(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U101(tt, V1, V2) → a__U102(a__isNatKind(V1), V1, V2)
a__U102(tt, V1, V2) → a__U103(a__isNatIListKind(V2), V1, V2)
a__U103(tt, V1, V2) → a__U104(a__isNatIListKind(V2), V1, V2)
a__U104(tt, V1, V2) → a__U105(a__isNat(V1), V2)
a__U105(tt, V2) → a__U106(a__isNatIList(V2))
a__U106(tt) → tt
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U111(tt, L, N) → a__U112(a__isNatIListKind(L), L, N)
a__U112(tt, L, N) → a__U113(a__isNat(N), L, N)
a__U113(tt, L, N) → a__U114(a__isNatKind(N), L)
a__U114(tt, L) → s(a__length(mark(L)))
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U121(tt, IL) → a__U122(a__isNatIListKind(IL))
a__U122(tt) → nil
a__U13(tt) → tt
a__U131(tt, IL, M, N) → a__U132(a__isNatIListKind(IL), IL, M, N)
a__U132(tt, IL, M, N) → a__U133(a__isNat(M), IL, M, N)
a__U133(tt, IL, M, N) → a__U134(a__isNatKind(M), IL, M, N)
a__U134(tt, IL, M, N) → a__U135(a__isNat(N), IL, M, N)
a__U135(tt, IL, M, N) → a__U136(a__isNatKind(N), IL, M, N)
a__U136(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIListKind(V2))
a__U62(tt) → tt
a__U71(tt) → tt
a__U81(tt) → tt
a__U91(tt, V1, V2) → a__U92(a__isNatKind(V1), V1, V2)
a__U92(tt, V1, V2) → a__U93(a__isNatIListKind(V2), V1, V2)
a__U93(tt, V1, V2) → a__U94(a__isNatIListKind(V2), V1, V2)
a__U94(tt, V1, V2) → a__U95(a__isNat(V1), V2)
a__U95(tt, V2) → a__U96(a__isNatList(V2))
a__U96(tt) → tt
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatIListKind(take(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U71(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U81(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U91(a__isNatKind(V1), V1, V2)
a__isNatList(take(V1, V2)) → a__U101(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U111(a__isNatList(L), L, N)
a__take(0, IL) → a__U121(a__isNatIList(IL), IL)
a__take(s(M), cons(N, IL)) → a__U131(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(U105(X1, X2)) → a__U105(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U106(X)) → a__U106(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(U111(X1, X2, X3)) → a__U111(mark(X1), X2, X3)
mark(U112(X1, X2, X3)) → a__U112(mark(X1), X2, X3)
mark(U113(X1, X2, X3)) → a__U113(mark(X1), X2, X3)
mark(U114(X1, X2)) → a__U114(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U121(X1, X2)) → a__U121(mark(X1), X2)
mark(U122(X)) → a__U122(mark(X))
mark(U131(X1, X2, X3, X4)) → a__U131(mark(X1), X2, X3, X4)
mark(U132(X1, X2, X3, X4)) → a__U132(mark(X1), X2, X3, X4)
mark(U133(X1, X2, X3, X4)) → a__U133(mark(X1), X2, X3, X4)
mark(U134(X1, X2, X3, X4)) → a__U134(mark(X1), X2, X3, X4)
mark(U135(X1, X2, X3, X4)) → a__U135(mark(X1), X2, X3, X4)
mark(U136(X1, X2, X3, X4)) → a__U136(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2, X3)) → a__U94(mark(X1), X2, X3)
mark(U95(X1, X2)) → a__U95(mark(X1), X2)
mark(U96(X)) → a__U96(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNatIListKind(X) → isNatIListKind(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__U105(X1, X2) → U105(X1, X2)
a__isNat(X) → isNat(X)
a__U106(X) → U106(X)
a__isNatIList(X) → isNatIList(X)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__U111(X1, X2, X3) → U111(X1, X2, X3)
a__U112(X1, X2, X3) → U112(X1, X2, X3)
a__U113(X1, X2, X3) → U113(X1, X2, X3)
a__U114(X1, X2) → U114(X1, X2)
a__length(X) → length(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U121(X1, X2) → U121(X1, X2)
a__U122(X) → U122(X)
a__U131(X1, X2, X3, X4) → U131(X1, X2, X3, X4)
a__U132(X1, X2, X3, X4) → U132(X1, X2, X3, X4)
a__U133(X1, X2, X3, X4) → U133(X1, X2, X3, X4)
a__U134(X1, X2, X3, X4) → U134(X1, X2, X3, X4)
a__U135(X1, X2, X3, X4) → U135(X1, X2, X3, X4)
a__U136(X1, X2, X3, X4) → U136(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X) → U71(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2, X3) → U94(X1, X2, X3)
a__U95(X1, X2) → U95(X1, X2)
a__U96(X) → U96(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U101(tt, V1, V2) → A__U102(a__isNatKind(V1), V1, V2)
A__U101(tt, V1, V2) → A__ISNATKIND(V1)
A__U102(tt, V1, V2) → A__U103(a__isNatIListKind(V2), V1, V2)
A__U102(tt, V1, V2) → A__ISNATILISTKIND(V2)
A__U103(tt, V1, V2) → A__U104(a__isNatIListKind(V2), V1, V2)
A__U103(tt, V1, V2) → A__ISNATILISTKIND(V2)
A__U104(tt, V1, V2) → A__U105(a__isNat(V1), V2)
A__U104(tt, V1, V2) → A__ISNAT(V1)
A__U105(tt, V2) → A__U106(a__isNatIList(V2))
A__U105(tt, V2) → A__ISNATILIST(V2)
A__U11(tt, V1) → A__U12(a__isNatIListKind(V1), V1)
A__U11(tt, V1) → A__ISNATILISTKIND(V1)
A__U111(tt, L, N) → A__U112(a__isNatIListKind(L), L, N)
A__U111(tt, L, N) → A__ISNATILISTKIND(L)
A__U112(tt, L, N) → A__U113(a__isNat(N), L, N)
A__U112(tt, L, N) → A__ISNAT(N)
A__U113(tt, L, N) → A__U114(a__isNatKind(N), L)
A__U113(tt, L, N) → A__ISNATKIND(N)
A__U114(tt, L) → A__LENGTH(mark(L))
A__U114(tt, L) → MARK(L)
A__U12(tt, V1) → A__U13(a__isNatList(V1))
A__U12(tt, V1) → A__ISNATLIST(V1)
A__U121(tt, IL) → A__U122(a__isNatIListKind(IL))
A__U121(tt, IL) → A__ISNATILISTKIND(IL)
A__U131(tt, IL, M, N) → A__U132(a__isNatIListKind(IL), IL, M, N)
A__U131(tt, IL, M, N) → A__ISNATILISTKIND(IL)
A__U132(tt, IL, M, N) → A__U133(a__isNat(M), IL, M, N)
A__U132(tt, IL, M, N) → A__ISNAT(M)
A__U133(tt, IL, M, N) → A__U134(a__isNatKind(M), IL, M, N)
A__U133(tt, IL, M, N) → A__ISNATKIND(M)
A__U134(tt, IL, M, N) → A__U135(a__isNat(N), IL, M, N)
A__U134(tt, IL, M, N) → A__ISNAT(N)
A__U135(tt, IL, M, N) → A__U136(a__isNatKind(N), IL, M, N)
A__U135(tt, IL, M, N) → A__ISNATKIND(N)
A__U136(tt, IL, M, N) → MARK(N)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNATKIND(V1)
A__U22(tt, V1) → A__U23(a__isNat(V1))
A__U22(tt, V1) → A__ISNAT(V1)
A__U31(tt, V) → A__U32(a__isNatIListKind(V), V)
A__U31(tt, V) → A__ISNATILISTKIND(V)
A__U32(tt, V) → A__U33(a__isNatList(V))
A__U32(tt, V) → A__ISNATLIST(V)
A__U41(tt, V1, V2) → A__U42(a__isNatKind(V1), V1, V2)
A__U41(tt, V1, V2) → A__ISNATKIND(V1)
A__U42(tt, V1, V2) → A__U43(a__isNatIListKind(V2), V1, V2)
A__U42(tt, V1, V2) → A__ISNATILISTKIND(V2)
A__U43(tt, V1, V2) → A__U44(a__isNatIListKind(V2), V1, V2)
A__U43(tt, V1, V2) → A__ISNATILISTKIND(V2)
A__U44(tt, V1, V2) → A__U45(a__isNat(V1), V2)
A__U44(tt, V1, V2) → A__ISNAT(V1)
A__U45(tt, V2) → A__U46(a__isNatIList(V2))
A__U45(tt, V2) → A__ISNATILIST(V2)
A__U51(tt, V2) → A__U52(a__isNatIListKind(V2))
A__U51(tt, V2) → A__ISNATILISTKIND(V2)
A__U61(tt, V2) → A__U62(a__isNatIListKind(V2))
A__U61(tt, V2) → A__ISNATILISTKIND(V2)
A__U91(tt, V1, V2) → A__U92(a__isNatKind(V1), V1, V2)
A__U91(tt, V1, V2) → A__ISNATKIND(V1)
A__U92(tt, V1, V2) → A__U93(a__isNatIListKind(V2), V1, V2)
A__U92(tt, V1, V2) → A__ISNATILISTKIND(V2)
A__U93(tt, V1, V2) → A__U94(a__isNatIListKind(V2), V1, V2)
A__U93(tt, V1, V2) → A__ISNATILISTKIND(V2)
A__U94(tt, V1, V2) → A__U95(a__isNat(V1), V2)
A__U94(tt, V1, V2) → A__ISNAT(V1)
A__U95(tt, V2) → A__U96(a__isNatList(V2))
A__U95(tt, V2) → A__ISNATLIST(V2)
A__ISNAT(length(V1)) → A__U11(a__isNatIListKind(V1), V1)
