(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, M, N)) → MARK(U12(tt, M, N))
ACTIVE(U11(tt, M, N)) → U121(tt, M, N)
ACTIVE(U12(tt, M, N)) → MARK(s(plus(N, M)))
ACTIVE(U12(tt, M, N)) → S(plus(N, M))
ACTIVE(U12(tt, M, N)) → PLUS(N, M)
ACTIVE(U21(tt, M, N)) → MARK(U22(tt, M, N))
ACTIVE(U21(tt, M, N)) → U221(tt, M, N)
ACTIVE(U22(tt, M, N)) → MARK(plus(x(N, M), N))
ACTIVE(U22(tt, M, N)) → PLUS(x(N, M), N)
ACTIVE(U22(tt, M, N)) → X(N, M)
ACTIVE(plus(N, 0)) → MARK(N)
ACTIVE(plus(N, s(M))) → MARK(U11(tt, M, N))
ACTIVE(plus(N, s(M))) → U111(tt, M, N)
ACTIVE(x(N, 0)) → MARK(0)
ACTIVE(x(N, s(M))) → MARK(U21(tt, M, N))
ACTIVE(x(N, s(M))) → U211(tt, M, N)
MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
MARK(U11(X1, X2, X3)) → U111(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
MARK(U12(X1, X2, X3)) → U121(mark(X1), X2, X3)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(U21(X1, X2, X3)) → U211(mark(X1), X2, X3)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(U22(X1, X2, X3)) → ACTIVE(U22(mark(X1), X2, X3))
MARK(U22(X1, X2, X3)) → U221(mark(X1), X2, X3)
MARK(U22(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))
MARK(x(X1, X2)) → X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(0) → ACTIVE(0)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)
S(mark(X)) → S(X)
S(active(X)) → S(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
U211(mark(X1), X2, X3) → U211(X1, X2, X3)
U211(X1, mark(X2), X3) → U211(X1, X2, X3)
U211(X1, X2, mark(X3)) → U211(X1, X2, X3)
U211(active(X1), X2, X3) → U211(X1, X2, X3)
U211(X1, active(X2), X3) → U211(X1, X2, X3)
U211(X1, X2, active(X3)) → U211(X1, X2, X3)
U221(mark(X1), X2, X3) → U221(X1, X2, X3)
U221(X1, mark(X2), X3) → U221(X1, X2, X3)
U221(X1, X2, mark(X3)) → U221(X1, X2, X3)
U221(active(X1), X2, X3) → U221(X1, X2, X3)
U221(X1, active(X2), X3) → U221(X1, X2, X3)
U221(X1, X2, active(X3)) → U221(X1, X2, X3)
X(mark(X1), X2) → X(X1, X2)
X(X1, mark(X2)) → X(X1, X2)
X(active(X1), X2) → X(X1, X2)
X(X1, active(X2)) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 8 SCCs with 18 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(X1, mark(X2)) → X(X1, X2)
X(mark(X1), X2) → X(X1, X2)
X(active(X1), X2) → X(X1, X2)
X(X1, active(X2)) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(X1, mark(X2)) → X(X1, X2)
X(X1, active(X2)) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
X(x1, x2)  =  X(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[X1, active1]

Status:
X1: [1]
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(mark(X1), X2) → X(X1, X2)
X(active(X1), X2) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(mark(X1), X2) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
X(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(active(X1), X2) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(active(X1), X2) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
X(x1, x2)  =  x1
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(X1, mark(X2), X3) → U221(X1, X2, X3)
U221(mark(X1), X2, X3) → U221(X1, X2, X3)
U221(X1, X2, mark(X3)) → U221(X1, X2, X3)
U221(active(X1), X2, X3) → U221(X1, X2, X3)
U221(X1, active(X2), X3) → U221(X1, X2, X3)
U221(X1, X2, active(X3)) → U221(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X1), X2, X3) → U221(X1, X2, X3)
U221(active(X1), X2, X3) → U221(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(X1, mark(X2), X3) → U221(X1, X2, X3)
U221(X1, X2, mark(X3)) → U221(X1, X2, X3)
U221(X1, active(X2), X3) → U221(X1, X2, X3)
U221(X1, X2, active(X3)) → U221(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(X1, mark(X2), X3) → U221(X1, X2, X3)
U221(X1, active(X2), X3) → U221(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2, x3)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(X1, X2, mark(X3)) → U221(X1, X2, X3)
U221(X1, X2, active(X3)) → U221(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(X1, X2, mark(X3)) → U221(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2, x3)  =  U221(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
mark1 > U22^13

