(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(U11(tt, L)) → S(length(L))
ACTIVE(U11(tt, L)) → LENGTH(L)
ACTIVE(U31(tt, IL, M, N)) → CONS(N, take(M, IL))
ACTIVE(U31(tt, IL, M, N)) → TAKE(M, IL)
ACTIVE(isNat(length(V1))) → ISNATLIST(V1)
ACTIVE(isNat(s(V1))) → ISNAT(V1)
ACTIVE(isNatIList(V)) → ISNATLIST(V)
ACTIVE(isNatIList(cons(V1, V2))) → AND(isNat(V1), isNatIList(V2))
ACTIVE(isNatIList(cons(V1, V2))) → ISNAT(V1)
ACTIVE(isNatIList(cons(V1, V2))) → ISNATILIST(V2)
ACTIVE(isNatList(cons(V1, V2))) → AND(isNat(V1), isNatList(V2))
ACTIVE(isNatList(cons(V1, V2))) → ISNAT(V1)
ACTIVE(isNatList(cons(V1, V2))) → ISNATLIST(V2)
ACTIVE(isNatList(take(V1, V2))) → AND(isNat(V1), isNatIList(V2))
ACTIVE(isNatList(take(V1, V2))) → ISNAT(V1)
ACTIVE(isNatList(take(V1, V2))) → ISNATILIST(V2)
ACTIVE(length(cons(N, L))) → U111(and(isNatList(L), isNat(N)), L)
ACTIVE(length(cons(N, L))) → AND(isNatList(L), isNat(N))
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
ACTIVE(length(cons(N, L))) → ISNAT(N)
ACTIVE(take(0, IL)) → U211(isNatIList(IL))
ACTIVE(take(0, IL)) → ISNATILIST(IL)
ACTIVE(take(s(M), cons(N, IL))) → U311(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
ACTIVE(take(s(M), cons(N, IL))) → AND(isNatIList(IL), and(isNat(M), isNat(N)))
ACTIVE(take(s(M), cons(N, IL))) → ISNATILIST(IL)
ACTIVE(take(s(M), cons(N, IL))) → AND(isNat(M), isNat(N))
ACTIVE(take(s(M), cons(N, IL))) → ISNAT(M)
ACTIVE(take(s(M), cons(N, IL))) → ISNAT(N)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X1, X2)) → U111(active(X1), X2)
ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → LENGTH(active(X))
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(U21(X)) → U211(active(X))
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2, X3, X4)) → U311(active(X1), X2, X3, X4)
ACTIVE(U31(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → TAKE(active(X1), X2)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → TAKE(X1, active(X2))
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
CONS(mark(X1), X2) → CONS(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
S(mark(X)) → S(X)
LENGTH(mark(X)) → LENGTH(X)
U211(mark(X)) → U211(X)
U311(mark(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(U11(X1, X2)) → U111(proper(X1), proper(X2))
PROPER(U11(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(length(X)) → LENGTH(proper(X))
PROPER(length(X)) → PROPER(X)
PROPER(U21(X)) → U211(proper(X))
PROPER(U21(X)) → PROPER(X)
PROPER(U31(X1, X2, X3, X4)) → U311(proper(X1), proper(X2), proper(X3), proper(X4))
PROPER(U31(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U31(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U31(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U31(X1, X2, X3, X4)) → PROPER(X4)
PROPER(take(X1, X2)) → TAKE(proper(X1), proper(X2))
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → ISNAT(proper(X))
PROPER(isNat(X)) → PROPER(X)
PROPER(isNatList(X)) → ISNATLIST(proper(X))
PROPER(isNatList(X)) → PROPER(X)
PROPER(isNatIList(X)) → ISNATILIST(proper(X))
PROPER(isNatIList(X)) → PROPER(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
U111(ok(X1), ok(X2)) → U111(X1, X2)
S(ok(X)) → S(X)
LENGTH(ok(X)) → LENGTH(X)
U211(ok(X)) → U211(X)
U311(ok(X1), ok(X2), ok(X3), ok(X4)) → U311(X1, X2, X3, X4)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)
ISNAT(ok(X)) → ISNAT(X)
ISNATLIST(ok(X)) → ISNATLIST(X)
ISNATILIST(ok(X)) → ISNATILIST(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 14 SCCs with 51 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(ok(X)) → ISNATILIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATILIST(ok(X)) → ISNATILIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATILIST(x1)  =  ISNATILIST(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1, x2)  =  x2
tt  =  tt
s(x1)  =  x1
length(x1)  =  length(x1)
U21(x1)  =  x1
nil  =  nil
U31(x1, x2, x3, x4)  =  x1
take(x1, x2)  =  take(x1)
and(x1, x2)  =  x1
isNat(x1)  =  x1
isNatList(x1)  =  x1
isNatIList(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
proper1 > [ISNATILIST1, ok1, active1, zeros, cons1, length1, take1] > [mark, 0, tt, nil, top]

