(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, M, N)) → U121(tt, M, N)
ACTIVE(U12(tt, M, N)) → S(plus(N, M))
ACTIVE(U12(tt, M, N)) → PLUS(N, M)
ACTIVE(U21(tt, M, N)) → U221(tt, M, N)
ACTIVE(U22(tt, M, N)) → PLUS(x(N, M), N)
ACTIVE(U22(tt, M, N)) → X(N, M)
ACTIVE(plus(N, s(M))) → U111(tt, M, N)
ACTIVE(x(N, s(M))) → U211(tt, M, N)
ACTIVE(U11(X1, X2, X3)) → U111(active(X1), X2, X3)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U12(X1, X2, X3)) → U121(active(X1), X2, X3)
ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → PLUS(active(X1), X2)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → PLUS(X1, active(X2))
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(U21(X1, X2, X3)) → U211(active(X1), X2, X3)
ACTIVE(U21(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U22(X1, X2, X3)) → U221(active(X1), X2, X3)
ACTIVE(U22(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → X(active(X1), X2)
ACTIVE(x(X1, X2)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → X(X1, active(X2))
ACTIVE(x(X1, X2)) → ACTIVE(X2)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
S(mark(X)) → S(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
U211(mark(X1), X2, X3) → U211(X1, X2, X3)
U221(mark(X1), X2, X3) → U221(X1, X2, X3)
X(mark(X1), X2) → X(X1, X2)
X(X1, mark(X2)) → X(X1, X2)
PROPER(U11(X1, X2, X3)) → U111(proper(X1), proper(X2), proper(X3))
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2, X3)) → U121(proper(X1), proper(X2), proper(X3))
PROPER(U12(X1, X2, X3)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(plus(X1, X2)) → PLUS(proper(X1), proper(X2))
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(U21(X1, X2, X3)) → U211(proper(X1), proper(X2), proper(X3))
PROPER(U21(X1, X2, X3)) → PROPER(X1)
PROPER(U21(X1, X2, X3)) → PROPER(X2)
PROPER(U21(X1, X2, X3)) → PROPER(X3)
PROPER(U22(X1, X2, X3)) → U221(proper(X1), proper(X2), proper(X3))
PROPER(U22(X1, X2, X3)) → PROPER(X1)
PROPER(U22(X1, X2, X3)) → PROPER(X2)
PROPER(U22(X1, X2, X3)) → PROPER(X3)
PROPER(x(X1, X2)) → X(proper(X1), proper(X2))
PROPER(x(X1, X2)) → PROPER(X1)
PROPER(x(X1, X2)) → PROPER(X2)
U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
S(ok(X)) → S(X)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
U211(ok(X1), ok(X2), ok(X3)) → U211(X1, X2, X3)
U221(ok(X1), ok(X2), ok(X3)) → U221(X1, X2, X3)
X(ok(X1), ok(X2)) → X(X1, X2)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 10 SCCs with 26 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(X1, mark(X2)) → X(X1, X2)
X(mark(X1), X2) → X(X1, X2)
X(ok(X1), ok(X2)) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(X1, mark(X2)) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
X(x1, x2)  =  x2
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(mark(X1), X2) → X(X1, X2)
X(ok(X1), ok(X2)) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(ok(X1), ok(X2)) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
X(x1, x2)  =  X(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > [X1, mark1]

Status:
X1: multiset
mark1: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(mark(X1), X2) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(mark(X1), X2) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[X2, mark1]

Status:
X2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(ok(X1), ok(X2), ok(X3)) → U221(X1, X2, X3)
U221(mark(X1), X2, X3) → U221(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(ok(X1), ok(X2), ok(X3)) → U221(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2, x3)  =  U221(x2, x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U22^12
mark1 > U22^12

Status:
U22^12: [1,2]
ok1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(mark(X1), X2, X3) → U221(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X1), X2, X3) → U221(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U22^13: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(20) TRUE

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2), ok(X3)) → U211(X1, X2, X3)
U211(mark(X1), X2, X3) → U211(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(ok(X1), ok(X2), ok(X3)) → U211(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2, x3)  =  U211(x2, x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U21^12
mark1 > U21^12

Status:
U21^12: [1,2]
ok1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2, X3) → U211(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2, X3) → U211(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U21^13: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(27) TRUE

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, mark(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x2
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > [PLUS1, mark1]

Status:
PLUS1: multiset
mark1: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(mark(X1), X2) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(mark(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[PLUS2, mark1]

Status:
PLUS2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(34) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(36) TRUE

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(41) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(43) TRUE

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  U121(x2, x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U12^12
mark1 > U12^12

Status:
U12^12: [1,2]
ok1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X1), X2, X3) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X1), X2, X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U12^13: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(48) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(50) TRUE

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x2, x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U11^12
mark1 > U11^12

Status:
U11^12: [1,2]
ok1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U11^13: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(55) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(57) TRUE

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2, X3)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → PROPER(X)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(U21(X1, X2, X3)) → PROPER(X1)
PROPER(U21(X1, X2, X3)) → PROPER(X2)
PROPER(U21(X1, X2, X3)) → PROPER(X3)
PROPER(U22(X1, X2, X3)) → PROPER(X1)
PROPER(U22(X1, X2, X3)) → PROPER(X2)
PROPER(U22(X1, X2, X3)) → PROPER(X3)
PROPER(x(X1, X2)) → PROPER(X1)
PROPER(x(X1, X2)) → PROPER(X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2, X3)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → PROPER(X)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(U21(X1, X2, X3)) → PROPER(X1)
PROPER(U21(X1, X2, X3)) → PROPER(X2)
PROPER(U21(X1, X2, X3)) → PROPER(X3)
PROPER(U22(X1, X2, X3)) → PROPER(X1)
PROPER(U22(X1, X2, X3)) → PROPER(X2)
PROPER(U22(X1, X2, X3)) → PROPER(X3)
PROPER(x(X1, X2)) → PROPER(X1)
PROPER(x(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
U113 > PROPER1
U123 > PROPER1
s1 > PROPER1
plus2 > PROPER1
U213 > PROPER1
U223 > PROPER1
x2 > PROPER1

Status:
PROPER1: multiset
U113: multiset
U123: multiset
s1: multiset
plus2: multiset
U213: multiset
U223: multiset
x2: multiset


The following usable rules [FROCOS05] were oriented: none

(60) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(62) TRUE

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(U21(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U22(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → ACTIVE(X2)

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(U21(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U22(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
U123 > ACTIVE1
U113 > ACTIVE1
s1 > ACTIVE1
plus2 > ACTIVE1
U213 > ACTIVE1
U223 > ACTIVE1
x2 > ACTIVE1

Status:
ACTIVE1: multiset
U123: multiset
U113: multiset
s1: multiset
plus2: multiset
U213: multiset
U223: multiset
x2: multiset


The following usable rules [FROCOS05] were oriented: none

(65) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(67) TRUE

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(U11(tt, M, N)) → mark(U12(tt, M, N))
active(U12(tt, M, N)) → mark(s(plus(N, M)))
active(U21(tt, M, N)) → mark(U22(tt, M, N))
active(U22(tt, M, N)) → mark(plus(x(N, M), N))
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(U11(tt, M, N))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(U21(tt, M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2, X3)) → U22(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2, X3) → mark(U22(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2, X3)) → U22(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2), ok(X3)) → ok(U22(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.