(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) QTRSToCSRProof (EQUIVALENT transformation)

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
Special symbols used for the transformation (see [GM04]):
top: top, active: active, mark: mark, ok: ok, proper: proper
The replacement map contains the following entries:

and: {1}
tt: empty set
plus: {1, 2}
0: empty set
s: {1}
x: {1, 2}
The QTRS contained all rules created by the complete Giesl-Middeldorp transformation. Therefore, the inverse transformation is complete (and sound).

(2) Obligation:

Context-sensitive rewrite system:
The TRS R consists of the following rules:

and(tt, X) → X
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)

The replacement map contains the following entries:

and: {1}
tt: empty set
plus: {1, 2}
0: empty set
s: {1}
x: {1, 2}

(3) CSRInnermostProof (EQUIVALENT transformation)

The CSR is orthogonal. By [CS_Inn] we can switch to innermost.

(4) Obligation:

Context-sensitive rewrite system:
The TRS R consists of the following rules:

and(tt, X) → X
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)

The replacement map contains the following entries:

and: {1}
tt: empty set
plus: {1, 2}
0: empty set
s: {1}
x: {1, 2}

Innermost Strategy.

(5) CSDependencyPairsProof (EQUIVALENT transformation)

Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem.

(6) Obligation:

Q-restricted context-sensitive dependency pair problem:
The symbols in {plus, s, x, PLUS, X} are replacing on all positions.
For all symbols f in {and, AND} we have µ(f) = {1}.
The symbols in {U} are not replacing on any position.

The ordinary context-sensitive dependency pairs DPo are:

PLUS(N, s(M)) → PLUS(N, M)
X(N, s(M)) → PLUS(x(N, M), N)
X(N, s(M)) → X(N, M)

The collapsing dependency pairs are DPc:

AND(tt, X) → X


The hidden terms of R are:
none

Every hiding context is built from:none

Hence, the new unhiding pairs DPu are :

AND(tt, X) → U(X)

The TRS R consists of the following rules:

and(tt, X) → X
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)

The set Q consists of the following terms:

and(tt, x0)
plus(x0, 0)
plus(x0, s(x1))
x(x0, 0)
x(x0, s(x1))

(7) QCSDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 2 SCCs with 1 less node.

(8) Complex Obligation (AND)

(9) Obligation:

Q-restricted context-sensitive dependency pair problem:
The symbols in {plus, s, x, PLUS} are replacing on all positions.
For all symbols f in {and} we have µ(f) = {1}.

The TRS P consists of the following rules:

PLUS(N, s(M)) → PLUS(N, M)

The TRS R consists of the following rules:

and(tt, X) → X
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)

The set Q consists of the following terms:

and(tt, x0)
plus(x0, 0)
plus(x0, s(x1))
x(x0, 0)
x(x0, s(x1))

(10) QCSDPSubtermProof (EQUIVALENT transformation)

We use the subterm processor [DA_EMMES].


The following pairs can be oriented strictly and are deleted.


PLUS(N, s(M)) → PLUS(N, M)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x2

Subterm Order

(11) Obligation:

Q-restricted context-sensitive dependency pair problem:
The symbols in {plus, s, x} are replacing on all positions.
For all symbols f in {and} we have µ(f) = {1}.

The TRS P consists of the following rules:
none

The TRS R consists of the following rules:

and(tt, X) → X
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)

The set Q consists of the following terms:

and(tt, x0)
plus(x0, 0)
plus(x0, s(x1))
x(x0, 0)
x(x0, s(x1))

(12) PIsEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R,µ)-chain.

(13) TRUE

(14) Obligation:

Q-restricted context-sensitive dependency pair problem:
The symbols in {plus, s, x, X} are replacing on all positions.
For all symbols f in {and} we have µ(f) = {1}.

The TRS P consists of the following rules:

X(N, s(M)) → X(N, M)

The TRS R consists of the following rules:

and(tt, X) → X
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)

The set Q consists of the following terms:

and(tt, x0)
plus(x0, 0)
plus(x0, s(x1))
x(x0, 0)
x(x0, s(x1))

(15) QCSDPSubtermProof (EQUIVALENT transformation)

We use the subterm processor [DA_EMMES].


The following pairs can be oriented strictly and are deleted.


X(N, s(M)) → X(N, M)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
X(x1, x2)  =  x2

Subterm Order

(16) Obligation:

Q-restricted context-sensitive dependency pair problem:
The symbols in {plus, s, x} are replacing on all positions.
For all symbols f in {and} we have µ(f) = {1}.

The TRS P consists of the following rules:
none

The TRS R consists of the following rules:

and(tt, X) → X
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)

The set Q consists of the following terms:

and(tt, x0)
plus(x0, 0)
plus(x0, s(x1))
x(x0, 0)
x(x0, s(x1))

(17) PIsEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R,µ)-chain.

(18) TRUE