0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 QDPOrderProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 TRUE
a__and(tt, X) → mark(X)
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → s(a__plus(mark(N), mark(M)))
a__x(N, 0) → 0
a__x(N, s(M)) → a__plus(a__x(mark(N), mark(M)), mark(N))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
a__and(X1, X2) → and(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
A__AND(tt, X) → MARK(X)
A__PLUS(N, 0) → MARK(N)
A__PLUS(N, s(M)) → A__PLUS(mark(N), mark(M))
A__PLUS(N, s(M)) → MARK(N)
A__PLUS(N, s(M)) → MARK(M)
A__X(N, s(M)) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__X(N, s(M)) → A__X(mark(N), mark(M))
A__X(N, s(M)) → MARK(N)
A__X(N, s(M)) → MARK(M)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)
a__and(tt, X) → mark(X)
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → s(a__plus(mark(N), mark(M)))
a__x(N, 0) → 0
a__x(N, s(M)) → a__plus(a__x(mark(N), mark(M)), mark(N))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
a__and(X1, X2) → and(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__AND(tt, X) → MARK(X)
A__PLUS(N, 0) → MARK(N)
A__PLUS(N, s(M)) → A__PLUS(mark(N), mark(M))
A__PLUS(N, s(M)) → MARK(N)
A__PLUS(N, s(M)) → MARK(M)
A__X(N, s(M)) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__X(N, s(M)) → A__X(mark(N), mark(M))
A__X(N, s(M)) → MARK(N)
A__X(N, s(M)) → MARK(M)
MARK(and(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)
[AAND2, and2, aand2] > s1
tt > s1
0 > s1
[AX2, ax2, x2] > [APLUS2, plus2, aplus2] > s1
a__and(tt, X) → mark(X)
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → s(a__plus(mark(N), mark(M)))
a__x(N, 0) → 0
a__x(N, s(M)) → a__plus(a__x(mark(N), mark(M)), mark(N))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
a__and(X1, X2) → and(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
a__and(tt, X) → mark(X)
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → s(a__plus(mark(N), mark(M)))
a__x(N, 0) → 0
a__x(N, s(M)) → a__plus(a__x(mark(N), mark(M)), mark(N))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
a__and(X1, X2) → and(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)