(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(isNat(M), n__isNat(N))), activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
niln__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ZEROSCONS(0, n__zeros)
ZEROS01
U111(tt, L) → S(length(activate(L)))
U111(tt, L) → LENGTH(activate(L))
U111(tt, L) → ACTIVATE(L)
U211(tt) → NIL
U311(tt, IL, M, N) → CONS(activate(N), n__take(activate(M), activate(IL)))
U311(tt, IL, M, N) → ACTIVATE(N)
U311(tt, IL, M, N) → ACTIVATE(M)
U311(tt, IL, M, N) → ACTIVATE(IL)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ISNAT(n__length(V1)) → ACTIVATE(V1)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(V) → ISNATLIST(activate(V))
ISNATILIST(V) → ACTIVATE(V)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__take(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ISNATLIST(n__take(V1, V2)) → ISNAT(activate(V1))
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V2)
LENGTH(nil) → 01
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
TAKE(0, IL) → U211(isNatIList(IL))
TAKE(0, IL) → ISNATILIST(IL)
TAKE(s(M), cons(N, IL)) → U311(and(isNatIList(activate(IL)), n__and(isNat(M), n__isNat(N))), activate(IL), M, N)
TAKE(s(M), cons(N, IL)) → AND(isNatIList(activate(IL)), n__and(isNat(M), n__isNat(N)))
TAKE(s(M), cons(N, IL)) → ISNATILIST(activate(IL))
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
TAKE(s(M), cons(N, IL)) → ISNAT(M)
ACTIVATE(n__zeros) → ZEROS
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
ACTIVATE(n__0) → 01
ACTIVATE(n__length(X)) → LENGTH(X)
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ACTIVATE(n__nil) → NIL
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(isNat(M), n__isNat(N))), activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
niln__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 12 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(0, IL) → ISNATILIST(IL)
ISNATILIST(V) → ISNATLIST(activate(V))
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__length(X)) → LENGTH(X)
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U111(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(V) → ACTIVATE(V)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__length(V1)) → ACTIVATE(V1)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATLIST(n__take(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ISNATLIST(n__take(V1, V2)) → ISNAT(activate(V1))
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V2)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ACTIVATE(L)
U111(tt, L) → ACTIVATE(L)
TAKE(s(M), cons(N, IL)) → U311(and(isNatIList(activate(IL)), n__and(isNat(M), n__isNat(N))), activate(IL), M, N)
U311(tt, IL, M, N) → ACTIVATE(N)
U311(tt, IL, M, N) → ACTIVATE(M)
U311(tt, IL, M, N) → ACTIVATE(IL)
TAKE(s(M), cons(N, IL)) → AND(isNatIList(activate(IL)), n__and(isNat(M), n__isNat(N)))
TAKE(s(M), cons(N, IL)) → ISNATILIST(activate(IL))
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
TAKE(s(M), cons(N, IL)) → ISNAT(M)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(isNat(M), n__isNat(N))), activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
niln__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.