(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(zeros) → MARK(cons(0, zeros))
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
ACTIVE(U11(tt, L)) → S(length(L))
ACTIVE(U11(tt, L)) → LENGTH(L)
ACTIVE(U21(tt)) → MARK(nil)
ACTIVE(U31(tt, IL, M, N)) → MARK(cons(N, take(M, IL)))
ACTIVE(U31(tt, IL, M, N)) → CONS(N, take(M, IL))
ACTIVE(U31(tt, IL, M, N)) → TAKE(M, IL)
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(isNat(0)) → MARK(tt)
ACTIVE(isNat(length(V1))) → MARK(isNatList(V1))
ACTIVE(isNat(length(V1))) → ISNATLIST(V1)
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
ACTIVE(isNat(s(V1))) → ISNAT(V1)
ACTIVE(isNatIList(V)) → MARK(isNatList(V))
ACTIVE(isNatIList(V)) → ISNATLIST(V)
ACTIVE(isNatIList(zeros)) → MARK(tt)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
ACTIVE(isNatIList(cons(V1, V2))) → AND(isNat(V1), isNatIList(V2))
ACTIVE(isNatIList(cons(V1, V2))) → ISNAT(V1)
ACTIVE(isNatIList(cons(V1, V2))) → ISNATILIST(V2)
ACTIVE(isNatList(nil)) → MARK(tt)
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
ACTIVE(isNatList(cons(V1, V2))) → AND(isNat(V1), isNatList(V2))
ACTIVE(isNatList(cons(V1, V2))) → ISNAT(V1)
ACTIVE(isNatList(cons(V1, V2))) → ISNATLIST(V2)
ACTIVE(isNatList(take(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
ACTIVE(isNatList(take(V1, V2))) → AND(isNat(V1), isNatIList(V2))
ACTIVE(isNatList(take(V1, V2))) → ISNAT(V1)
ACTIVE(isNatList(take(V1, V2))) → ISNATILIST(V2)
ACTIVE(length(nil)) → MARK(0)
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
ACTIVE(length(cons(N, L))) → U111(and(isNatList(L), isNat(N)), L)
ACTIVE(length(cons(N, L))) → AND(isNatList(L), isNat(N))
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
ACTIVE(length(cons(N, L))) → ISNAT(N)
ACTIVE(take(0, IL)) → MARK(U21(isNatIList(IL)))
ACTIVE(take(0, IL)) → U211(isNatIList(IL))
ACTIVE(take(0, IL)) → ISNATILIST(IL)
ACTIVE(take(s(M), cons(N, IL))) → MARK(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
ACTIVE(take(s(M), cons(N, IL))) → U311(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
ACTIVE(take(s(M), cons(N, IL))) → AND(isNatIList(IL), and(isNat(M), isNat(N)))
ACTIVE(take(s(M), cons(N, IL))) → ISNATILIST(IL)
ACTIVE(take(s(M), cons(N, IL))) → AND(isNat(M), isNat(N))
ACTIVE(take(s(M), cons(N, IL))) → ISNAT(M)
ACTIVE(take(s(M), cons(N, IL))) → ISNAT(N)
MARK(zeros) → ACTIVE(zeros)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(0) → ACTIVE(0)
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
MARK(U11(X1, X2)) → U111(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(U21(X)) → ACTIVE(U21(mark(X)))
MARK(U21(X)) → U211(mark(X))
MARK(U21(X)) → MARK(X)
MARK(nil) → ACTIVE(nil)
MARK(U31(X1, X2, X3, X4)) → ACTIVE(U31(mark(X1), X2, X3, X4))
MARK(U31(X1, X2, X3, X4)) → U311(mark(X1), X2, X3, X4)
MARK(U31(X1, X2, X3, X4)) → MARK(X1)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
U111(X1, mark(X2)) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)
S(mark(X)) → S(X)
S(active(X)) → S(X)
LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)
U211(mark(X)) → U211(X)
U211(active(X)) → U211(X)
U311(mark(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
U311(X1, mark(X2), X3, X4) → U311(X1, X2, X3, X4)
U311(X1, X2, mark(X3), X4) → U311(X1, X2, X3, X4)
U311(X1, X2, X3, mark(X4)) → U311(X1, X2, X3, X4)
U311(active(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
U311(X1, active(X2), X3, X4) → U311(X1, X2, X3, X4)
U311(X1, X2, active(X3), X4) → U311(X1, X2, X3, X4)
U311(X1, X2, X3, active(X4)) → U311(X1, X2, X3, X4)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
ISNAT(mark(X)) → ISNAT(X)
ISNAT(active(X)) → ISNAT(X)
ISNATLIST(mark(X)) → ISNATLIST(X)
ISNATLIST(active(X)) → ISNATLIST(X)
ISNATILIST(mark(X)) → ISNATILIST(X)
ISNATILIST(active(X)) → ISNATILIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 12 SCCs with 45 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(active(X)) → ISNATILIST(X)
ISNATILIST(mark(X)) → ISNATILIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATILIST(mark(X)) → ISNATILIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATILIST(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(active(X)) → ISNATILIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATILIST(active(X)) → ISNATILIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATILIST(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATLIST(active(X)) → ISNATLIST(X)
ISNATLIST(mark(X)) → ISNATLIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATLIST(mark(X)) → ISNATLIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATLIST(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATLIST(active(X)) → ISNATLIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATLIST(active(X)) → ISNATLIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATLIST(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(mark(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(active(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(active(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(X1, active(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(X1, mark(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  x2
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(active(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  x1
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(34) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(36) TRUE

