(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(plus(N, 0)) → MARK(N)
ACTIVE(plus(N, s(M))) → MARK(s(plus(N, M)))
ACTIVE(plus(N, s(M))) → S(plus(N, M))
ACTIVE(plus(N, s(M))) → PLUS(N, M)
ACTIVE(x(N, 0)) → MARK(0)
ACTIVE(x(N, s(M))) → MARK(plus(x(N, M), N))
ACTIVE(x(N, s(M))) → PLUS(x(N, M), N)
ACTIVE(x(N, s(M))) → X(N, M)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(0) → ACTIVE(0)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))
MARK(x(X1, X2)) → X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
S(mark(X)) → S(X)
S(active(X)) → S(X)
X(mark(X1), X2) → X(X1, X2)
X(X1, mark(X2)) → X(X1, X2)
X(active(X1), X2) → X(X1, X2)
X(X1, active(X2)) → X(X1, X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 11 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(X1, mark(X2)) → X(X1, X2)
X(mark(X1), X2) → X(X1, X2)
X(active(X1), X2) → X(X1, X2)
X(X1, active(X2)) → X(X1, X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(X1, mark(X2)) → X(X1, X2)
X(mark(X1), X2) → X(X1, X2)
X(active(X1), X2) → X(X1, X2)
X(X1, active(X2)) → X(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • X(X1, mark(X2)) → X(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

  • X(mark(X1), X2) → X(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • X(active(X1), X2) → X(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • X(X1, active(X2)) → X(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • S(active(X)) → S(X)
    The graph contains the following edges 1 > 1

  • S(mark(X)) → S(X)
    The graph contains the following edges 1 > 1

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PLUS(X1, mark(X2)) → PLUS(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

  • PLUS(mark(X1), X2) → PLUS(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • PLUS(active(X1), X2) → PLUS(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • PLUS(X1, active(X2)) → PLUS(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • AND(X1, mark(X2)) → AND(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

  • AND(mark(X1), X2) → AND(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • AND(active(X1), X2) → AND(X1, X2)
    The graph contains the following edges 1 > 1, 2 >= 2

  • AND(X1, active(X2)) → AND(X1, X2)
    The graph contains the following edges 1 >= 1, 2 > 2

(24) TRUE

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(and(tt, X)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
ACTIVE(plus(N, 0)) → MARK(N)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(plus(N, s(M))) → MARK(s(plus(N, M)))
MARK(s(X)) → MARK(X)
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))
ACTIVE(x(N, s(M))) → MARK(plus(x(N, M), N))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = 0   
POL(and(x1, x2)) = 1   
POL(mark(x1)) = 0   
POL(plus(x1, x2)) = 1   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(x(x1, x2)) = 1   

The following usable rules [FROCOS05] were oriented:

and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
x(X1, active(X2)) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(mark(X1), X2) → x(X1, X2)

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(and(tt, X)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
ACTIVE(plus(N, 0)) → MARK(N)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
ACTIVE(plus(N, s(M))) → MARK(s(plus(N, M)))
MARK(s(X)) → MARK(X)
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))
ACTIVE(x(N, s(M))) → MARK(plus(x(N, M), N))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(plus(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(MARK(x1)) = 0A + 0A·x1

POL(and(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(ACTIVE(x1)) = -I + 0A·x1

POL(mark(x1)) = -I + 0A·x1

POL(tt) = 0A

POL(plus(x1, x2)) = 1A + 0A·x1 + 1A·x2

POL(0) = 0A

POL(s(x1)) = 0A + 0A·x1

POL(x(x1, x2)) = 0A + 3A·x1 + 1A·x2

POL(active(x1)) = 0A + 0A·x1

The following usable rules [FROCOS05] were oriented:

mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(plus(N, 0)) → mark(N)
mark(s(X)) → active(s(mark(X)))
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(x(N, 0)) → mark(0)
mark(0) → active(0)
mark(tt) → active(tt)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
x(X1, active(X2)) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(mark(X1), X2) → x(X1, X2)