Status:
ISNATILIST1: multiset
ok1: [1]
active1: [1]
zeros: multiset
mark: multiset
cons1: [1]
0: multiset
tt: multiset
length1: [1]
nil: multiset
take1: [1]
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATLIST(ok(X)) → ISNATLIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATLIST(ok(X)) → ISNATLIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATLIST(x1)  =  ISNATLIST(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1, x2)  =  x2
tt  =  tt
s(x1)  =  x1
length(x1)  =  length(x1)
U21(x1)  =  x1
nil  =  nil
U31(x1, x2, x3, x4)  =  x1
take(x1, x2)  =  take(x1)
and(x1, x2)  =  x1
isNat(x1)  =  x1
isNatList(x1)  =  x1
isNatIList(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
proper1 > [ISNATLIST1, ok1, active1, zeros, cons1, length1, take1] > [mark, 0, tt, nil, top]

Status:
ISNATLIST1: multiset
ok1: [1]
active1: [1]
zeros: multiset
mark: multiset
cons1: [1]
0: multiset
tt: multiset
length1: [1]
nil: multiset
take1: [1]
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(ok(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(ok(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  ISNAT(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1, x2)  =  x2
tt  =  tt
s(x1)  =  x1
length(x1)  =  length(x1)
U21(x1)  =  x1
nil  =  nil
U31(x1, x2, x3, x4)  =  x1
take(x1, x2)  =  take(x1)
and(x1, x2)  =  x1
isNat(x1)  =  x1
isNatList(x1)  =  x1
isNatIList(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
proper1 > [ISNAT1, ok1, active1, zeros, cons1, length1, take1] > [mark, 0, tt, nil, top]

Status:
ISNAT1: multiset
ok1: [1]
active1: [1]
zeros: multiset
mark: multiset
cons1: [1]
0: multiset
tt: multiset
length1: [1]
nil: multiset
take1: [1]
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(ok(X1), ok(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(ok(X1), ok(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1)
tt  =  tt
s(x1)  =  s(x1)
length(x1)  =  length(x1)
U21(x1)  =  U21(x1)
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1)
isNat(x1)  =  x1
isNatList(x1)  =  isNatList(x1)
isNatIList(x1)  =  isNatIList(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
tt > [active1, zeros, cons2, length1, take2, proper1] > s1 > [AND1, ok1, mark, 0, U111, U211, nil, U311, and1, isNatList1, isNatIList1, top]

Status:
AND1: multiset
ok1: [1]
mark: []
active1: multiset
zeros: multiset
cons2: multiset
0: multiset
U111: [1]
tt: multiset
s1: multiset
length1: multiset
U211: [1]
nil: multiset
U311: [1]
take2: multiset
and1: [1]
isNatList1: [1]
isNatIList1: [1]
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
s(x1)  =  s(x1)
length(x1)  =  length(x1)
U21(x1)  =  U21(x1)
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNat(x1)  =  isNat
isNatList(x1)  =  isNatList
isNatIList(x1)  =  isNatIList
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
AND2 > [mark1, tt, isNat, isNatIList, ok, top]
[active1, U314, take2, isNatList] > cons2 > [U112, s1, length1, and2] > [mark1, tt, isNat, isNatIList, ok, top]
[active1, U314, take2, isNatList] > [0, U211, nil] > [mark1, tt, isNat, isNatIList, ok, top]
zeros > cons2 > [U112, s1, length1, and2] > [mark1, tt, isNat, isNatIList, ok, top]
zeros > [0, U211, nil] > [mark1, tt, isNat, isNatIList, ok, top]