A__ISNAT(length(V1)) → A__ISNATILISTKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNATILIST(V) → A__U31(a__isNatIListKind(V), V)
A__ISNATILIST(V) → A__ISNATILISTKIND(V)
A__ISNATILIST(cons(V1, V2)) → A__U41(a__isNatKind(V1), V1, V2)
A__ISNATILIST(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATILISTKIND(cons(V1, V2)) → A__U51(a__isNatKind(V1), V2)
A__ISNATILISTKIND(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATILISTKIND(take(V1, V2)) → A__U61(a__isNatKind(V1), V2)
A__ISNATILISTKIND(take(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(length(V1)) → A__U71(a__isNatIListKind(V1))
A__ISNATKIND(length(V1)) → A__ISNATILISTKIND(V1)
A__ISNATKIND(s(V1)) → A__U81(a__isNatKind(V1))
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNATLIST(cons(V1, V2)) → A__U91(a__isNatKind(V1), V1, V2)
A__ISNATLIST(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATLIST(take(V1, V2)) → A__U101(a__isNatKind(V1), V1, V2)
A__ISNATLIST(take(V1, V2)) → A__ISNATKIND(V1)
A__LENGTH(cons(N, L)) → A__U111(a__isNatList(L), L, N)
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
A__TAKE(0, IL) → A__U121(a__isNatIList(IL), IL)
A__TAKE(0, IL) → A__ISNATILIST(IL)
A__TAKE(s(M), cons(N, IL)) → A__U131(a__isNatIList(IL), IL, M, N)
A__TAKE(s(M), cons(N, IL)) → A__ISNATILIST(IL)
MARK(zeros) → A__ZEROS
MARK(U101(X1, X2, X3)) → A__U101(mark(X1), X2, X3)
MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(U102(X1, X2, X3)) → A__U102(mark(X1), X2, X3)
MARK(U102(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(U103(X1, X2, X3)) → A__U103(mark(X1), X2, X3)
MARK(U103(X1, X2, X3)) → MARK(X1)
MARK(isNatIListKind(X)) → A__ISNATILISTKIND(X)
MARK(U104(X1, X2, X3)) → A__U104(mark(X1), X2, X3)
MARK(U104(X1, X2, X3)) → MARK(X1)
MARK(U105(X1, X2)) → A__U105(mark(X1), X2)
MARK(U105(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U106(X)) → A__U106(mark(X))
MARK(U106(X)) → MARK(X)
MARK(isNatIList(X)) → A__ISNATILIST(X)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(U111(X1, X2, X3)) → A__U111(mark(X1), X2, X3)
MARK(U111(X1, X2, X3)) → MARK(X1)
MARK(U112(X1, X2, X3)) → A__U112(mark(X1), X2, X3)
MARK(U112(X1, X2, X3)) → MARK(X1)
MARK(U113(X1, X2, X3)) → A__U113(mark(X1), X2, X3)
MARK(U113(X1, X2, X3)) → MARK(X1)
MARK(U114(X1, X2)) → A__U114(mark(X1), X2)
MARK(U114(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(U13(X)) → A__U13(mark(X))
MARK(U13(X)) → MARK(X)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(U121(X1, X2)) → A__U121(mark(X1), X2)
MARK(U121(X1, X2)) → MARK(X1)
MARK(U122(X)) → A__U122(mark(X))
MARK(U122(X)) → MARK(X)
MARK(U131(X1, X2, X3, X4)) → A__U131(mark(X1), X2, X3, X4)
MARK(U131(X1, X2, X3, X4)) → MARK(X1)
MARK(U132(X1, X2, X3, X4)) → A__U132(mark(X1), X2, X3, X4)
MARK(U132(X1, X2, X3, X4)) → MARK(X1)
MARK(U133(X1, X2, X3, X4)) → A__U133(mark(X1), X2, X3, X4)
MARK(U133(X1, X2, X3, X4)) → MARK(X1)
MARK(U134(X1, X2, X3, X4)) → A__U134(mark(X1), X2, X3, X4)
MARK(U134(X1, X2, X3, X4)) → MARK(X1)
MARK(U135(X1, X2, X3, X4)) → A__U135(mark(X1), X2, X3, X4)
MARK(U135(X1, X2, X3, X4)) → MARK(X1)
MARK(U136(X1, X2, X3, X4)) → A__U136(mark(X1), X2, X3, X4)
MARK(U136(X1, X2, X3, X4)) → MARK(X1)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → A__U22(mark(X1), X2)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → A__U23(mark(X))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X1, X2)) → A__U32(mark(X1), X2)
MARK(U32(X1, X2)) → MARK(X1)
MARK(U33(X)) → A__U33(mark(X))
MARK(U33(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2, X3)) → A__U42(mark(X1), X2, X3)
MARK(U42(X1, X2, X3)) → MARK(X1)
MARK(U43(X1, X2, X3)) → A__U43(mark(X1), X2, X3)
MARK(U43(X1, X2, X3)) → MARK(X1)
MARK(U44(X1, X2, X3)) → A__U44(mark(X1), X2, X3)
MARK(U44(X1, X2, X3)) → MARK(X1)
MARK(U45(X1, X2)) → A__U45(mark(X1), X2)
MARK(U45(X1, X2)) → MARK(X1)
MARK(U46(X)) → A__U46(mark(X))
MARK(U46(X)) → MARK(X)
MARK(U51(X1, X2)) → A__U51(mark(X1), X2)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → A__U52(mark(X))
MARK(U52(X)) → MARK(X)
MARK(U61(X1, X2)) → A__U61(mark(X1), X2)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → A__U62(mark(X))
MARK(U62(X)) → MARK(X)
MARK(U71(X)) → A__U71(mark(X))
MARK(U71(X)) → MARK(X)
MARK(U81(X)) → A__U81(mark(X))
MARK(U81(X)) → MARK(X)
MARK(U91(X1, X2, X3)) → A__U91(mark(X1), X2, X3)
MARK(U91(X1, X2, X3)) → MARK(X1)
MARK(U92(X1, X2, X3)) → A__U92(mark(X1), X2, X3)
MARK(U92(X1, X2, X3)) → MARK(X1)
MARK(U93(X1, X2, X3)) → A__U93(mark(X1), X2, X3)
MARK(U93(X1, X2, X3)) → MARK(X1)
MARK(U94(X1, X2, X3)) → A__U94(mark(X1), X2, X3)
MARK(U94(X1, X2, X3)) → MARK(X1)
MARK(U95(X1, X2)) → A__U95(mark(X1), X2)
MARK(U95(X1, X2)) → MARK(X1)
MARK(U96(X)) → A__U96(mark(X))
MARK(U96(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U101(tt, V1, V2) → a__U102(a__isNatKind(V1), V1, V2)
a__U102(tt, V1, V2) → a__U103(a__isNatIListKind(V2), V1, V2)
a__U103(tt, V1, V2) → a__U104(a__isNatIListKind(V2), V1, V2)
a__U104(tt, V1, V2) → a__U105(a__isNat(V1), V2)
a__U105(tt, V2) → a__U106(a__isNatIList(V2))
a__U106(tt) → tt
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U111(tt, L, N) → a__U112(a__isNatIListKind(L), L, N)
a__U112(tt, L, N) → a__U113(a__isNat(N), L, N)
a__U113(tt, L, N) → a__U114(a__isNatKind(N), L)
a__U114(tt, L) → s(a__length(mark(L)))
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U121(tt, IL) → a__U122(a__isNatIListKind(IL))
a__U122(tt) → nil
a__U13(tt) → tt
a__U131(tt, IL, M, N) → a__U132(a__isNatIListKind(IL), IL, M, N)
a__U132(tt, IL, M, N) → a__U133(a__isNat(M), IL, M, N)
a__U133(tt, IL, M, N) → a__U134(a__isNatKind(M), IL, M, N)
a__U134(tt, IL, M, N) → a__U135(a__isNat(N), IL, M, N)
a__U135(tt, IL, M, N) → a__U136(a__isNatKind(N), IL, M, N)
a__U136(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIListKind(V2))
a__U62(tt) → tt
a__U71(tt) → tt
a__U81(tt) → tt
a__U91(tt, V1, V2) → a__U92(a__isNatKind(V1), V1, V2)
a__U92(tt, V1, V2) → a__U93(a__isNatIListKind(V2), V1, V2)
a__U93(tt, V1, V2) → a__U94(a__isNatIListKind(V2), V1, V2)
a__U94(tt, V1, V2) → a__U95(a__isNat(V1), V2)
a__U95(tt, V2) → a__U96(a__isNatList(V2))
a__U96(tt) → tt
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatIListKind(take(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U71(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U81(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U91(a__isNatKind(V1), V1, V2)
a__isNatList(take(V1, V2)) → a__U101(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U111(a__isNatList(L), L, N)
a__take(0, IL) → a__U121(a__isNatIList(IL), IL)
a__take(s(M), cons(N, IL)) → a__U131(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(U105(X1, X2)) → a__U105(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U106(X)) → a__U106(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(U111(X1, X2, X3)) → a__U111(mark(X1), X2, X3)
mark(U112(X1, X2, X3)) → a__U112(mark(X1), X2, X3)
mark(U113(X1, X2, X3)) → a__U113(mark(X1), X2, X3)
mark(U114(X1, X2)) → a__U114(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U121(X1, X2)) → a__U121(mark(X1), X2)
