0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
and(tt, X) → activate(X)
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)
activate(X) → X
and(tt, X) → activate(X)
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)
activate(X) → X
and(tt, x0)
plus(x0, 0)
plus(x0, s(x1))
x(x0, 0)
x(x0, s(x1))
activate(x0)
AND(tt, X) → ACTIVATE(X)
PLUS(N, s(M)) → PLUS(N, M)
X(N, s(M)) → PLUS(x(N, M), N)
X(N, s(M)) → X(N, M)
and(tt, X) → activate(X)
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)
activate(X) → X
and(tt, x0)
plus(x0, 0)
plus(x0, s(x1))
x(x0, 0)
x(x0, s(x1))
activate(x0)
PLUS(N, s(M)) → PLUS(N, M)
and(tt, X) → activate(X)
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)
activate(X) → X
and(tt, x0)
plus(x0, 0)
plus(x0, s(x1))
x(x0, 0)
x(x0, s(x1))
activate(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(N, s(M)) → PLUS(N, M)
[and1, activate1]
[0, x2] > plus2 > s1
PLUS2: multiset
s1: [1]
and1: multiset
tt: multiset
activate1: multiset
plus2: [1,2]
0: multiset
x2: [2,1]
and(tt, X) → activate(X)
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)
activate(X) → X
and(tt, X) → activate(X)
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)
activate(X) → X
and(tt, x0)
plus(x0, 0)
plus(x0, s(x1))
x(x0, 0)
x(x0, s(x1))
activate(x0)
X(N, s(M)) → X(N, M)
and(tt, X) → activate(X)
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)
activate(X) → X
and(tt, x0)
plus(x0, 0)
plus(x0, s(x1))
x(x0, 0)
x(x0, s(x1))
activate(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
X(N, s(M)) → X(N, M)
[and1, activate1]
[0, x2] > plus2 > s1
X2: multiset
s1: [1]
and1: multiset
tt: multiset
activate1: multiset
plus2: [1,2]
0: multiset
x2: [2,1]
and(tt, X) → activate(X)
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)
activate(X) → X
and(tt, X) → activate(X)
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)
activate(X) → X
and(tt, x0)
plus(x0, 0)
plus(x0, s(x1))
x(x0, 0)
x(x0, s(x1))
activate(x0)