Status:
U22^13: [3,2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(X1, X2, active(X3)) → U221(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(X1, X2, active(X3)) → U221(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U22^13, active1]

Status:
U22^13: [1,2,3]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2), X3) → U211(X1, X2, X3)
U211(mark(X1), X2, X3) → U211(X1, X2, X3)
U211(X1, X2, mark(X3)) → U211(X1, X2, X3)
U211(active(X1), X2, X3) → U211(X1, X2, X3)
U211(X1, active(X2), X3) → U211(X1, X2, X3)
U211(X1, X2, active(X3)) → U211(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2, X3) → U211(X1, X2, X3)
U211(active(X1), X2, X3) → U211(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2), X3) → U211(X1, X2, X3)
U211(X1, X2, mark(X3)) → U211(X1, X2, X3)
U211(X1, active(X2), X3) → U211(X1, X2, X3)
U211(X1, X2, active(X3)) → U211(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, mark(X2), X3) → U211(X1, X2, X3)
U211(X1, active(X2), X3) → U211(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2, x3)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, X2, mark(X3)) → U211(X1, X2, X3)
U211(X1, X2, active(X3)) → U211(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, X2, mark(X3)) → U211(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2, x3)  =  U211(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
mark1 > U21^13

Status:
U21^13: [3,2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, X2, active(X3)) → U211(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, X2, active(X3)) → U211(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U21^13, active1]

Status:
U21^13: [1,2,3]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(33) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(35) TRUE

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[PLUS1, active1]

Status:
PLUS1: [1]
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(mark(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(active(X1), X2) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(active(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x1
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(42) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(44) TRUE

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(49) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(51) TRUE

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X1), X2, X3) → U121(X1, X2, X3)
U121(active(X1), X2, X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, mark(X2), X3) → U121(X1, X2, X3)
U121(X1, active(X2), X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
U121(X1, X2, active(X3)) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, X2, mark(X3)) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  U121(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
mark1 > U12^13

Status:
U12^13: [3,2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, X2, active(X3)) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, X2, active(X3)) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U12^13, active1]

Status:
U12^13: [1,2,3]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(60) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(62) TRUE

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(65) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
mark1 > U11^13

Status:
U11^13: [3,2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(69) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, X2, active(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U11^13, active1]

Status:
U11^13: [1,2,3]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(71) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(72) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(73) TRUE

(74) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, M, N)) → MARK(U12(tt, M, N))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U12(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(U21(tt, M, N)) → MARK(U22(tt, M, N))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
ACTIVE(U22(tt, M, N)) → MARK(plus(x(N, M), N))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
ACTIVE(plus(N, 0)) → MARK(N)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(U22(X1, X2, X3)) → ACTIVE(U22(mark(X1), X2, X3))
ACTIVE(plus(N, s(M))) → MARK(U11(tt, M, N))
MARK(U22(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))
ACTIVE(x(N, s(M))) → MARK(U21(tt, M, N))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U11(X1, X2, X3)) → MARK(X1)
ACTIVE(U12(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)
ACTIVE(U22(tt, M, N)) → MARK(plus(x(N, M), N))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
ACTIVE(plus(N, 0)) → MARK(N)
MARK(U21(X1, X2, X3)) → MARK(X1)
ACTIVE(plus(N, s(M))) → MARK(U11(tt, M, N))
MARK(U22(X1, X2, X3)) → MARK(X1)
ACTIVE(x(N, s(M))) → MARK(U21(tt, M, N))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U11(x1, x2, x3)  =  U11(x1, x2, x3)
ACTIVE(x1)  =  x1
mark(x1)  =  x1
tt  =  tt
U12(x1, x2, x3)  =  U12(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U21(x1, x2, x3)  =  U21(x1, x2, x3)
U22(x1, x2, x3)  =  U22(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
0  =  0
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U213, U223, x2] > [U113, U123, plus2] > [tt, s1]
[U213, U223, x2] > 0 > [tt, s1]

