(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V2)) → MARK(U12(isNat(V2)))
ACTIVE(U11(tt, V2)) → U121(isNat(V2))
ACTIVE(U11(tt, V2)) → ISNAT(V2)
ACTIVE(U12(tt)) → MARK(tt)
ACTIVE(U21(tt)) → MARK(tt)
ACTIVE(U31(tt, V2)) → MARK(U32(isNat(V2)))
ACTIVE(U31(tt, V2)) → U321(isNat(V2))
ACTIVE(U31(tt, V2)) → ISNAT(V2)
ACTIVE(U32(tt)) → MARK(tt)
ACTIVE(U41(tt, N)) → MARK(N)
ACTIVE(U51(tt, M, N)) → MARK(U52(isNat(N), M, N))
ACTIVE(U51(tt, M, N)) → U521(isNat(N), M, N)
ACTIVE(U51(tt, M, N)) → ISNAT(N)
ACTIVE(U52(tt, M, N)) → MARK(s(plus(N, M)))
ACTIVE(U52(tt, M, N)) → S(plus(N, M))
ACTIVE(U52(tt, M, N)) → PLUS(N, M)
ACTIVE(U61(tt)) → MARK(0)
ACTIVE(U71(tt, M, N)) → MARK(U72(isNat(N), M, N))
ACTIVE(U71(tt, M, N)) → U721(isNat(N), M, N)
ACTIVE(U71(tt, M, N)) → ISNAT(N)
ACTIVE(U72(tt, M, N)) → MARK(plus(x(N, M), N))
ACTIVE(U72(tt, M, N)) → PLUS(x(N, M), N)
ACTIVE(U72(tt, M, N)) → X(N, M)
ACTIVE(isNat(0)) → MARK(tt)
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNat(V1), V2))
ACTIVE(isNat(plus(V1, V2))) → U111(isNat(V1), V2)
ACTIVE(isNat(plus(V1, V2))) → ISNAT(V1)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
ACTIVE(isNat(s(V1))) → U211(isNat(V1))
ACTIVE(isNat(s(V1))) → ISNAT(V1)
ACTIVE(isNat(x(V1, V2))) → MARK(U31(isNat(V1), V2))
ACTIVE(isNat(x(V1, V2))) → U311(isNat(V1), V2)
ACTIVE(isNat(x(V1, V2))) → ISNAT(V1)
ACTIVE(plus(N, 0)) → MARK(U41(isNat(N), N))
ACTIVE(plus(N, 0)) → U411(isNat(N), N)
ACTIVE(plus(N, 0)) → ISNAT(N)
ACTIVE(plus(N, s(M))) → MARK(U51(isNat(M), M, N))
ACTIVE(plus(N, s(M))) → U511(isNat(M), M, N)
ACTIVE(plus(N, s(M))) → ISNAT(M)
ACTIVE(x(N, 0)) → MARK(U61(isNat(N)))
ACTIVE(x(N, 0)) → U611(isNat(N))
ACTIVE(x(N, 0)) → ISNAT(N)
ACTIVE(x(N, s(M))) → MARK(U71(isNat(M), M, N))
ACTIVE(x(N, s(M))) → U711(isNat(M), M, N)
ACTIVE(x(N, s(M))) → ISNAT(M)
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
MARK(U11(X1, X2)) → U111(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(U12(X)) → ACTIVE(U12(mark(X)))
MARK(U12(X)) → U121(mark(X))
MARK(U12(X)) → MARK(X)
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U21(X)) → ACTIVE(U21(mark(X)))
MARK(U21(X)) → U211(mark(X))
MARK(U21(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
MARK(U31(X1, X2)) → U311(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
MARK(U32(X)) → U321(mark(X))
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(U41(X1, X2)) → U411(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
MARK(U51(X1, X2, X3)) → U511(mark(X1), X2, X3)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2, X3)) → ACTIVE(U52(mark(X1), X2, X3))
MARK(U52(X1, X2, X3)) → U521(mark(X1), X2, X3)
MARK(U52(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(U61(X)) → ACTIVE(U61(mark(X)))
MARK(U61(X)) → U611(mark(X))
MARK(U61(X)) → MARK(X)
MARK(0) → ACTIVE(0)
MARK(U71(X1, X2, X3)) → ACTIVE(U71(mark(X1), X2, X3))
MARK(U71(X1, X2, X3)) → U711(mark(X1), X2, X3)
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(U72(X1, X2, X3)) → ACTIVE(U72(mark(X1), X2, X3))
MARK(U72(X1, X2, X3)) → U721(mark(X1), X2, X3)
MARK(U72(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))
MARK(x(X1, X2)) → X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
U111(mark(X1), X2) → U111(X1, X2)
U111(X1, mark(X2)) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)
U121(mark(X)) → U121(X)
U121(active(X)) → U121(X)
ISNAT(mark(X)) → ISNAT(X)
ISNAT(active(X)) → ISNAT(X)
U211(mark(X)) → U211(X)
U211(active(X)) → U211(X)
U311(mark(X1), X2) → U311(X1, X2)
U311(X1, mark(X2)) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)
U321(mark(X)) → U321(X)
U321(active(X)) → U321(X)
U411(mark(X1), X2) → U411(X1, X2)
U411(X1, mark(X2)) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
U411(X1, active(X2)) → U411(X1, X2)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, mark(X3)) → U511(X1, X2, X3)
U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)
U521(mark(X1), X2, X3) → U521(X1, X2, X3)
U521(X1, mark(X2), X3) → U521(X1, X2, X3)
U521(X1, X2, mark(X3)) → U521(X1, X2, X3)
U521(active(X1), X2, X3) → U521(X1, X2, X3)
U521(X1, active(X2), X3) → U521(X1, X2, X3)
U521(X1, X2, active(X3)) → U521(X1, X2, X3)
S(mark(X)) → S(X)
S(active(X)) → S(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
U611(mark(X)) → U611(X)
U611(active(X)) → U611(X)
U711(mark(X1), X2, X3) → U711(X1, X2, X3)
U711(X1, mark(X2), X3) → U711(X1, X2, X3)
U711(X1, X2, mark(X3)) → U711(X1, X2, X3)
U711(active(X1), X2, X3) → U711(X1, X2, X3)
U711(X1, active(X2), X3) → U711(X1, X2, X3)
U711(X1, X2, active(X3)) → U711(X1, X2, X3)
U721(mark(X1), X2, X3) → U721(X1, X2, X3)
U721(X1, mark(X2), X3) → U721(X1, X2, X3)
U721(X1, X2, mark(X3)) → U721(X1, X2, X3)
U721(active(X1), X2, X3) → U721(X1, X2, X3)
U721(X1, active(X2), X3) → U721(X1, X2, X3)
U721(X1, X2, active(X3)) → U721(X1, X2, X3)
X(mark(X1), X2) → X(X1, X2)
X(X1, mark(X2)) → X(X1, X2)
X(active(X1), X2) → X(X1, X2)
X(X1, active(X2)) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 16 SCCs with 47 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(X1, mark(X2)) → X(X1, X2)
X(mark(X1), X2) → X(X1, X2)
X(active(X1), X2) → X(X1, X2)
X(X1, active(X2)) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(X1, mark(X2)) → X(X1, X2)
X(X1, active(X2)) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
X(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(mark(X1), X2) → X(X1, X2)
X(active(X1), X2) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(mark(X1), X2) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
X(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(active(X1), X2) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(active(X1), X2) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
X(x1, x2)  =  X(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
active1 > X1