Status:
AND2: multiset
mark1: [1]
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U112: multiset
tt: multiset
s1: [1]
length1: [1]
U211: [1]
nil: multiset
U314: [1,3,4,2]
take2: [2,1]
and2: multiset
isNat: []
isNatList: []
isNatIList: []
ok: []
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(24) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(26) TRUE

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  x2
tt  =  tt
s(x1)  =  x1
length(x1)  =  length(x1)
U21(x1)  =  U21(x1)
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  x2
isNat(x1)  =  x1
isNatList(x1)  =  isNatList(x1)
isNatIList(x1)  =  isNatIList(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
proper1 > zeros > [active1, cons2, tt, length1, U314, take2, isNatList1] > [TAKE1, ok1, 0, U211, nil, isNatIList1, top]

Status:
TAKE1: multiset
ok1: multiset
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
tt: multiset
length1: [1]
U211: multiset
nil: multiset
U314: [1,4,3,2]
take2: [2,1]
isNatList1: [1]
isNatIList1: multiset
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
s(x1)  =  x1
length(x1)  =  length(x1)
U21(x1)  =  x1
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNat(x1)  =  isNat(x1)
isNatList(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
TAKE1 > [isNatIList1, ok, top]
zeros > [active1, cons2, 0, U112, length1, U314, take2, and2, isNat1] > [mark1, tt] > nil > [isNatIList1, ok, top]
proper1 > [active1, cons2, 0, U112, length1, U314, take2, and2, isNat1] > [mark1, tt] > nil > [isNatIList1, ok, top]

Status:
TAKE1: [1]
mark1: [1]
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U112: [2,1]
tt: multiset
length1: [1]
nil: multiset
U314: [2,1,4,3]
take2: [1,2]
and2: [1,2]
isNat1: [1]
isNatIList1: multiset
proper1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
s(x1)  =  s(x1)
length(x1)  =  length(x1)
U21(x1)  =  U21(x1)
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNat(x1)  =  isNat
isNatList(x1)  =  isNatList
isNatIList(x1)  =  isNatIList
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
TAKE2 > [mark1, tt, isNat, isNatIList, ok, top]
[active1, U314, take2, isNatList] > cons2 > [U112, s1, length1, and2] > [mark1, tt, isNat, isNatIList, ok, top]
[active1, U314, take2, isNatList] > [0, U211, nil] > [mark1, tt, isNat, isNatIList, ok, top]
zeros > cons2 > [U112, s1, length1, and2] > [mark1, tt, isNat, isNatIList, ok, top]
zeros > [0, U211, nil] > [mark1, tt, isNat, isNatIList, ok, top]

Status:
TAKE2: multiset
mark1: [1]
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U112: multiset
tt: multiset
s1: [1]
length1: [1]
U211: [1]
nil: multiset
U314: [1,3,4,2]
take2: [2,1]
and2: multiset
isNat: []
isNatList: []
isNatIList: []
ok: []
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(33) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(35) TRUE

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X1), ok(X2), ok(X3), ok(X4)) → U311(X1, X2, X3, X4)
U311(mark(X1), X2, X3, X4) → U311(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(ok(X1), ok(X2), ok(X3), ok(X4)) → U311(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2, x3, x4)  =  U311(x4)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1)
tt  =  tt
s(x1)  =  s(x1)
length(x1)  =  length(x1)
U21(x1)  =  U21(x1)
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1)
isNat(x1)  =  x1
isNatList(x1)  =  isNatList(x1)
isNatIList(x1)  =  isNatIList(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
tt > [active1, zeros, cons2, length1, take2, proper1] > s1 > [U31^11, ok1, mark, 0, U111, U211, nil, U311, and1, isNatList1, isNatIList1, top]

Status:
U31^11: multiset
ok1: multiset
mark: []
active1: multiset
zeros: multiset
cons2: multiset
0: multiset
U111: multiset
tt: multiset
s1: multiset
length1: multiset
U211: multiset
nil: multiset
U311: multiset
take2: multiset
and1: multiset
isNatList1: multiset
isNatIList1: multiset
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2, X3, X4) → U311(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2, X3, X4) → U311(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2, x3, x4)  =  U311(x1, x2, x3, x4)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
s(x1)  =  s(x1)
length(x1)  =  length(x1)
U21(x1)  =  U21(x1)
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNat(x1)  =  isNat
isNatList(x1)  =  isNatList
isNatIList(x1)  =  isNatIList
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
proper1 > [active1, tt, and2] > zeros > cons2 > [U31^14, mark1, 0, U211, nil, ok, top]
proper1 > [active1, tt, and2] > [length1, take2, isNatList, isNatIList] > [U112, s1] > [U31^14, mark1, 0, U211, nil, ok, top]
proper1 > [active1, tt, and2] > [length1, take2, isNatList, isNatIList] > U314 > cons2 > [U31^14, mark1, 0, U211, nil, ok, top]
proper1 > [active1, tt, and2] > [length1, take2, isNatList, isNatIList] > isNat > [U31^14, mark1, 0, U211, nil, ok, top]