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, active(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  x2
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(active(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  x1
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(45) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(47) TRUE

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2), X3, X4) → U311(X1, X2, X3, X4)
U311(mark(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
U311(X1, X2, mark(X3), X4) → U311(X1, X2, X3, X4)
U311(X1, X2, X3, mark(X4)) → U311(X1, X2, X3, X4)
U311(active(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
U311(X1, active(X2), X3, X4) → U311(X1, X2, X3, X4)
U311(X1, X2, active(X3), X4) → U311(X1, X2, X3, X4)
U311(X1, X2, X3, active(X4)) → U311(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, X2, X3, active(X4)) → U311(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2, x3, x4)  =  x4
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2), X3, X4) → U311(X1, X2, X3, X4)
U311(mark(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
U311(X1, X2, mark(X3), X4) → U311(X1, X2, X3, X4)
U311(X1, X2, X3, mark(X4)) → U311(X1, X2, X3, X4)
U311(active(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
U311(X1, active(X2), X3, X4) → U311(X1, X2, X3, X4)
U311(X1, X2, active(X3), X4) → U311(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, X2, X3, mark(X4)) → U311(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2, x3, x4)  =  x4
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2), X3, X4) → U311(X1, X2, X3, X4)
U311(mark(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
U311(X1, X2, mark(X3), X4) → U311(X1, X2, X3, X4)
U311(active(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
U311(X1, active(X2), X3, X4) → U311(X1, X2, X3, X4)
U311(X1, X2, active(X3), X4) → U311(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, X2, active(X3), X4) → U311(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2, x3, x4)  =  x3
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2), X3, X4) → U311(X1, X2, X3, X4)
U311(mark(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
U311(X1, X2, mark(X3), X4) → U311(X1, X2, X3, X4)
U311(active(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
U311(X1, active(X2), X3, X4) → U311(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, X2, mark(X3), X4) → U311(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2, x3, x4)  =  x3
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2), X3, X4) → U311(X1, X2, X3, X4)
U311(mark(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
U311(active(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
U311(X1, active(X2), X3, X4) → U311(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, active(X2), X3, X4) → U311(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2, x3, x4)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2), X3, X4) → U311(X1, X2, X3, X4)
U311(mark(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
U311(active(X1), X2, X3, X4) → U311(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, mark(X2), X3, X4) → U311(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2, x3, x4)  =  x2
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
U311(active(X1), X2, X3, X4) → U311(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(active(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2, x3, x4)  =  x1
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2, X3, X4) → U311(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2, x3, x4)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(64) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(66) TRUE

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(active(X)) → U211(X)
U211(mark(X)) → U211(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X)) → U211(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(69) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(active(X)) → U211(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(active(X)) → U211(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(71) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(72) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(73) TRUE

(74) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(active(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(mark(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(76) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(active(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(77) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(active(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(78) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(79) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(80) TRUE

(81) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(82) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(83) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(85) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(86) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(87) TRUE

(88) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2)) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(89) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, active(X2)) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(90) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2)) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(91) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, mark(X2)) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  x2
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(92) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(93) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(active(X1), X2) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  x1
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(94) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(95) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(96) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(97) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(98) TRUE

(99) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(100) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, active(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(101) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(102) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, mark(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x2
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(103) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(104) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(active(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x1
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(105) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(106) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(107) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(108) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(109) TRUE

(110) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(U11(tt, L)) → MARK(s(length(L)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(U31(tt, IL, M, N)) → MARK(cons(N, take(M, IL)))
MARK(U11(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(and(tt, X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
ACTIVE(isNat(length(V1))) → MARK(isNatList(V1))
MARK(length(X)) → MARK(X)
MARK(U21(X)) → ACTIVE(U21(mark(X)))
ACTIVE(isNat(s(V1))) → MARK(isNat(V1))
MARK(U21(X)) → MARK(X)
MARK(U31(X1, X2, X3, X4)) → ACTIVE(U31(mark(X1), X2, X3, X4))
ACTIVE(isNatIList(V)) → MARK(isNatList(V))
MARK(U31(X1, X2, X3, X4)) → MARK(X1)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(and(isNat(V1), isNatList(V2)))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(isNatList(take(V1, V2))) → MARK(and(isNat(V1), isNatIList(V2)))
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(length(cons(N, L))) → MARK(U11(and(isNatList(L), isNat(N)), L))
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(take(0, IL)) → MARK(U21(isNatIList(IL)))
ACTIVE(take(s(M), cons(N, IL))) → MARK(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(U21(X)) → active(U21(mark(X)))
mark(nil) → active(nil)
mark(U31(X1, X2, X3, X4)) → active(U31(mark(X1), X2, X3, X4))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(isNatList(X)) → active(isNatList(X))
mark(isNatIList(X)) → active(isNatIList(X))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, mark(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, mark(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, mark(X4)) → U31(X1, X2, X3, X4)
U31(active(X1), X2, X3, X4) → U31(X1, X2, X3, X4)
U31(X1, active(X2), X3, X4) → U31(X1, X2, X3, X4)
U31(X1, X2, active(X3), X4) → U31(X1, X2, X3, X4)
U31(X1, X2, X3, active(X4)) → U31(X1, X2, X3, X4)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.