  =  U92(x1)
U93(x1, x2, x3, x4)  =  U93(x1)
take(x1, x2)  =  take(x1, x2)

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(164) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(165) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(166) TRUE

(167) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, V2)) → mark(U62(isNatIList(V2)))
active(U62(tt)) → mark(tt)
active(U71(tt, L, N)) → mark(U72(isNat(N), L))
active(U72(tt, L)) → mark(s(length(L)))
active(U81(tt)) → mark(nil)
active(U91(tt, IL, M, N)) → mark(U92(isNat(M), IL, M, N))
active(U92(tt, IL, M, N)) → mark(U93(isNat(N), IL, M, N))
active(U93(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(isNatList(take(V1, V2))) → mark(U61(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U71(isNatList(L), L, N))
active(take(0, IL)) → mark(U81(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U91(isNatIList(IL), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2)) → U72(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U81(X)) → U81(active(X))
active(U91(X1, X2, X3, X4)) → U91(active(X1), X2, X3, X4)
active(U92(X1, X2, X3, X4)) → U92(active(X1), X2, X3, X4)
active(U93(X1, X2, X3, X4)) → U93(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2) → mark(U72(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U81(mark(X)) → mark(U81(X))
U91(mark(X1), X2, X3, X4) → mark(U91(X1, X2, X3, X4))
U92(mark(X1), X2, X3, X4) → mark(U92(X1, X2, X3, X4))
U93(mark(X1), X2, X3, X4) → mark(U93(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U81(X)) → U81(proper(X))
proper(nil) → ok(nil)
proper(U91(X1, X2, X3, X4)) → U91(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U92(X1, X2, X3, X4)) → U92(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U93(X1, X2, X3, X4)) → U93(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U81(ok(X)) → ok(U81(X))
U91(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U91(X1, X2, X3, X4))
U92(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U92(X1, X2, X3, X4))
U93(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U93(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.