mark(U122(X)) → a__U122(mark(X))
mark(U131(X1, X2, X3, X4)) → a__U131(mark(X1), X2, X3, X4)
mark(U132(X1, X2, X3, X4)) → a__U132(mark(X1), X2, X3, X4)
mark(U133(X1, X2, X3, X4)) → a__U133(mark(X1), X2, X3, X4)
mark(U134(X1, X2, X3, X4)) → a__U134(mark(X1), X2, X3, X4)
mark(U135(X1, X2, X3, X4)) → a__U135(mark(X1), X2, X3, X4)
mark(U136(X1, X2, X3, X4)) → a__U136(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2, X3)) → a__U94(mark(X1), X2, X3)
mark(U95(X1, X2)) → a__U95(mark(X1), X2)
mark(U96(X)) → a__U96(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNatIListKind(X) → isNatIListKind(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__U105(X1, X2) → U105(X1, X2)
a__isNat(X) → isNat(X)
a__U106(X) → U106(X)
a__isNatIList(X) → isNatIList(X)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__U111(X1, X2, X3) → U111(X1, X2, X3)
a__U112(X1, X2, X3) → U112(X1, X2, X3)
a__U113(X1, X2, X3) → U113(X1, X2, X3)
a__U114(X1, X2) → U114(X1, X2)
a__length(X) → length(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U121(X1, X2) → U121(X1, X2)
a__U122(X) → U122(X)
a__U131(X1, X2, X3, X4) → U131(X1, X2, X3, X4)
a__U132(X1, X2, X3, X4) → U132(X1, X2, X3, X4)
a__U133(X1, X2, X3, X4) → U133(X1, X2, X3, X4)
a__U134(X1, X2, X3, X4) → U134(X1, X2, X3, X4)
a__U135(X1, X2, X3, X4) → U135(X1, X2, X3, X4)
a__U136(X1, X2, X3, X4) → U136(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X) → U71(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2, X3) → U94(X1, X2, X3)
a__U95(X1, X2) → U95(X1, X2)
a__U96(X) → U96(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 83 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U51(tt, V2) → A__ISNATILISTKIND(V2)
A__ISNATILISTKIND(cons(V1, V2)) → A__U51(a__isNatKind(V1), V2)
A__ISNATILISTKIND(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(length(V1)) → A__ISNATILISTKIND(V1)
A__ISNATILISTKIND(take(V1, V2)) → A__U61(a__isNatKind(V1), V2)
A__U61(tt, V2) → A__ISNATILISTKIND(V2)
A__ISNATILISTKIND(take(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U101(tt, V1, V2) → a__U102(a__isNatKind(V1), V1, V2)
a__U102(tt, V1, V2) → a__U103(a__isNatIListKind(V2), V1, V2)
a__U103(tt, V1, V2) → a__U104(a__isNatIListKind(V2), V1, V2)
a__U104(tt, V1, V2) → a__U105(a__isNat(V1), V2)
a__U105(tt, V2) → a__U106(a__isNatIList(V2))
a__U106(tt) → tt
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U111(tt, L, N) → a__U112(a__isNatIListKind(L), L, N)
a__U112(tt, L, N) → a__U113(a__isNat(N), L, N)
a__U113(tt, L, N) → a__U114(a__isNatKind(N), L)
a__U114(tt, L) → s(a__length(mark(L)))
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U121(tt, IL) → a__U122(a__isNatIListKind(IL))
a__U122(tt) → nil
a__U13(tt) → tt
a__U131(tt, IL, M, N) → a__U132(a__isNatIListKind(IL), IL, M, N)
a__U132(tt, IL, M, N) → a__U133(a__isNat(M), IL, M, N)
a__U133(tt, IL, M, N) → a__U134(a__isNatKind(M), IL, M, N)
a__U134(tt, IL, M, N) → a__U135(a__isNat(N), IL, M, N)
a__U135(tt, IL, M, N) → a__U136(a__isNatKind(N), IL, M, N)
a__U136(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIListKind(V2))
a__U62(tt) → tt
a__U71(tt) → tt
a__U81(tt) → tt
a__U91(tt, V1, V2) → a__U92(a__isNatKind(V1), V1, V2)
a__U92(tt, V1, V2) → a__U93(a__isNatIListKind(V2), V1, V2)
a__U93(tt, V1, V2) → a__U94(a__isNatIListKind(V2), V1, V2)
a__U94(tt, V1, V2) → a__U95(a__isNat(V1), V2)
a__U95(tt, V2) → a__U96(a__isNatList(V2))
a__U96(tt) → tt
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatIListKind(take(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U71(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U81(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U91(a__isNatKind(V1), V1, V2)
a__isNatList(take(V1, V2)) → a__U101(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U111(a__isNatList(L), L, N)
a__take(0, IL) → a__U121(a__isNatIList(IL), IL)
a__take(s(M), cons(N, IL)) → a__U131(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(U105(X1, X2)) → a__U105(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U106(X)) → a__U106(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(U111(X1, X2, X3)) → a__U111(mark(X1), X2, X3)
mark(U112(X1, X2, X3)) → a__U112(mark(X1), X2, X3)
mark(U113(X1, X2, X3)) → a__U113(mark(X1), X2, X3)
mark(U114(X1, X2)) → a__U114(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U121(X1, X2)) → a__U121(mark(X1), X2)
mark(U122(X)) → a__U122(mark(X))
mark(U131(X1, X2, X3, X4)) → a__U131(mark(X1), X2, X3, X4)
mark(U132(X1, X2, X3, X4)) → a__U132(mark(X1), X2, X3, X4)
mark(U133(X1, X2, X3, X4)) → a__U133(mark(X1), X2, X3, X4)
mark(U134(X1, X2, X3, X4)) → a__U134(mark(X1), X2, X3, X4)
mark(U135(X1, X2, X3, X4)) → a__U135(mark(X1), X2, X3, X4)
mark(U136(X1, X2, X3, X4)) → a__U136(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2, X3)) → a__U94(mark(X1), X2, X3)
mark(U95(X1, X2)) → a__U95(mark(X1), X2)
mark(U96(X)) → a__U96(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNatIListKind(X) → isNatIListKind(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__U105(X1, X2) → U105(X1, X2)
a__isNat(X) → isNat(X)
a__U106(X) → U106(X)
a__isNatIList(X) → isNatIList(X)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__U111(X1, X2, X3) → U111(X1, X2, X3)
a__U112(X1, X2, X3) → U112(X1, X2, X3)
a__U113(X1, X2, X3) → U113(X1, X2, X3)
a__U114(X1, X2) → U114(X1, X2)
a__length(X) → length(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U121(X1, X2) → U121(X1, X2)
a__U122(X) → U122(X)
a__U131(X1, X2, X3, X4) → U131(X1, X2, X3, X4)
a__U132(X1, X2, X3, X4) → U132(X1, X2, X3, X4)
a__U133(X1, X2, X3, X4) → U133(X1, X2, X3, X4)
a__U134(X1, X2, X3, X4) → U134(X1, X2, X3, X4)
a__U135(X1, X2, X3, X4) → U135(X1, X2, X3, X4)
a__U136(X1, X2, X3, X4) → U136(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X) → U71(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2, X3) → U94(X1, X2, X3)
a__U95(X1, X2) → U95(X1, X2)
a__U96(X) → U96(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U51(tt, V2) → A__ISNATILISTKIND(V2)
A__ISNATILISTKIND(cons(V1, V2)) → A__U51(a__isNatKind(V1), V2)
A__ISNATILISTKIND(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(length(V1)) → A__ISNATILISTKIND(V1)
A__ISNATILISTKIND(take(V1, V2)) → A__U61(a__isNatKind(V1), V2)
A__U61(tt, V2) → A__ISNATILISTKIND(V2)
A__ISNATILISTKIND(take(V1, V2)) → A__ISNATKIND(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U51(x1, x2)  =  A__U51(x2)
tt  =  tt
A__ISNATILISTKIND(x1)  =  A__ISNATILISTKIND(x1)
cons(x1, x2)  =  cons(x1, x2)
a__isNatKind(x1)  =  a__isNatKind
A__ISNATKIND(x1)  =  x1
length(x1)  =  length(x1)
take(x1, x2)  =  take(x1, x2)
A__U61(x1, x2)  =  A__U61(x2)
s(x1)  =  x1
a__U62(x1)  =  x1
a__U61(x1, x2)  =  x2
U61(x1, x2)  =  x2
a__U52(x1)  =  x1
U52(x1)  =  U52
a__isNatIListKind(x1)  =  x1
a__U71(x1)  =  x1
U71(x1)  =  x1
a__U51(x1, x2)  =  x1
U62(x1)  =  x1
a__U81(x1)  =  x1
U81(x1)  =  x1
0  =  0
nil  =  nil
zeros  =  zeros
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
U51(x1, x2)  =  U51(x1, x2)

Recursive Path Order [RPO].
