(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(plus(N, s(M))) → S(plus(N, M))
ACTIVE(plus(N, s(M))) → PLUS(N, M)
ACTIVE(x(N, s(M))) → PLUS(x(N, M), N)
ACTIVE(x(N, s(M))) → X(N, M)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → PLUS(active(X1), X2)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → PLUS(X1, active(X2))
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(x(X1, X2)) → X(active(X1), X2)
ACTIVE(x(X1, X2)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → X(X1, active(X2))
ACTIVE(x(X1, X2)) → ACTIVE(X2)
AND(mark(X1), X2) → AND(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
S(mark(X)) → S(X)
X(mark(X1), X2) → X(X1, X2)
X(X1, mark(X2)) → X(X1, X2)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(plus(X1, X2)) → PLUS(proper(X1), proper(X2))
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(x(X1, X2)) → X(proper(X1), proper(X2))
PROPER(x(X1, X2)) → PROPER(X1)
PROPER(x(X1, X2)) → PROPER(X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
S(ok(X)) → S(X)
X(ok(X1), ok(X2)) → X(X1, X2)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 16 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(X1, mark(X2)) → X(X1, X2)
X(mark(X1), X2) → X(X1, X2)
X(ok(X1), ok(X2)) → X(X1, X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(ok(X1), ok(X2)) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
X(x1, x2)  =  X(x1)
mark(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
and(x1, x2)  =  and(x1, x2)
tt  =  tt
plus(x1, x2)  =  x1
0  =  0
s(x1)  =  s(x1)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
top > active1 > [and2, x2, proper1] > [X1, ok1, s1] > 0
top > active1 > [and2, x2, proper1] > tt > 0

Status:
X1: [1]
ok1: [1]
active1: [1]
and2: [1,2]
tt: []
0: []
s1: [1]
x2: [2,1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(X1, mark(X2)) → X(X1, X2)
X(mark(X1), X2) → X(X1, X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(mark(X1), X2) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
X(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
and(x1, x2)  =  and(x1, x2)
tt  =  tt
plus(x1, x2)  =  plus(x1, x2)
0  =  0
s(x1)  =  x1
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, and2, top] > plus2 > mark1
[active1, and2, top] > 0 > mark1
[active1, and2, top] > x2 > mark1
tt > mark1

Status:
mark1: [1]
active1: [1]
and2: [1,2]
tt: []
plus2: [2,1]
0: []
x2: [2,1]
top: []


The following usable rules [FROCOS05] were oriented:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(X1, mark(X2)) → X(X1, X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(X1, mark(X2)) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
X(x1, x2)  =  X(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
and(x1, x2)  =  and(x1, x2)
tt  =  tt
plus(x1, x2)  =  plus(x1, x2)
0  =  0
s(x1)  =  x1
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
X2 > [mark1, tt]
active1 > [plus2, x2, proper1] > and2 > ok1 > [mark1, tt]
0 > ok1 > [mark1, tt]
top > [mark1, tt]

Status:
X2: [2,1]
mark1: [1]
active1: [1]
and2: [1,2]
tt: []
plus2: [2,1]
0: []
x2: [2,1]
proper1: [1]
ok1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
and(x1, x2)  =  and(x1, x2)
tt  =  tt
plus(x1, x2)  =  plus(x1, x2)
0  =  0
s(x1)  =  s(x1)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, top] > [s1, proper1] > and2 > mark1
[active1, top] > [s1, proper1] > [plus2, x2] > mark1
[active1, top] > [s1, proper1] > [plus2, x2] > 0
tt > mark1

Status:
S1: [1]
mark1: [1]
active1: [1]
and2: [2,1]
tt: []
plus2: [2,1]
0: []
s1: [1]
x2: [1,2]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
and(x1, x2)  =  and(x1, x2)
tt  =  tt
mark(x1)  =  x1
plus(x1, x2)  =  x1
0  =  0
s(x1)  =  s(x1)
x(x1, x2)  =  x(x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > [and2, tt, 0, s1, x1, proper1] > [S1, ok1, top]

Status:
S1: [1]
ok1: [1]
active1: [1]
and2: [1,2]
tt: []
0: []
s1: [1]
x1: [1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(18) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(20) TRUE

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1)
mark(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
and(x1, x2)  =  and(x1, x2)
tt  =  tt
plus(x1, x2)  =  x1
0  =  0
s(x1)  =  s(x1)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
top > active1 > [and2, x2, proper1] > [PLUS1, ok1, s1] > 0
top > active1 > [and2, x2, proper1] > tt > 0

Status:
PLUS1: [1]
ok1: [1]
active1: [1]
and2: [1,2]
tt: []
0: []
s1: [1]
x2: [2,1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(mark(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
and(x1, x2)  =  and(x1, x2)
tt  =  tt
plus(x1, x2)  =  plus(x1, x2)
0  =  0
s(x1)  =  x1
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, and2, top] > plus2 > mark1
[active1, and2, top] > 0 > mark1
[active1, and2, top] > x2 > mark1
tt > mark1