Status:
U113: [3,2,1]
tt: []
U123: [3,2,1]
s1: [1]
plus2: [1,2]
U213: [3,2,1]
U223: [3,2,1]
x2: [1,2]
0: []


The following usable rules [FROCOS05] were oriented:

mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
active(U11(tt, M, N)) → mark(U12(tt, M, N))
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
mark(s(X)) → active(s(mark(X)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
active(plus(N, 0)) → mark(N)
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
active(plus(N, s(M))) → mark(U11(tt, M, N))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(tt) → active(tt)
mark(0) → active(0)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
plus(X1, mark(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(X1, mark(X2)) → x(X1, X2)
x(mark(X1), X2) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
active(x(N, 0)) → mark(0)

(76) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, M, N)) → MARK(U12(tt, M, N))
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(U21(tt, M, N)) → MARK(U22(tt, M, N))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(U22(X1, X2, X3)) → ACTIVE(U22(mark(X1), X2, X3))
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(77) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U11(x1, x2, x3)  =  U11(x1, x2, x3)
ACTIVE(x1)  =  ACTIVE
mark(x1)  =  mark(x1)
tt  =  tt
U12(x1, x2, x3)  =  U12
s(x1)  =  x1
U21(x1, x2, x3)  =  x1
U22(x1, x2, x3)  =  U22
plus(x1, x2)  =  plus(x1, x2)
x(x1, x2)  =  x(x1, x2)
active(x1)  =  active(x1)
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
tt > [U113, ACTIVE, mark1, U12, U22, plus2, x2, active1]
0 > [U113, ACTIVE, mark1, U12, U22, plus2, x2, active1]

Status:
U113: [2,3,1]
ACTIVE: []
mark1: [1]
tt: []
U12: []
U22: []
plus2: [2,1]
x2: [2,1]
active1: [1]
0: []


The following usable rules [FROCOS05] were oriented:

U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)

(78) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, M, N)) → MARK(U12(tt, M, N))
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(U21(tt, M, N)) → MARK(U22(tt, M, N))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(U22(X1, X2, X3)) → ACTIVE(U22(mark(X1), X2, X3))

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(79) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE
U11(x1, x2, x3)  =  x2
tt  =  tt
MARK(x1)  =  x1
U12(x1, x2, x3)  =  U12
mark(x1)  =  mark(x1)
s(x1)  =  s(x1)
U21(x1, x2, x3)  =  x1
U22(x1, x2, x3)  =  U22
active(x1)  =  active(x1)
plus(x1, x2)  =  plus(x1, x2)
x(x1, x2)  =  x(x1, x2)
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
tt > s1 > [ACTIVE, U12, mark1, U22, active1, plus2, x2]
0 > [ACTIVE, U12, mark1, U22, active1, plus2, x2]

Status:
ACTIVE: []
tt: []
U12: []
mark1: [1]
s1: [1]
U22: []
active1: [1]
plus2: [2,1]
x2: [2,1]
0: []


The following usable rules [FROCOS05] were oriented:

U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)

(80) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, M, N)) → MARK(U12(tt, M, N))
MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U21(tt, M, N)) → MARK(U22(tt, M, N))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(U22(X1, X2, X3)) → ACTIVE(U22(mark(X1), X2, X3))