Precedence:
cons2 > AU511 > AISNATILISTKIND1 > aisNatKind
length1 > AISNATILISTKIND1 > aisNatKind
take2 > AU611 > AISNATILISTKIND1 > aisNatKind
U52 > aisNatKind
0 > tt > AISNATILISTKIND1 > aisNatKind
nil > tt > AISNATILISTKIND1 > aisNatKind
zeros > aisNatKind
isNatIListKind > aisNatKind
isNatKind > aisNatKind
U512 > aisNatKind

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U101(tt, V1, V2) → a__U102(a__isNatKind(V1), V1, V2)
a__U102(tt, V1, V2) → a__U103(a__isNatIListKind(V2), V1, V2)
a__U103(tt, V1, V2) → a__U104(a__isNatIListKind(V2), V1, V2)
a__U104(tt, V1, V2) → a__U105(a__isNat(V1), V2)
a__U105(tt, V2) → a__U106(a__isNatIList(V2))
a__U106(tt) → tt
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U111(tt, L, N) → a__U112(a__isNatIListKind(L), L, N)
a__U112(tt, L, N) → a__U113(a__isNat(N), L, N)
a__U113(tt, L, N) → a__U114(a__isNatKind(N), L)
a__U114(tt, L) → s(a__length(mark(L)))
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U121(tt, IL) → a__U122(a__isNatIListKind(IL))
a__U122(tt) → nil
a__U13(tt) → tt
a__U131(tt, IL, M, N) → a__U132(a__isNatIListKind(IL), IL, M, N)
a__U132(tt, IL, M, N) → a__U133(a__isNat(M), IL, M, N)
a__U133(tt, IL, M, N) → a__U134(a__isNatKind(M), IL, M, N)
a__U134(tt, IL, M, N) → a__U135(a__isNat(N), IL, M, N)
a__U135(tt, IL, M, N) → a__U136(a__isNatKind(N), IL, M, N)
a__U136(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIListKind(V2))
a__U62(tt) → tt
a__U71(tt) → tt
a__U81(tt) → tt
a__U91(tt, V1, V2) → a__U92(a__isNatKind(V1), V1, V2)
a__U92(tt, V1, V2) → a__U93(a__isNatIListKind(V2), V1, V2)
a__U93(tt, V1, V2) → a__U94(a__isNatIListKind(V2), V1, V2)
a__U94(tt, V1, V2) → a__U95(a__isNat(V1), V2)
a__U95(tt, V2) → a__U96(a__isNatList(V2))
a__U96(tt) → tt
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatIListKind(take(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U71(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U81(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U91(a__isNatKind(V1), V1, V2)
a__isNatList(take(V1, V2)) → a__U101(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U111(a__isNatList(L), L, N)
a__take(0, IL) → a__U121(a__isNatIList(IL), IL)
a__take(s(M), cons(N, IL)) → a__U131(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(U105(X1, X2)) → a__U105(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U106(X)) → a__U106(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(U111(X1, X2, X3)) → a__U111(mark(X1), X2, X3)
mark(U112(X1, X2, X3)) → a__U112(mark(X1), X2, X3)
mark(U113(X1, X2, X3)) → a__U113(mark(X1), X2, X3)
mark(U114(X1, X2)) → a__U114(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U121(X1, X2)) → a__U121(mark(X1), X2)
mark(U122(X)) → a__U122(mark(X))
mark(U131(X1, X2, X3, X4)) → a__U131(mark(X1), X2, X3, X4)
mark(U132(X1, X2, X3, X4)) → a__U132(mark(X1), X2, X3, X4)
mark(U133(X1, X2, X3, X4)) → a__U133(mark(X1), X2, X3, X4)
mark(U134(X1, X2, X3, X4)) → a__U134(mark(X1), X2, X3, X4)
mark(U135(X1, X2, X3, X4)) → a__U135(mark(X1), X2, X3, X4)
mark(U136(X1, X2, X3, X4)) → a__U136(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2, X3)) → a__U94(mark(X1), X2, X3)
mark(U95(X1, X2)) → a__U95(mark(X1), X2)
mark(U96(X)) → a__U96(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNatIListKind(X) → isNatIListKind(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__U105(X1, X2) → U105(X1, X2)
a__isNat(X) → isNat(X)
a__U106(X) → U106(X)
a__isNatIList(X) → isNatIList(X)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__U111(X1, X2, X3) → U111(X1, X2, X3)
a__U112(X1, X2, X3) → U112(X1, X2, X3)
a__U113(X1, X2, X3) → U113(X1, X2, X3)
a__U114(X1, X2) → U114(X1, X2)
a__length(X) → length(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U121(X1, X2) → U121(X1, X2)
a__U122(X) → U122(X)
a__U131(X1, X2, X3, X4) → U131(X1, X2, X3, X4)
a__U132(X1, X2, X3, X4) → U132(X1, X2, X3, X4)
a__U133(X1, X2, X3, X4) → U133(X1, X2, X3, X4)
a__U134(X1, X2, X3, X4) → U134(X1, X2, X3, X4)
a__U135(X1, X2, X3, X4) → U135(X1, X2, X3, X4)
a__U136(X1, X2, X3, X4) → U136(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X) → U71(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2, X3) → U94(X1, X2, X3)
a__U95(X1, X2) → U95(X1, X2)
a__U96(X) → U96(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
s1 > AISNATKIND1

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U101(tt, V1, V2) → a__U102(a__isNatKind(V1), V1, V2)
a__U102(tt, V1, V2) → a__U103(a__isNatIListKind(V2), V1, V2)
a__U103(tt, V1, V2) → a__U104(a__isNatIListKind(V2), V1, V2)
a__U104(tt, V1, V2) → a__U105(a__isNat(V1), V2)
a__U105(tt, V2) → a__U106(a__isNatIList(V2))
a__U106(tt) → tt
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U111(tt, L, N) → a__U112(a__isNatIListKind(L), L, N)
a__U112(tt, L, N) → a__U113(a__isNat(N), L, N)
a__U113(tt, L, N) → a__U114(a__isNatKind(N), L)
a__U114(tt, L) → s(a__length(mark(L)))
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U121(tt, IL) → a__U122(a__isNatIListKind(IL))
a__U122(tt) → nil
a__U13(tt) → tt
a__U131(tt, IL, M, N) → a__U132(a__isNatIListKind(IL), IL, M, N)
a__U132(tt, IL, M, N) → a__U133(a__isNat(M), IL, M, N)
a__U133(tt, IL, M, N) → a__U134(a__isNatKind(M), IL, M, N)
a__U134(tt, IL, M, N) → a__U135(a__isNat(N), IL, M, N)
a__U135(tt, IL, M, N) → a__U136(a__isNatKind(N), IL, M, N)
a__U136(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIListKind(V2))
a__U62(tt) → tt
a__U71(tt) → tt
a__U81(tt) → tt
a__U91(tt, V1, V2) → a__U92(a__isNatKind(V1), V1, V2)
a__U92(tt, V1, V2) → a__U93(a__isNatIListKind(V2), V1, V2)
a__U93(tt, V1, V2) → a__U94(a__isNatIListKind(V2), V1, V2)
a__U94(tt, V1, V2) → a__U95(a__isNat(V1), V2)
a__U95(tt, V2) → a__U96(a__isNatList(V2))
a__U96(tt) → tt
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatIListKind(take(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U71(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U81(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U91(a__isNatKind(V1), V1, V2)