Status:
mark1: [1]
active1: [1]
and2: [1,2]
tt: []
plus2: [2,1]
0: []
x2: [2,1]
top: []


The following usable rules [FROCOS05] were oriented:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, mark(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
and(x1, x2)  =  and(x1, x2)
tt  =  tt
plus(x1, x2)  =  plus(x1, x2)
0  =  0
s(x1)  =  x1
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
PLUS2 > [mark1, tt]
active1 > [plus2, x2, proper1] > and2 > ok1 > [mark1, tt]
0 > ok1 > [mark1, tt]
top > [mark1, tt]

Status:
PLUS2: [2,1]
mark1: [1]
active1: [1]
and2: [1,2]
tt: []
plus2: [2,1]
0: []
x2: [2,1]
proper1: [1]
ok1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(27) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(29) TRUE

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(ok(X1), ok(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(ok(X1), ok(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1, x2)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
tt  =  tt
plus(x1, x2)  =  x1
0  =  0
s(x1)  =  x1
x(x1, x2)  =  x2
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
tt > ok1 > [AND2, 0]
top > [and2, proper1] > ok1 > [AND2, 0]

Status:
AND2: [2,1]
ok1: [1]
and2: [1,2]
tt: []
0: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
and(x1, x2)  =  and(x1, x2)
tt  =  tt
plus(x1, x2)  =  plus(x1, x2)
0  =  0
s(x1)  =  x1
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
top > active1 > [plus2, x2, proper1] > and2 > ok1 > [mark1, tt]
top > active1 > [plus2, x2, proper1] > 0 > ok1 > [mark1, tt]

Status:
mark1: [1]
active1: [1]
and2: [1,2]
tt: []
plus2: [2,1]
0: []
x2: [2,1]
proper1: [1]
ok1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(34) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(36) TRUE

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(and(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(s(X)) → PROPER(X)
PROPER(x(X1, X2)) → PROPER(X1)
PROPER(x(X1, X2)) → PROPER(X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(and(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(x(X1, X2)) → PROPER(X1)
PROPER(x(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
plus(x1, x2)  =  plus(x1, x2)
s(x1)  =  x1
x(x1, x2)  =  x(x1, x2)
active(x1)  =  x1
tt  =  tt
mark(x1)  =  mark
0  =  0
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
and2 > [plus2, mark, top]
x2 > 0 > [plus2, mark, top]
tt > [plus2, mark, top]

Status:
and2: [1,2]
plus2: [1,2]
x2: [1,2]
tt: []
mark: []
0: []
top: []


The following usable rules [FROCOS05] were oriented:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
s(x1)  =  s(x1)
active(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
tt  =  tt
mark(x1)  =  mark(x1)
plus(x1, x2)  =  plus(x1, x2)
0  =  0
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
and2 > [s1, mark1]
tt > [s1, mark1]
x2 > plus2 > [s1, mark1]
x2 > 0

Status:
PROPER1: [1]
s1: [1]
and2: [1,2]
tt: []
mark1: [1]
plus2: [1,2]
0: []
x2: [2,1]
top1: [1]


The following usable rules [FROCOS05] were oriented:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(41) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(43) TRUE

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(x(X1, X2)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → ACTIVE(X2)

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(x(X1, X2)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
and(x1, x2)  =  and(x1, x2)
s(x1)  =  s(x1)
x(x1, x2)  =  x(x1, x2)
active(x1)  =  x1
tt  =  tt
mark(x1)  =  x1
0  =  0
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[x2, 0] > plus2 > s1

Status:
plus2: [2,1]
and2: [2,1]
s1: [1]
x2: [2,1]
tt: []
0: []
top1: [1]


The following usable rules [FROCOS05] were oriented:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(46) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(48) TRUE

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(mark(X)) → TOP(proper(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  TOP(x1)
ok(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)
proper(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
tt  =  tt
plus(x1, x2)  =  plus(x1, x2)
0  =  0
s(x1)  =  s(x1)
x(x1, x2)  =  x(x1, x2)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
and2 > [mark1, s1]
tt > [mark1, s1]
0 > [mark1, s1]
x2 > plus2 > [mark1, s1]

Status:
TOP1: [1]
mark1: [1]
and2: [2,1]
tt: []
plus2: [1,2]
0: []
s1: [1]
x2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(ok(X)) → TOP(active(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  TOP(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
and(x1, x2)  =  and(x2)
tt  =  tt
mark(x1)  =  mark
plus(x1, x2)  =  x1
0  =  0
s(x1)  =  x1
x(x1, x2)  =  x2
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[proper1, top] > and1 > [TOP1, ok1] > [active1, 0] > mark
[proper1, top] > tt > [TOP1, ok1] > [active1, 0] > mark

Status:
TOP1: [1]
ok1: [1]
active1: [1]
and1: [1]
tt: []
mark: []
0: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(53) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(55) TRUE