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(81) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U11(tt, M, N)) → MARK(U12(tt, M, N))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1, x2, x3)  =  x1
tt  =  tt
MARK(x1)  =  MARK(x1)
U12(x1, x2, x3)  =  U12
mark(x1)  =  x1
U21(x1, x2, x3)  =  x2
U22(x1, x2, x3)  =  x2
active(x1)  =  x1
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
x(x1, x2)  =  x(x1, x2)
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
tt > s1 > [ACTIVE1, MARK1, U12, plus2, x2]
0 > [ACTIVE1, MARK1, U12, plus2, x2]

Status:
ACTIVE1: [1]
tt: []
MARK1: [1]
U12: []
s1: [1]
plus2: [2,1]
x2: [2,1]
0: []


The following usable rules [FROCOS05] were oriented:

U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U21(tt, M, N)) → MARK(U22(tt, M, N))
MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
MARK(U22(X1, X2, X3)) → ACTIVE(U22(mark(X1), X2, X3))

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(83) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U21(X1, X2, X3)) → ACTIVE(U21(mark(X1), X2, X3))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U12(x1, x2, x3)  =  x3
ACTIVE(x1)  =  ACTIVE
mark(x1)  =  x1
U21(x1, x2, x3)  =  U21(x1, x2)
tt  =  tt
U22(x1, x2, x3)  =  U22
U11(x1, x2, x3)  =  x1
active(x1)  =  x1
s(x1)  =  x1
plus(x1, x2)  =  x1
x(x1, x2)  =  x(x2)
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
tt > [ACTIVE, U212, U22, x1]
0 > [ACTIVE, U212, U22, x1]

Status:
ACTIVE: []
U212: [2,1]
tt: []
U22: []
x1: [1]
0: []


The following usable rules [FROCOS05] were oriented:

U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)

(84) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U21(tt, M, N)) → MARK(U22(tt, M, N))
MARK(U22(X1, X2, X3)) → ACTIVE(U22(mark(X1), X2, X3))

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(85) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U12(X1, X2, X3)) → ACTIVE(U12(mark(X1), X2, X3))
ACTIVE(U21(tt, M, N)) → MARK(U22(tt, M, N))
MARK(U22(X1, X2, X3)) → ACTIVE(U22(mark(X1), X2, X3))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U12(x1, x2, x3)  =  x3
ACTIVE(x1)  =  ACTIVE(x1)
mark(x1)  =  x1
U21(x1, x2, x3)  =  U21(x1, x2)
tt  =  tt
U22(x1, x2, x3)  =  U22
U11(x1, x2, x3)  =  x3
active(x1)  =  x1
s(x1)  =  x1
plus(x1, x2)  =  x1
x(x1, x2)  =  x2
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
tt > MARK1 > [ACTIVE1, U212, U22]
0 > [ACTIVE1, U212, U22]

Status:
MARK1: [1]
ACTIVE1: [1]
U212: [1,2]
tt: []
U22: []
0: []


The following usable rules [FROCOS05] were oriented:

U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)

(86) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2, X3)) → active(U12(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U21(X1, X2, X3)) → active(U21(mark(X1), X2, X3))
mark(U22(X1, X2, X3)) → active(U22(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(0) → active(0)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, mark(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, mark(X3)) → U12(X1, X2, X3)
U12(active(X1), X2, X3) → U12(X1, X2, X3)
U12(X1, active(X2), X3) → U12(X1, X2, X3)
U12(X1, X2, active(X3)) → U12(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U21(mark(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, mark(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, mark(X3)) → U21(X1, X2, X3)
U21(active(X1), X2, X3) → U21(X1, X2, X3)
U21(X1, active(X2), X3) → U21(X1, X2, X3)
U21(X1, X2, active(X3)) → U21(X1, X2, X3)
U22(mark(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, mark(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, mark(X3)) → U22(X1, X2, X3)
U22(active(X1), X2, X3) → U22(X1, X2, X3)
U22(X1, active(X2), X3) → U22(X1, X2, X3)
U22(X1, X2, active(X3)) → U22(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(87) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(88) TRUE