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(and(tt, X)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
ACTIVE(plus(N, 0)) → MARK(N)
MARK(plus(X1, X2)) → MARK(X1)
ACTIVE(plus(N, s(M))) → MARK(s(plus(N, M)))
MARK(s(X)) → MARK(X)
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))
ACTIVE(x(N, s(M))) → MARK(plus(x(N, M), N))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(and(tt, X)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(and(x1, x2)) = 1 + x1 + x2   
POL(mark(x1)) = x1   
POL(plus(x1, x2)) = x1   
POL(s(x1)) = x1   
POL(tt) = 1   
POL(x(x1, x2)) = x1 + x2   

The following usable rules [FROCOS05] were oriented:

mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(plus(N, 0)) → mark(N)
mark(s(X)) → active(s(mark(X)))
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(x(N, 0)) → mark(0)
mark(0) → active(0)
mark(tt) → active(tt)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
x(X1, active(X2)) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(mark(X1), X2) → x(X1, X2)

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
ACTIVE(plus(N, 0)) → MARK(N)
MARK(plus(X1, X2)) → MARK(X1)
ACTIVE(plus(N, s(M))) → MARK(s(plus(N, M)))
MARK(s(X)) → MARK(X)
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))
ACTIVE(x(N, s(M))) → MARK(plus(x(N, M), N))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(and(x1, x2)) = x2   
POL(mark(x1)) = x1   
POL(plus(x1, x2)) = x1   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(x(x1, x2)) = 1 + x1 + x2   

The following usable rules [FROCOS05] were oriented:

mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(plus(N, 0)) → mark(N)
mark(s(X)) → active(s(mark(X)))
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(x(N, 0)) → mark(0)
mark(0) → active(0)
mark(tt) → active(tt)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
x(X1, active(X2)) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(mark(X1), X2) → x(X1, X2)

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
ACTIVE(plus(N, 0)) → MARK(N)
MARK(plus(X1, X2)) → MARK(X1)
ACTIVE(plus(N, s(M))) → MARK(s(plus(N, M)))
MARK(s(X)) → MARK(X)
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))
ACTIVE(x(N, s(M))) → MARK(plus(x(N, M), N))

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = 0   
POL(and(x1, x2)) = 0   
POL(mark(x1)) = 0   
POL(plus(x1, x2)) = 1   
POL(s(x1)) = 0   
POL(tt) = 0   
POL(x(x1, x2)) = 1   

The following usable rules [FROCOS05] were oriented:

and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
x(X1, active(X2)) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(mark(X1), X2) → x(X1, X2)

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
ACTIVE(plus(N, 0)) → MARK(N)
MARK(plus(X1, X2)) → MARK(X1)
ACTIVE(plus(N, s(M))) → MARK(s(plus(N, M)))
MARK(s(X)) → MARK(X)
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))
ACTIVE(x(N, s(M))) → MARK(plus(x(N, M), N))

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(plus(N, 0)) → MARK(N)
MARK(plus(X1, X2)) → MARK(X1)
ACTIVE(plus(N, s(M))) → MARK(s(plus(N, M)))
MARK(s(X)) → MARK(X)
ACTIVE(x(N, s(M))) → MARK(plus(x(N, M), N))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
ACTIVE(x1)  =  x1
mark(x1)  =  x1
0  =  0
s(x1)  =  s(x1)
x(x1, x2)  =  x(x1, x2)
active(x1)  =  x1
and(x1, x2)  =  x2
tt  =  tt

Recursive path order with status [RPO].
Quasi-Precedence:
x2 > plus2 > s1

Status:
trivial


The following usable rules [FROCOS05] were oriented:

mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
active(plus(N, 0)) → mark(N)
mark(s(X)) → active(s(mark(X)))
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(x(N, 0)) → mark(0)
mark(0) → active(0)
mark(tt) → active(tt)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
x(X1, active(X2)) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(mark(X1), X2) → x(X1, X2)

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(39) TRUE