Status:
U31^14: [4,3,2,1]
mark1: multiset
active1: [1]
zeros: multiset
cons2: [2,1]
0: multiset
U112: [1,2]
tt: multiset
s1: [1]
length1: [1]
U211: multiset
nil: multiset
U314: [3,4,2,1]
take2: [2,1]
and2: [1,2]
isNat: []
isNatList: []
isNatIList: []
proper1: [1]
ok: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(40) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(42) TRUE

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X)) → U211(X)
U211(mark(X)) → U211(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X)) → U211(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1)  =  U211(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
s(x1)  =  s(x1)
length(x1)  =  x1
U21(x1)  =  U21(x1)
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNat(x1)  =  isNat
isNatList(x1)  =  isNatList
isNatIList(x1)  =  isNatIList
proper(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, tt, take2] > [zeros, cons2, U314] > [U112, s1, and2, isNatList] > [U21^11, mark1, 0, U211, nil, top]
[active1, tt, take2] > isNat > [U112, s1, and2, isNatList] > [U21^11, mark1, 0, U211, nil, top]
[active1, tt, take2] > isNatIList > [U112, s1, and2, isNatList] > [U21^11, mark1, 0, U211, nil, top]

Status:
U21^11: [1]
mark1: multiset
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U112: multiset
tt: multiset
s1: multiset
U211: multiset
nil: multiset
U314: multiset
take2: [2,1]
and2: [2,1]
isNat: []
isNatList: []
isNatIList: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X)) → U211(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(ok(X)) → U211(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1)  =  U211(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1, x2)  =  x2
tt  =  tt
s(x1)  =  x1
length(x1)  =  length(x1)
U21(x1)  =  x1
nil  =  nil
U31(x1, x2, x3, x4)  =  x1
take(x1, x2)  =  take(x1)
and(x1, x2)  =  x1
isNat(x1)  =  x1
isNatList(x1)  =  x1
isNatIList(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
proper1 > [U21^11, ok1, active1, zeros, cons1, length1, take1] > [mark, 0, tt, nil, top]

Status:
U21^11: multiset
ok1: [1]
active1: [1]
zeros: multiset
mark: multiset
cons1: [1]
0: multiset
tt: multiset
length1: [1]
nil: multiset
take1: [1]
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(47) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(49) TRUE

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(ok(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(mark(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  LENGTH(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
s(x1)  =  s(x1)
length(x1)  =  x1
U21(x1)  =  U21(x1)
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNat(x1)  =  isNat
isNatList(x1)  =  isNatList
isNatIList(x1)  =  isNatIList
proper(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, tt, take2] > [zeros, cons2, U314] > [U112, s1, and2, isNatList] > [LENGTH1, mark1, 0, U211, nil, top]
[active1, tt, take2] > isNat > [U112, s1, and2, isNatList] > [LENGTH1, mark1, 0, U211, nil, top]
[active1, tt, take2] > isNatIList > [U112, s1, and2, isNatList] > [LENGTH1, mark1, 0, U211, nil, top]

Status:
LENGTH1: [1]
mark1: multiset
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U112: multiset
tt: multiset
s1: multiset
U211: multiset
nil: multiset
U314: multiset
take2: [2,1]
and2: [2,1]
isNat: []
isNatList: []
isNatIList: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(ok(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(ok(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  LENGTH(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1, x2)  =  x2
tt  =  tt
s(x1)  =  x1
length(x1)  =  length(x1)
U21(x1)  =  x1
nil  =  nil
U31(x1, x2, x3, x4)  =  x1
take(x1, x2)  =  take(x1)
and(x1, x2)  =  x1
isNat(x1)  =  x1
isNatList(x1)  =  x1
isNatIList(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
proper1 > [LENGTH1, ok1, active1, zeros, cons1, length1, take1] > [mark, 0, tt, nil, top]