a__isNatList(take(V1, V2)) → a__U101(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U111(a__isNatList(L), L, N)
a__take(0, IL) → a__U121(a__isNatIList(IL), IL)
a__take(s(M), cons(N, IL)) → a__U131(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(U105(X1, X2)) → a__U105(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U106(X)) → a__U106(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(U111(X1, X2, X3)) → a__U111(mark(X1), X2, X3)
mark(U112(X1, X2, X3)) → a__U112(mark(X1), X2, X3)
mark(U113(X1, X2, X3)) → a__U113(mark(X1), X2, X3)
mark(U114(X1, X2)) → a__U114(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U121(X1, X2)) → a__U121(mark(X1), X2)
mark(U122(X)) → a__U122(mark(X))
mark(U131(X1, X2, X3, X4)) → a__U131(mark(X1), X2, X3, X4)
mark(U132(X1, X2, X3, X4)) → a__U132(mark(X1), X2, X3, X4)
mark(U133(X1, X2, X3, X4)) → a__U133(mark(X1), X2, X3, X4)
mark(U134(X1, X2, X3, X4)) → a__U134(mark(X1), X2, X3, X4)
mark(U135(X1, X2, X3, X4)) → a__U135(mark(X1), X2, X3, X4)
mark(U136(X1, X2, X3, X4)) → a__U136(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2, X3)) → a__U94(mark(X1), X2, X3)
mark(U95(X1, X2)) → a__U95(mark(X1), X2)
mark(U96(X)) → a__U96(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNatIListKind(X) → isNatIListKind(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__U105(X1, X2) → U105(X1, X2)
a__isNat(X) → isNat(X)
a__U106(X) → U106(X)
a__isNatIList(X) → isNatIList(X)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__U111(X1, X2, X3) → U111(X1, X2, X3)
a__U112(X1, X2, X3) → U112(X1, X2, X3)
a__U113(X1, X2, X3) → U113(X1, X2, X3)
a__U114(X1, X2) → U114(X1, X2)
a__length(X) → length(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U121(X1, X2) → U121(X1, X2)
a__U122(X) → U122(X)
a__U131(X1, X2, X3, X4) → U131(X1, X2, X3, X4)
a__U132(X1, X2, X3, X4) → U132(X1, X2, X3, X4)
a__U133(X1, X2, X3, X4) → U133(X1, X2, X3, X4)
a__U134(X1, X2, X3, X4) → U134(X1, X2, X3, X4)
a__U135(X1, X2, X3, X4) → U135(X1, X2, X3, X4)
a__U136(X1, X2, X3, X4) → U136(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X) → U71(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2, X3) → U94(X1, X2, X3)
a__U95(X1, X2) → U95(X1, X2)
a__U96(X) → U96(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U102(tt, V1, V2) → A__U103(a__isNatIListKind(V2), V1, V2)
A__U103(tt, V1, V2) → A__U104(a__isNatIListKind(V2), V1, V2)
A__U104(tt, V1, V2) → A__U105(a__isNat(V1), V2)
A__U105(tt, V2) → A__ISNATILIST(V2)
A__ISNATILIST(V) → A__U31(a__isNatIListKind(V), V)
A__U31(tt, V) → A__U32(a__isNatIListKind(V), V)
A__U32(tt, V) → A__ISNATLIST(V)
A__ISNATLIST(cons(V1, V2)) → A__U91(a__isNatKind(V1), V1, V2)
A__U91(tt, V1, V2) → A__U92(a__isNatKind(V1), V1, V2)
A__U92(tt, V1, V2) → A__U93(a__isNatIListKind(V2), V1, V2)
A__U93(tt, V1, V2) → A__U94(a__isNatIListKind(V2), V1, V2)
A__U94(tt, V1, V2) → A__U95(a__isNat(V1), V2)
A__U95(tt, V2) → A__ISNATLIST(V2)
A__ISNATLIST(take(V1, V2)) → A__U101(a__isNatKind(V1), V1, V2)
A__U101(tt, V1, V2) → A__U102(a__isNatKind(V1), V1, V2)
A__U94(tt, V1, V2) → A__ISNAT(V1)
A__ISNAT(length(V1)) → A__U11(a__isNatIListKind(V1), V1)
A__U11(tt, V1) → A__U12(a__isNatIListKind(V1), V1)
A__U12(tt, V1) → A__ISNATLIST(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U22(tt, V1) → A__ISNAT(V1)
A__ISNATILIST(cons(V1, V2)) → A__U41(a__isNatKind(V1), V1, V2)
A__U41(tt, V1, V2) → A__U42(a__isNatKind(V1), V1, V2)
A__U42(tt, V1, V2) → A__U43(a__isNatIListKind(V2), V1, V2)
A__U43(tt, V1, V2) → A__U44(a__isNatIListKind(V2), V1, V2)
A__U44(tt, V1, V2) → A__U45(a__isNat(V1), V2)
A__U45(tt, V2) → A__ISNATILIST(V2)
A__U44(tt, V1, V2) → A__ISNAT(V1)
A__U104(tt, V1, V2) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U101(tt, V1, V2) → a__U102(a__isNatKind(V1), V1, V2)
a__U102(tt, V1, V2) → a__U103(a__isNatIListKind(V2), V1, V2)
a__U103(tt, V1, V2) → a__U104(a__isNatIListKind(V2), V1, V2)
a__U104(tt, V1, V2) → a__U105(a__isNat(V1), V2)
a__U105(tt, V2) → a__U106(a__isNatIList(V2))
a__U106(tt) → tt
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U111(tt, L, N) → a__U112(a__isNatIListKind(L), L, N)
a__U112(tt, L, N) → a__U113(a__isNat(N), L, N)
a__U113(tt, L, N) → a__U114(a__isNatKind(N), L)
a__U114(tt, L) → s(a__length(mark(L)))
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U121(tt, IL) → a__U122(a__isNatIListKind(IL))
a__U122(tt) → nil
a__U13(tt) → tt
a__U131(tt, IL, M, N) → a__U132(a__isNatIListKind(IL), IL, M, N)
a__U132(tt, IL, M, N) → a__U133(a__isNat(M), IL, M, N)
a__U133(tt, IL, M, N) → a__U134(a__isNatKind(M), IL, M, N)
a__U134(tt, IL, M, N) → a__U135(a__isNat(N), IL, M, N)
a__U135(tt, IL, M, N) → a__U136(a__isNatKind(N), IL, M, N)
a__U136(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIListKind(V2))
a__U62(tt) → tt
a__U71(tt) → tt
a__U81(tt) → tt
a__U91(tt, V1, V2) → a__U92(a__isNatKind(V1), V1, V2)
a__U92(tt, V1, V2) → a__U93(a__isNatIListKind(V2), V1, V2)
a__U93(tt, V1, V2) → a__U94(a__isNatIListKind(V2), V1, V2)
a__U94(tt, V1, V2) → a__U95(a__isNat(V1), V2)
a__U95(tt, V2) → a__U96(a__isNatList(V2))
a__U96(tt) → tt
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatIListKind(take(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U71(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U81(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U91(a__isNatKind(V1), V1, V2)
a__isNatList(take(V1, V2)) → a__U101(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U111(a__isNatList(L), L, N)
a__take(0, IL) → a__U121(a__isNatIList(IL), IL)
a__take(s(M), cons(N, IL)) → a__U131(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(U105(X1, X2)) → a__U105(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U106(X)) → a__U106(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(U111(X1, X2, X3)) → a__U111(mark(X1), X2, X3)
mark(U112(X1, X2, X3)) → a__U112(mark(X1), X2, X3)
mark(U113(X1, X2, X3)) → a__U113(mark(X1), X2, X3)