Status:
LENGTH1: multiset
ok1: [1]
active1: [1]
zeros: multiset
mark: multiset
cons1: [1]
0: multiset
tt: multiset
length1: [1]
nil: multiset
take1: [1]
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(54) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(56) TRUE

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
s(x1)  =  s(x1)
length(x1)  =  x1
U21(x1)  =  U21(x1)
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNat(x1)  =  isNat
isNatList(x1)  =  isNatList
isNatIList(x1)  =  isNatIList
proper(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, tt, take2] > [zeros, cons2, U314] > [U112, s1, and2, isNatList] > [S1, mark1, 0, U211, nil, top]
[active1, tt, take2] > isNat > [U112, s1, and2, isNatList] > [S1, mark1, 0, U211, nil, top]
[active1, tt, take2] > isNatIList > [U112, s1, and2, isNatList] > [S1, mark1, 0, U211, nil, top]

Status:
S1: [1]
mark1: multiset
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U112: multiset
tt: multiset
s1: multiset
U211: multiset
nil: multiset
U314: multiset
take2: [2,1]
and2: [2,1]
isNat: []
isNatList: []
isNatIList: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1, x2)  =  x2
tt  =  tt
s(x1)  =  x1
length(x1)  =  length(x1)
U21(x1)  =  x1
nil  =  nil
U31(x1, x2, x3, x4)  =  x1
take(x1, x2)  =  take(x1)
and(x1, x2)  =  x1
isNat(x1)  =  x1
isNatList(x1)  =  x1
isNatIList(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
proper1 > [S1, ok1, active1, zeros, cons1, length1, take1] > [mark, 0, tt, nil, top]

Status:
S1: multiset
ok1: [1]
active1: [1]
zeros: multiset
mark: multiset
cons1: [1]
0: multiset
tt: multiset
length1: [1]
nil: multiset
take1: [1]
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(61) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(63) TRUE

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2)) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X1), ok(X2)) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  U111(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1)
tt  =  tt
s(x1)  =  s(x1)
length(x1)  =  length(x1)
U21(x1)  =  U21(x1)
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1)
isNat(x1)  =  x1
isNatList(x1)  =  isNatList(x1)
isNatIList(x1)  =  isNatIList(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
tt > [active1, zeros, cons2, length1, take2, proper1] > s1 > [U11^11, ok1, mark, 0, U111, U211, nil, U311, and1, isNatList1, isNatIList1, top]

Status:
U11^11: multiset
ok1: [1]
mark: []
active1: multiset
zeros: multiset
cons2: multiset
0: multiset
U111: [1]
tt: multiset
s1: multiset
length1: multiset
U211: [1]
nil: multiset
U311: [1]
take2: multiset
and1: [1]
isNatList1: [1]
isNatIList1: [1]
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  U111(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
s(x1)  =  s(x1)
length(x1)  =  length(x1)
U21(x1)  =  U21(x1)
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNat(x1)  =  isNat
isNatList(x1)  =  isNatList
isNatIList(x1)  =  isNatIList
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
U11^12 > [mark1, tt, isNat, isNatIList, ok, top]
[active1, U314, take2, isNatList] > cons2 > [U112, s1, length1, and2] > [mark1, tt, isNat, isNatIList, ok, top]
[active1, U314, take2, isNatList] > [0, U211, nil] > [mark1, tt, isNat, isNatIList, ok, top]
zeros > cons2 > [U112, s1, length1, and2] > [mark1, tt, isNat, isNatIList, ok, top]
zeros > [0, U211, nil] > [mark1, tt, isNat, isNatIList, ok, top]

Status:
U11^12: multiset
mark1: [1]
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U112: multiset
tt: multiset
s1: [1]
length1: [1]
U211: [1]
nil: multiset
U314: [1,3,4,2]
take2: [2,1]
and2: multiset
isNat: []
isNatList: []
isNatIList: []
ok: []
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(68) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(70) TRUE

(71) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(72) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1)
tt  =  tt
s(x1)  =  s(x1)
length(x1)  =  length(x1)
U21(x1)  =  U21(x1)
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1)
isNat(x1)  =  x1
isNatList(x1)  =  isNatList(x1)
isNatIList(x1)  =  isNatIList(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
tt > [active1, zeros, cons2, length1, take2, proper1] > s1 > [CONS1, ok1, mark, 0, U111, U211, nil, U311, and1, isNatList1, isNatIList1, top]

Status:
CONS1: multiset
ok1: [1]
mark: []
active1: multiset
zeros: multiset
cons2: multiset
0: multiset
U111: [1]
tt: multiset
s1: multiset
length1: multiset
U211: [1]
nil: multiset
U311: [1]
take2: multiset
and1: [1]
isNatList1: [1]
isNatIList1: [1]
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(73) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(74) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
s(x1)  =  s(x1)
length(x1)  =  length(x1)
U21(x1)  =  U21(x1)
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNat(x1)  =  isNat
isNatList(x1)  =  isNatList
isNatIList(x1)  =  isNatIList
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
CONS2 > [mark1, tt, isNat, isNatIList, ok, top]
[active1, U314, take2, isNatList] > cons2 > [U112, s1, length1, and2] > [mark1, tt, isNat, isNatIList, ok, top]
[active1, U314, take2, isNatList] > [0, U211, nil] > [mark1, tt, isNat, isNatIList, ok, top]
zeros > cons2 > [U112, s1, length1, and2] > [mark1, tt, isNat, isNatIList, ok, top]
zeros > [0, U211, nil] > [mark1, tt, isNat, isNatIList, ok, top]

Status:
CONS2: multiset
mark1: [1]
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U112: multiset
tt: multiset
s1: [1]
length1: [1]
U211: [1]
nil: multiset
U314: [1,3,4,2]
take2: [2,1]
and2: multiset
isNat: []
isNatList: []
isNatIList: []
ok: []
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(75) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(76) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(77) TRUE

(78) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(s(X)) → PROPER(X)
PROPER(length(X)) → PROPER(X)
PROPER(U21(X)) → PROPER(X)
PROPER(U31(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U31(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U31(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U31(X1, X2, X3, X4)) → PROPER(X4)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → PROPER(X)
PROPER(isNatList(X)) → PROPER(X)
PROPER(isNatIList(X)) → PROPER(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(79) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U31(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U31(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U31(X1, X2, X3, X4)) → PROPER(X4)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
cons(x1, x2)  =  cons(x1, x2)
U11(x1, x2)  =  U11(x1, x2)
s(x1)  =  x1
length(x1)  =  x1
U21(x1)  =  x1
U31(x1, x2, x3, x4)  =  U31(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNat(x1)  =  x1
isNatList(x1)  =  x1
isNatIList(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
tt > [cons2, take2, active1, zeros, proper1] > [PROPER1, U112, U314, and2, mark, 0, nil, ok, top]

Status:
PROPER1: multiset
cons2: multiset
U112: multiset
U314: multiset
take2: multiset
and2: multiset
active1: multiset
zeros: multiset
mark: multiset
0: multiset
tt: multiset
nil: multiset
proper1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(80) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)
PROPER(length(X)) → PROPER(X)
PROPER(U21(X)) → PROPER(X)
PROPER(isNat(X)) → PROPER(X)
PROPER(isNatList(X)) → PROPER(X)
PROPER(isNatIList(X)) → PROPER(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(81) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
PROPER(length(X)) → PROPER(X)
PROPER(U21(X)) → PROPER(X)
PROPER(isNat(X)) → PROPER(X)
PROPER(isNatList(X)) → PROPER(X)
PROPER(isNatIList(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
s(x1)  =  s(x1)
length(x1)  =  length(x1)
U21(x1)  =  U21(x1)
isNat(x1)  =  isNat(x1)
isNatList(x1)  =  isNatList(x1)
isNatIList(x1)  =  isNatIList(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
tt > [s1, length1, active1, zeros, cons2, take2, proper1] > [U211, isNat1, isNatList1, isNatIList1, mark, 0, U112, nil, U314, and2, ok, top]

Status:
s1: multiset
length1: multiset
U211: [1]
isNat1: [1]
isNatList1: [1]
isNatIList1: [1]
active1: multiset
zeros: multiset
mark: multiset
cons2: multiset
0: multiset
U112: [2,1]
tt: multiset
nil: multiset
U314: [1,2,4,3]
take2: multiset
and2: multiset
proper1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(82) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(83) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(84) TRUE