mark(U114(X1, X2)) → a__U114(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U121(X1, X2)) → a__U121(mark(X1), X2)
mark(U122(X)) → a__U122(mark(X))
mark(U131(X1, X2, X3, X4)) → a__U131(mark(X1), X2, X3, X4)
mark(U132(X1, X2, X3, X4)) → a__U132(mark(X1), X2, X3, X4)
mark(U133(X1, X2, X3, X4)) → a__U133(mark(X1), X2, X3, X4)
mark(U134(X1, X2, X3, X4)) → a__U134(mark(X1), X2, X3, X4)
mark(U135(X1, X2, X3, X4)) → a__U135(mark(X1), X2, X3, X4)
mark(U136(X1, X2, X3, X4)) → a__U136(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2, X3)) → a__U94(mark(X1), X2, X3)
mark(U95(X1, X2)) → a__U95(mark(X1), X2)
mark(U96(X)) → a__U96(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNatIListKind(X) → isNatIListKind(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__U105(X1, X2) → U105(X1, X2)
a__isNat(X) → isNat(X)
a__U106(X) → U106(X)
a__isNatIList(X) → isNatIList(X)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__U111(X1, X2, X3) → U111(X1, X2, X3)
a__U112(X1, X2, X3) → U112(X1, X2, X3)
a__U113(X1, X2, X3) → U113(X1, X2, X3)
a__U114(X1, X2) → U114(X1, X2)
a__length(X) → length(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U121(X1, X2) → U121(X1, X2)
a__U122(X) → U122(X)
a__U131(X1, X2, X3, X4) → U131(X1, X2, X3, X4)
a__U132(X1, X2, X3, X4) → U132(X1, X2, X3, X4)
a__U133(X1, X2, X3, X4) → U133(X1, X2, X3, X4)
a__U134(X1, X2, X3, X4) → U134(X1, X2, X3, X4)
a__U135(X1, X2, X3, X4) → U135(X1, X2, X3, X4)
a__U136(X1, X2, X3, X4) → U136(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X) → U71(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2, X3) → U94(X1, X2, X3)
a__U95(X1, X2) → U95(X1, X2)
a__U96(X) → U96(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U102(tt, V1, V2) → A__U103(a__isNatIListKind(V2), V1, V2)
A__U103(tt, V1, V2) → A__U104(a__isNatIListKind(V2), V1, V2)
A__U104(tt, V1, V2) → A__U105(a__isNat(V1), V2)
A__ISNATLIST(cons(V1, V2)) → A__U91(a__isNatKind(V1), V1, V2)
A__U91(tt, V1, V2) → A__U92(a__isNatKind(V1), V1, V2)
A__U92(tt, V1, V2) → A__U93(a__isNatIListKind(V2), V1, V2)
A__U93(tt, V1, V2) → A__U94(a__isNatIListKind(V2), V1, V2)
A__U94(tt, V1, V2) → A__U95(a__isNat(V1), V2)
A__ISNATLIST(take(V1, V2)) → A__U101(a__isNatKind(V1), V1, V2)
A__U101(tt, V1, V2) → A__U102(a__isNatKind(V1), V1, V2)
A__U94(tt, V1, V2) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__ISNATILIST(cons(V1, V2)) → A__U41(a__isNatKind(V1), V1, V2)
A__U41(tt, V1, V2) → A__U42(a__isNatKind(V1), V1, V2)
A__U42(tt, V1, V2) → A__U43(a__isNatIListKind(V2), V1, V2)
A__U43(tt, V1, V2) → A__U44(a__isNatIListKind(V2), V1, V2)
A__U44(tt, V1, V2) → A__U45(a__isNat(V1), V2)
A__U45(tt, V2) → A__ISNATILIST(V2)
A__U44(tt, V1, V2) → A__ISNAT(V1)
A__U104(tt, V1, V2) → A__ISNAT(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U102(x1, x2, x3)  =  A__U102(x2, x3)
tt  =  tt
A__U103(x1, x2, x3)  =  A__U103(x1, x2, x3)
a__isNatIListKind(x1)  =  x1
A__U104(x1, x2, x3)  =  A__U104(x1, x2, x3)
A__U105(x1, x2)  =  x2
a__isNat(x1)  =  a__isNat(x1)
A__ISNATILIST(x1)  =  x1
A__U31(x1, x2)  =  x2
A__U32(x1, x2)  =  x2
A__ISNATLIST(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
A__U91(x1, x2, x3)  =  A__U91(x1, x2, x3)
a__isNatKind(x1)  =  a__isNatKind(x1)
A__U92(x1, x2, x3)  =  A__U92(x1, x2, x3)
A__U93(x1, x2, x3)  =  A__U93(x1, x2, x3)
A__U94(x1, x2, x3)  =  A__U94(x1, x2, x3)
A__U95(x1, x2)  =  x2
take(x1, x2)  =  take(x1, x2)
A__U101(x1, x2, x3)  =  A__U101(x2, x3)
A__ISNAT(x1)  =  x1
length(x1)  =  x1
A__U11(x1, x2)  =  x2
A__U12(x1, x2)  =  x2
s(x1)  =  s(x1)
A__U21(x1, x2)  =  A__U21(x2)
A__U22(x1, x2)  =  x2
A__U41(x1, x2, x3)  =  A__U41(x1, x2, x3)
A__U42(x1, x2, x3)  =  A__U42(x1, x2, x3)
A__U43(x1, x2, x3)  =  A__U43(x1, x2, x3)
A__U44(x1, x2, x3)  =  A__U44(x2, x3)
A__U45(x1, x2)  =  A__U45(x2)
a__U61(x1, x2)  =  a__U61(x2)
a__U51(x1, x2)  =  a__U51(x1, x2)
a__U71(x1)  =  a__U71(x1)
0  =  0
a__isNatList(x1)  =  a__isNatList
nil  =  nil
a__U81(x1)  =  x1
a__U101(x1, x2, x3)  =  a__U101(x3)
a__U91(x1, x2, x3)  =  a__U91(x2, x3)
a__U62(x1)  =  x1
a__U12(x1, x2)  =  a__U12(x1, x2)
U12(x1, x2)  =  U12
a__U52(x1)  =  x1
a__U11(x1, x2)  =  x2
U11(x1, x2)  =  U11(x1, x2)
a__isNatIList(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
a__U46(x1)  =  a__U46
a__U45(x1, x2)  =  a__U45(x1, x2)
a__U44(x1, x2, x3)  =  a__U44(x1, x3)
a__U43(x1, x2, x3)  =  a__U43
a__U42(x1, x2, x3)  =  a__U42
a__U41(x1, x2, x3)  =  a__U41(x3)
a__U33(x1)  =  a__U33(x1)
isNatList(x1)  =  isNatList(x1)
a__U32(x1, x2)  =  a__U32(x2)
a__U13(x1)  =  a__U13(x1)
U13(x1)  =  U13
a__U31(x1, x2)  =  x2
a__U23(x1)  =  a__U23
a__U22(x1, x2)  =  a__U22
a__U21(x1, x2)  =  a__U21
zeros  =  zeros
U101(x1, x2, x3)  =  U101(x1, x2, x3)
a__U103(x1, x2, x3)  =  a__U103(x2, x3)
U103(x1, x2, x3)  =  U103(x1, x2, x3)
a__U95(x1, x2)  =  a__U95(x1, x2)
a__U96(x1)  =  a__U96
isNatIListKind(x1)  =  x1
a__U102(x1, x2, x3)  =  a__U102(x2)
U102(x1, x2, x3)  =  U102(x1, x2, x3)
a__U93(x1, x2, x3)  =  a__U93(x1)
a__U94(x1, x2, x3)  =  x2
isNatKind(x1)  =  x1
isNat(x1)  =  isNat(x1)
a__U92(x1, x2, x3)  =  a__U92(x2)
a__U106(x1)  =  a__U106
U106(x1)  =  U106
a__U104(x1, x2, x3)  =  a__U104(x2)
U104(x1, x2, x3)  =  U104(x1, x2, x3)
a__U105(x1, x2)  =  a__U105(x1, x2)
U105(x1, x2)  =  U105(x1, x2)
U61(x1, x2)  =  x2
U52(x1)  =  x1
U71(x1)  =  U71
U62(x1)  =  x1
U91(x1, x2, x3)  =  U91(x1, x2, x3)
U81(x1)  =  x1
U93(x1, x2, x3)  =  U93(x1, x2, x3)
U92(x1, x2, x3)  =  U92(x1, x2, x3)
U95(x1, x2)  =  U95(x1, x2)
U94(x1, x2, x3)  =  U94(x1, x2, x3)
U96(x1)  =  U96(x1)
U21(x1, x2)  =  U21(x1, x2)
U22(x1, x2)  =  U22(x1, x2)
U23(x1)  =  U23(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1, x2)  =  U32(x1, x2)
U33(x1)  =  U33(x1)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U42(x1, x2, x3)  =  U42(x1, x2, x3)
U43(x1, x2, x3)  =  U43(x1, x2, x3)
U44(x1, x2, x3)  =  U44(x1, x2, x3)
U45(x1, x2)  =  x2
U46(x1)  =  x1
U51(x1, x2)  =  U51(x1)

Recursive Path Order [RPO].