(85) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(and(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(86) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1, x2)  =  x1
cons(x1, x2)  =  x1
s(x1)  =  x1
length(x1)  =  x1
U21(x1)  =  x1
U31(x1, x2, x3, x4)  =  x1
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
nil  =  nil
isNat(x1)  =  isNat(x1)
isNatList(x1)  =  isNatList(x1)
isNatIList(x1)  =  isNatIList(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[take2, active1, zeros, proper1] > [ACTIVE1, mark, 0, tt, nil, isNat1, isNatList1, isNatIList1, ok, top]

Status:
ACTIVE1: [1]
take2: multiset
active1: multiset
zeros: multiset
mark: []
0: multiset
tt: multiset
nil: multiset
isNat1: multiset
isNatList1: multiset
isNatIList1: multiset
proper1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(87) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(88) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(and(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1, x2)  =  x1
cons(x1, x2)  =  x1
s(x1)  =  x1
length(x1)  =  x1
U21(x1)  =  x1
U31(x1, x2, x3, x4)  =  x1
and(x1, x2)  =  and(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
nil  =  nil
take(x1, x2)  =  x2
isNat(x1)  =  isNat(x1)
isNatList(x1)  =  isNatList(x1)
isNatIList(x1)  =  x1
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, zeros, proper1] > [ACTIVE1, and1, mark, 0, nil, isNat1, isNatList1, ok1, top]
tt > [ACTIVE1, and1, mark, 0, nil, isNat1, isNatList1, ok1, top]

Status:
ACTIVE1: [1]
and1: multiset
active1: multiset
zeros: multiset
mark: multiset
0: multiset
tt: multiset
nil: multiset
isNat1: multiset
isNatList1: multiset
proper1: multiset
ok1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(89) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2, X3, X4)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(90) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U11(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1, x2)  =  U11(x1, x2)
cons(x1, x2)  =  x1
s(x1)  =  x1
length(x1)  =  x1
U21(x1)  =  x1
U31(x1, x2, x3, x4)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
nil  =  nil
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNat(x1)  =  isNat(x1)
isNatList(x1)  =  isNatList(x1)
isNatIList(x1)  =  isNatIList(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
tt > [active1, zeros, take2, proper1] > [ACTIVE1, U112, mark, 0, nil, and2, isNat1, isNatList1, isNatIList1, ok, top]

Status:
ACTIVE1: multiset
U112: multiset
active1: multiset
zeros: multiset
mark: multiset
0: multiset
tt: multiset
nil: multiset
take2: multiset
and2: multiset
isNat1: multiset
isNatList1: multiset
isNatIList1: multiset
proper1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(91) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2, X3, X4)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(92) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U31(X1, X2, X3, X4)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
cons(x1, x2)  =  x1
s(x1)  =  x1
length(x1)  =  x1
U21(x1)  =  x1
U31(x1, x2, x3, x4)  =  U31(x1, x2, x3, x4)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
nil  =  nil
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNat(x1)  =  isNat(x1)
isNatList(x1)  =  isNatList(x1)
isNatIList(x1)  =  isNatIList(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
tt > [active1, zeros, take2, proper1] > [ACTIVE1, U314, mark, 0, U112, nil, and2, isNat1, isNatList1, isNatIList1, ok, top]

Status:
ACTIVE1: [1]
U314: multiset
active1: multiset
zeros: multiset
mark: multiset
0: multiset
U112: multiset
tt: multiset
nil: multiset
take2: multiset
and2: multiset
isNat1: multiset
isNatList1: multiset
isNatIList1: multiset
proper1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(93) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(U21(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(94) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U21(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
cons(x1, x2)  =  x1
s(x1)  =  x1
length(x1)  =  x1
U21(x1)  =  U21(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
0  =  0
U11(x1, x2)  =  U11(x2)
tt  =  tt
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNat(x1)  =  isNat(x1)
isNatList(x1)  =  isNatList(x1)
isNatIList(x1)  =  isNatIList(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
tt > [active1, zeros, take2, proper1] > [ACTIVE1, U211, mark, 0, U111, nil, U314, and2, isNat1, isNatList1, isNatIList1, ok, top]