Precedence:
cons2 > AU913 > aisNatKind1 > aU711 > U71 > aU611
cons2 > AU913 > AU923 > AU933 > AU943 > aisNat1 > aU611
cons2 > AU413 > aisNatKind1 > aU711 > U71 > aU611
cons2 > AU413 > AU423 > AU433 > AU442 > aisNat1 > aU611
cons2 > AU413 > AU423 > AU433 > AU442 > AU451 > aU611
cons2 > aU512 > U511 > aU611
take2 > AU1012 > AU1022 > AU1033 > AU1043 > aisNat1 > aU611
take2 > aU1011 > U1013 > aU611
s1 > AU211 > aU611
s1 > aU21 > aisNatKind1 > aU711 > U71 > aU611
s1 > aU21 > U212 > aU611
0 > tt > AU1022 > AU1033 > AU1043 > aisNat1 > aU611
0 > tt > AU923 > AU933 > AU943 > aisNat1 > aU611
0 > tt > AU423 > AU433 > AU442 > aisNat1 > aU611
0 > tt > AU423 > AU433 > AU442 > AU451 > aU611
0 > tt > aisNatList > aU1011 > U1013 > aU611
0 > tt > aisNatList > aU912 > aisNatKind1 > aU711 > U71 > aU611
0 > tt > aisNatList > aU912 > aU921 > aU931 > U933 > aU611
0 > tt > aisNatList > aU912 > U913 > aU611
0 > tt > aisNatList > isNatList1 > aU611
0 > tt > aU122 > U12 > aU611
0 > tt > aU122 > aU131 > aU611
0 > tt > aU442 > aisNat1 > aU611
0 > tt > aU442 > aU452 > aU46 > aU611
0 > tt > aU442 > U443 > aU611
0 > tt > aU42 > aU43 > U433 > aU611
0 > tt > aU42 > U423 > aU611
0 > tt > aU321 > aU331 > aU611
0 > tt > aU321 > U322 > aU611
0 > tt > aU23 > U231 > aU611
0 > tt > aU22 > aisNat1 > aU611
0 > tt > aU22 > U222 > aU611
0 > tt > aU952 > aU611
0 > tt > aU1021 > aU1032 > U1033 > aU611
0 > tt > aU1021 > U1023 > aU611
0 > tt > aU1052 > aU106 > aU611
0 > tt > aU1052 > U1052 > aU611
nil > tt > AU1022 > AU1033 > AU1043 > aisNat1 > aU611
nil > tt > AU923 > AU933 > AU943 > aisNat1 > aU611
nil > tt > AU423 > AU433 > AU442 > aisNat1 > aU611
nil > tt > AU423 > AU433 > AU442 > AU451 > aU611
nil > tt > aisNatList > aU1011 > U1013 > aU611
nil > tt > aisNatList > aU912 > aisNatKind1 > aU711 > U71 > aU611
nil > tt > aisNatList > aU912 > aU921 > aU931 > U933 > aU611
nil > tt > aisNatList > aU912 > U913 > aU611
nil > tt > aisNatList > isNatList1 > aU611
nil > tt > aU122 > U12 > aU611
nil > tt > aU122 > aU131 > aU611
nil > tt > aU442 > aisNat1 > aU611
nil > tt > aU442 > aU452 > aU46 > aU611
nil > tt > aU442 > U443 > aU611
nil > tt > aU42 > aU43 > U433 > aU611
nil > tt > aU42 > U423 > aU611
nil > tt > aU321 > aU331 > aU611
nil > tt > aU321 > U322 > aU611
nil > tt > aU23 > U231 > aU611
nil > tt > aU22 > aisNat1 > aU611
nil > tt > aU22 > U222 > aU611
nil > tt > aU952 > aU611
nil > tt > aU1021 > aU1032 > U1033 > aU611
nil > tt > aU1021 > U1023 > aU611
nil > tt > aU1052 > aU106 > aU611
nil > tt > aU1052 > U1052 > aU611
U112 > aU611
isNatIList1 > aU611
aU411 > aisNatKind1 > aU711 > U71 > aU611
aU411 > aU42 > aU43 > U433 > aU611
aU411 > aU42 > U423 > aU611
aU411 > U413 > aU611
U13 > aU611
zeros > tt > AU1022 > AU1033 > AU1043 > aisNat1 > aU611
zeros > tt > AU923 > AU933 > AU943 > aisNat1 > aU611
zeros > tt > AU423 > AU433 > AU442 > aisNat1 > aU611
zeros > tt > AU423 > AU433 > AU442 > AU451 > aU611
zeros > tt > aisNatList > aU1011 > U1013 > aU611
zeros > tt > aisNatList > aU912 > aisNatKind1 > aU711 > U71 > aU611
zeros > tt > aisNatList > aU912 > aU921 > aU931 > U933 > aU611
zeros > tt > aisNatList > aU912 > U913 > aU611
zeros > tt > aisNatList > isNatList1 > aU611
zeros > tt > aU122 > U12 > aU611
zeros > tt > aU122 > aU131 > aU611
zeros > tt > aU442 > aisNat1 > aU611
zeros > tt > aU442 > aU452 > aU46 > aU611
zeros > tt > aU442 > U443 > aU611
zeros > tt > aU42 > aU43 > U433 > aU611
zeros > tt > aU42 > U423 > aU611
zeros > tt > aU321 > aU331 > aU611
zeros > tt > aU321 > U322 > aU611
zeros > tt > aU23 > U231 > aU611
zeros > tt > aU22 > aisNat1 > aU611
zeros > tt > aU22 > U222 > aU611
zeros > tt > aU952 > aU611
zeros > tt > aU1021 > aU1032 > U1033 > aU611
zeros > tt > aU1021 > U1023 > aU611
zeros > tt > aU1052 > aU106 > aU611
zeros > tt > aU1052 > U1052 > aU611
aU96 > U961 > aU611
isNat1 > aU611
U106 > aU611
aU1041 > aisNat1 > aU611
aU1041 > U1043 > aU611
aU1041 > aU1052 > aU106 > aU611
aU1041 > aU1052 > U1052 > aU611
U923 > aU611
U952 > aU611
U943 > aU611
U312 > aU611
U331 > aU611

The following usable rules [FROCOS05] were oriented:

a__isNatIListKind(take(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatKind(length(V1)) → a__U71(a__isNatIListKind(V1))
a__isNatKind(0) → tt
a__isNatKind(s(V1)) → a__U81(a__isNatKind(V1))
a__U62(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(X) → isNatIListKind(X)
a__isNatKind(X) → isNatKind(X)
a__U71(tt) → tt
a__U81(tt) → tt
a__U61(X1, X2) → U61(X1, X2)
a__U52(X) → U52(X)
a__U71(X) → U71(X)
a__U62(X) → U62(X)
a__U81(X) → U81(X)
a__U51(X1, X2) → U51(X1, X2)

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U105(tt, V2) → A__ISNATILIST(V2)
A__ISNATILIST(V) → A__U31(a__isNatIListKind(V), V)
A__U31(tt, V) → A__U32(a__isNatIListKind(V), V)
A__U32(tt, V) → A__ISNATLIST(V)
A__U95(tt, V2) → A__ISNATLIST(V2)
A__ISNAT(length(V1)) → A__U11(a__isNatIListKind(V1), V1)
A__U11(tt, V1) → A__U12(a__isNatIListKind(V1), V1)
A__U12(tt, V1) → A__ISNATLIST(V1)
A__U22(tt, V1) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U101(tt, V1, V2) → a__U102(a__isNatKind(V1), V1, V2)
a__U102(tt, V1, V2) → a__U103(a__isNatIListKind(V2), V1, V2)
a__U103(tt, V1, V2) → a__U104(a__isNatIListKind(V2), V1, V2)
a__U104(tt, V1, V2) → a__U105(a__isNat(V1), V2)
a__U105(tt, V2) → a__U106(a__isNatIList(V2))
a__U106(tt) → tt
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U111(tt, L, N) → a__U112(a__isNatIListKind(L), L, N)
a__U112(tt, L, N) → a__U113(a__isNat(N), L, N)
a__U113(tt, L, N) → a__U114(a__isNatKind(N), L)
a__U114(tt, L) → s(a__length(mark(L)))
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U121(tt, IL) → a__U122(a__isNatIListKind(IL))
a__U122(tt) → nil
a__U13(tt) → tt
a__U131(tt, IL, M, N) → a__U132(a__isNatIListKind(IL), IL, M, N)
a__U132(tt, IL, M, N) → a__U133(a__isNat(M), IL, M, N)
a__U133(tt, IL, M, N) → a__U134(a__isNatKind(M), IL, M, N)
a__U134(tt, IL, M, N) → a__U135(a__isNat(N), IL, M, N)
a__U135(tt, IL, M, N) → a__U136(a__isNatKind(N), IL, M, N)
a__U136(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIListKind(V2))
a__U62(tt) → tt
a__U71(tt) → tt
a__U81(tt) → tt
a__U91(tt, V1, V2) → a__U92(a__isNatKind(V1), V1, V2)
a__U92(tt, V1, V2) → a__U93(a__isNatIListKind(V2), V1, V2)
a__U93(tt, V1, V2) → a__U94(a__isNatIListKind(V2), V1, V2)
a__U94(tt, V1, V2) → a__U95(a__isNat(V1), V2)
a__U95(tt, V2) → a__U96(a__isNatList(V2))
a__U96(tt) → tt
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatIListKind(take(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U71(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U81(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U91(a__isNatKind(V1), V1, V2)
a__isNatList(take(V1, V2)) → a__U101(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U111(a__isNatList(L), L, N)
a__take(0, IL) → a__U121(a__isNatIList(IL), IL)
a__take(s(M), cons(N, IL)) → a__U131(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(U105(X1, X2)) → a__U105(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U106(X)) → a__U106(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(U111(X1, X2, X3)) → a__U111(mark(X1), X2, X3)
mark(U112(X1, X2, X3)) → a__U112(mark(X1), X2, X3)
mark(U113(X1, X2, X3)) → a__U113(mark(X1), X2, X3)
mark(U114(X1, X2)) → a__U114(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U121(X1, X2)) → a__U121(mark(X1), X2)
mark(U122(X)) → a__U122(mark(X))
mark(U131(X1, X2, X3, X4)) → a__U131(mark(X1), X2, X3, X4)
mark(U132(X1, X2, X3, X4)) → a__U132(mark(X1), X2, X3, X4)
mark(U133(X1, X2, X3, X4)) → a__U133(mark(X1), X2, X3, X4)
mark(U134(X1, X2, X3, X4)) → a__U134(mark(X1), X2, X3, X4)
mark(U135(X1, X2, X3, X4)) → a__U135(mark(X1), X2, X3, X4)
mark(U136(X1, X2, X3, X4)) → a__U136(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2, X3)) → a__U94(mark(X1), X2, X3)
mark(U95(X1, X2)) → a__U95(mark(X1), X2)
mark(U96(X)) → a__U96(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNatIListKind(X) → isNatIListKind(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__U105(X1, X2) → U105(X1, X2)
a__isNat(X) → isNat(X)
a__U106(X) → U106(X)
a__isNatIList(X) → isNatIList(X)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__U111(X1, X2, X3) → U111(X1, X2, X3)
a__U112(X1, X2, X3) → U112(X1, X2, X3)
a__U113(X1, X2, X3) → U113(X1, X2, X3)
a__U114(X1, X2) → U114(X1, X2)
a__length(X) → length(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U121(X1, X2) → U121(X1, X2)
a__U122(X) → U122(X)
a__U131(X1, X2, X3, X4) → U131(X1, X2, X3, X4)
a__U132(X1, X2, X3, X4) → U132(X1, X2, X3, X4)
a__U133(X1, X2, X3, X4) → U133(X1, X2, X3, X4)
a__U134(X1, X2, X3, X4) → U134(X1, X2, X3, X4)
a__U135(X1, X2, X3, X4) → U135(X1, X2, X3, X4)
a__U136(X1, X2, X3, X4) → U136(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X) → U71(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2, X3) → U94(X1, X2, X3)
a__U95(X1, X2) → U95(X1, X2)
a__U96(X) → U96(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 9 less nodes.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(U102(X1, X2, X3)) → MARK(X1)
MARK(U103(X1, X2, X3)) → MARK(X1)
MARK(U104(X1, X2, X3)) → MARK(X1)
MARK(U105(X1, X2)) → MARK(X1)
MARK(U106(X)) → MARK(X)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X1, X2)) → MARK(X1)
MARK(U111(X1, X2, X3)) → A__U111(mark(X1), X2, X3)
A__U111(tt, L, N) → A__U112(a__isNatIListKind(L), L, N)
A__U112(tt, L, N) → A__U113(a__isNat(N), L, N)
A__U113(tt, L, N) → A__U114(a__isNatKind(N), L)
A__U114(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U111(a__isNatList(L), L, N)
A__U114(tt, L) → MARK(L)
MARK(U111(X1, X2, X3)) → MARK(X1)
MARK(U112(X1, X2, X3)) → A__U112(mark(X1), X2, X3)
MARK(U112(X1, X2, X3)) → MARK(X1)
MARK(U113(X1, X2, X3)) → A__U113(mark(X1), X2, X3)
MARK(U113(X1, X2, X3)) → MARK(X1)
MARK(U114(X1, X2)) → A__U114(mark(X1), X2)
MARK(U114(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(U13(X)) → MARK(X)
MARK(U121(X1, X2)) → MARK(X1)
MARK(U122(X)) → MARK(X)
MARK(U131(X1, X2, X3, X4)) → A__U131(mark(X1), X2, X3, X4)
A__U131(tt, IL, M, N) → A__U132(a__isNatIListKind(IL), IL, M, N)
A__U132(tt, IL, M, N) → A__U133(a__isNat(M), IL, M, N)
A__U133(tt, IL, M, N) → A__U134(a__isNatKind(M), IL, M, N)
A__U134(tt, IL, M, N) → A__U135(a__isNat(N), IL, M, N)
A__U135(tt, IL, M, N) → A__U136(a__isNatKind(N), IL, M, N)
A__U136(tt, IL, M, N) → MARK(N)
MARK(U131(X1, X2, X3, X4)) → MARK(X1)
MARK(U132(X1, X2, X3, X4)) → A__U132(mark(X1), X2, X3, X4)
MARK(U132(X1, X2, X3, X4)) → MARK(X1)
MARK(U133(X1, X2, X3, X4)) → A__U133(mark(X1), X2, X3, X4)
MARK(U133(X1, X2, X3, X4)) → MARK(X1)
MARK(U134(X1, X2, X3, X4)) → A__U134(mark(X1), X2, X3, X4)
MARK(U134(X1, X2, X3, X4)) → MARK(X1)
MARK(U135(X1, X2, X3, X4)) → A__U135(mark(X1), X2, X3, X4)
MARK(U135(X1, X2, X3, X4)) → MARK(X1)
MARK(U136(X1, X2, X3, X4)) → A__U136(mark(X1), X2, X3, X4)
MARK(U136(X1, X2, X3, X4)) → MARK(X1)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__TAKE(s(M), cons(N, IL)) → A__U131(a__isNatIList(IL), IL, M, N)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X1, X2)) → MARK(X1)
MARK(U33(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2, X3)) → MARK(X1)
MARK(U43(X1, X2, X3)) → MARK(X1)
MARK(U44(X1, X2, X3)) → MARK(X1)
MARK(U45(X1, X2)) → MARK(X1)
MARK(U46(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X)) → MARK(X)
MARK(U81(X)) → MARK(X)
MARK(U91(X1, X2, X3)) → MARK(X1)
MARK(U92(X1, X2, X3)) → MARK(X1)
MARK(U93(X1, X2, X3)) → MARK(X1)
MARK(U94(X1, X2, X3)) → MARK(X1)
MARK(U95(X1, X2)) → MARK(X1)
MARK(U96(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U101(tt, V1, V2) → a__U102(a__isNatKind(V1), V1, V2)
a__U102(tt, V1, V2) → a__U103(a__isNatIListKind(V2), V1, V2)
a__U103(tt, V1, V2) → a__U104(a__isNatIListKind(V2), V1, V2)
a__U104(tt, V1, V2) → a__U105(a__isNat(V1), V2)
a__U105(tt, V2) → a__U106(a__isNatIList(V2))
a__U106(tt) → tt
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U111(tt, L, N) → a__U112(a__isNatIListKind(L), L, N)
a__U112(tt, L, N) → a__U113(a__isNat(N), L, N)
a__U113(tt, L, N) → a__U114(a__isNatKind(N), L)
a__U114(tt, L) → s(a__length(mark(L)))
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U121(tt, IL) → a__U122(a__isNatIListKind(IL))
a__U122(tt) → nil
a__U13(tt) → tt
a__U131(tt, IL, M, N) → a__U132(a__isNatIListKind(IL), IL, M, N)
a__U132(tt, IL, M, N) → a__U133(a__isNat(M), IL, M, N)
a__U133(tt, IL, M, N) → a__U134(a__isNatKind(M), IL, M, N)
a__U134(tt, IL, M, N) → a__U135(a__isNat(N), IL, M, N)
a__U135(tt, IL, M, N) → a__U136(a__isNatKind(N), IL, M, N)
a__U136(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIListKind(V2))
a__U62(tt) → tt
a__U71(tt) → tt
a__U81(tt) → tt
a__U91(tt, V1, V2) → a__U92(a__isNatKind(V1), V1, V2)
a__U92(tt, V1, V2) → a__U93(a__isNatIListKind(V2), V1, V2)
a__U93(tt, V1, V2) → a__U94(a__isNatIListKind(V2), V1, V2)
a__U94(tt, V1, V2) → a__U95(a__isNat(V1), V2)
a__U95(tt, V2) → a__U96(a__isNatList(V2))
a__U96(tt) → tt
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatIListKind(take(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U71(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U81(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U91(a__isNatKind(V1), V1, V2)
a__isNatList(take(V1, V2)) → a__U101(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U111(a__isNatList(L), L, N)
a__take(0, IL) → a__U121(a__isNatIList(IL), IL)
a__take(s(M), cons(N, IL)) → a__U131(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(U105(X1, X2)) → a__U105(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U106(X)) → a__U106(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(U111(X1, X2, X3)) → a__U111(mark(X1), X2, X3)
mark(U112(X1, X2, X3)) → a__U112(mark(X1), X2, X3)
mark(U113(X1, X2, X3)) → a__U113(mark(X1), X2, X3)
mark(U114(X1, X2)) → a__U114(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U121(X1, X2)) → a__U121(mark(X1), X2)
mark(U122(X)) → a__U122(mark(X))
mark(U131(X1, X2, X3, X4)) → a__U131(mark(X1), X2, X3, X4)
mark(U132(X1, X2, X3, X4)) → a__U132(mark(X1), X2, X3, X4)
mark(U133(X1, X2, X3, X4)) → a__U133(mark(X1), X2, X3, X4)
mark(U134(X1, X2, X3, X4)) → a__U134(mark(X1), X2, X3, X4)
mark(U135(X1, X2, X3, X4)) → a__U135(mark(X1), X2, X3, X4)
mark(U136(X1, X2, X3, X4)) → a__U136(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2, X3)) → a__U94(mark(X1), X2, X3)
mark(U95(X1, X2)) → a__U95(mark(X1), X2)
mark(U96(X)) → a__U96(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNatIListKind(X) → isNatIListKind(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__U105(X1, X2) → U105(X1, X2)
a__isNat(X) → isNat(X)
a__U106(X) → U106(X)
a__isNatIList(X) → isNatIList(X)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__U111(X1, X2, X3) → U111(X1, X2, X3)
a__U112(X1, X2, X3) → U112(X1, X2, X3)
a__U113(X1, X2, X3) → U113(X1, X2, X3)
a__U114(X1, X2) → U114(X1, X2)
a__length(X) → length(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U121(X1, X2) → U121(X1, X2)
a__U122(X) → U122(X)
a__U131(X1, X2, X3, X4) → U131(X1, X2, X3, X4)
a__U132(X1, X2, X3, X4) → U132(X1, X2, X3, X4)
a__U133(X1, X2, X3, X4) → U133(X1, X2, X3, X4)
a__U134(X1, X2, X3, X4) → U134(X1, X2, X3, X4)
a__U135(X1, X2, X3, X4) → U135(X1, X2, X3, X4)
a__U136(X1, X2, X3, X4) → U136(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X) → U71(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2, X3) → U94(X1, X2, X3)
a__U95(X1, X2) → U95(X1, X2)
a__U96(X) → U96(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.