Status:
ACTIVE1: [1]
U211: multiset
active1: multiset
zeros: multiset
mark: multiset
0: multiset
U111: multiset
tt: multiset
nil: multiset
U314: [4,3,2,1]
take2: multiset
and2: multiset
isNat1: multiset
isNatList1: multiset
isNatIList1: multiset
proper1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(95) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(96) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(length(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
cons(x1, x2)  =  x1
s(x1)  =  x1
length(x1)  =  length(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
0  =  0
U11(x1, x2)  =  U11(x2)
tt  =  tt
U21(x1)  =  U21(x1)
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNat(x1)  =  isNat(x1)
isNatList(x1)  =  isNatList(x1)
isNatIList(x1)  =  isNatIList(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
tt > [length1, active1, zeros, take2, proper1] > [ACTIVE1, mark, 0, U111, U211, nil, U314, and2, isNat1, isNatList1, isNatIList1, ok, top]

Status:
ACTIVE1: [1]
length1: multiset
active1: multiset
zeros: multiset
mark: multiset
0: multiset
U111: multiset
tt: multiset
U211: [1]
nil: multiset
U314: [1,2,4,3]
take2: multiset
and2: [2,1]
isNat1: [1]
isNatList1: [1]
isNatIList1: [1]
proper1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(97) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
cons(x1, x2)  =  x1
s(x1)  =  s(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
0  =  0
U11(x1, x2)  =  U11(x1)
tt  =  tt
length(x1)  =  length(x1)
U21(x1)  =  U21(x1)
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNat(x1)  =  isNat(x1)
isNatList(x1)  =  isNatList(x1)
isNatIList(x1)  =  isNatIList(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
tt > [s1, active1, zeros, length1, take2, proper1] > [ACTIVE1, mark, 0, U111, U211, nil, U314, and2, isNat1, isNatList1, isNatIList1, ok, top]

Status:
ACTIVE1: [1]
s1: multiset
active1: multiset
zeros: multiset
mark: []
0: multiset
U111: [1]
tt: multiset
length1: multiset
U211: [1]
nil: multiset
U314: [1,2,4,3]
take2: multiset
and2: multiset
isNat1: [1]
isNatList1: multiset
isNatIList1: multiset
proper1: multiset
ok: []
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(99) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(100) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(cons(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
s(x1)  =  s(x1)
length(x1)  =  length(x1)
U21(x1)  =  U21(x1)
nil  =  nil
U31(x1, x2, x3, x4)  =  U31(x1, x2, x3, x4)
take(x1, x2)  =  take(x1, x2)
and(x1, x2)  =  and(x2)
isNat(x1)  =  isNat(x1)
isNatList(x1)  =  isNatList(x1)
isNatIList(x1)  =  isNatIList(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[cons2, active1, zeros, length1, take2, proper1] > s1 > [mark, 0, U11, tt, U211, nil, U314, and1, isNat1, isNatList1, isNatIList1, ok, top]

Status:
cons2: [1,2]
active1: [1]
zeros: multiset
mark: multiset
0: multiset
U11: multiset
tt: multiset
s1: multiset
length1: [1]
U211: multiset
nil: multiset
U314: [1,2,4,3]
take2: [2,1]
and1: [1]
isNat1: multiset
isNatList1: multiset
isNatIList1: multiset
proper1: [1]
ok: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(101) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(102) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(103) TRUE

(104) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, L)) → mark(s(length(L)))
active(U21(tt)) → mark(nil)
active(U31(tt, IL, M, N)) → mark(cons(N, take(M, IL)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(isNatList(V1))
active(isNat(s(V1))) → mark(isNat(V1))
active(isNatIList(V)) → mark(isNatList(V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(and(isNat(V1), isNatList(V2)))
active(isNatList(take(V1, V2))) → mark(and(isNat(V1), isNatIList(V2)))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U11(and(isNatList(L), isNat(N)), L))
active(take(0, IL)) → mark(U21(isNatIList(IL)))
active(take(s(M), cons(N, IL))) → mark(U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2, X3, X4)) → U31(active(X1), X2, X3, X4)
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2, X3, X4) → mark(U31(X1, X2, X3, X4))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(U21(X)) → U21(proper(X))
proper(nil) → ok(nil)
proper(U31(X1, X2, X3, X4)) → U31(proper(X1), proper(X2), proper(X3), proper(X4))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U31(X1, X2, X3, X4))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatList(ok(X)) → ok(isNatList(X))
isNatIList(ok(X)) → ok(isNatIList(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.