The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U721(X1, mark(X2), X3) → U721(X1, X2, X3)
U721(mark(X1), X2, X3) → U721(X1, X2, X3)
U721(X1, X2, mark(X3)) → U721(X1, X2, X3)
U721(active(X1), X2, X3) → U721(X1, X2, X3)
U721(X1, active(X2), X3) → U721(X1, X2, X3)
U721(X1, X2, active(X3)) → U721(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U721(X1, X2, mark(X3)) → U721(X1, X2, X3)
U721(X1, X2, active(X3)) → U721(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U721(x1, x2, x3)  =  x3
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U721(X1, mark(X2), X3) → U721(X1, X2, X3)
U721(mark(X1), X2, X3) → U721(X1, X2, X3)
U721(active(X1), X2, X3) → U721(X1, X2, X3)
U721(X1, active(X2), X3) → U721(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U721(mark(X1), X2, X3) → U721(X1, X2, X3)
U721(active(X1), X2, X3) → U721(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U721(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U721(X1, mark(X2), X3) → U721(X1, X2, X3)
U721(X1, active(X2), X3) → U721(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U721(X1, mark(X2), X3) → U721(X1, X2, X3)
U721(X1, active(X2), X3) → U721(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U721(x1, x2, x3)  =  U721(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
mark1 > U72^11
active1 > U72^11

The following usable rules [FROCOS05] were oriented: none

(20) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(22) TRUE

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(X1, mark(X2), X3) → U711(X1, X2, X3)
U711(mark(X1), X2, X3) → U711(X1, X2, X3)
U711(X1, X2, mark(X3)) → U711(X1, X2, X3)
U711(active(X1), X2, X3) → U711(X1, X2, X3)
U711(X1, active(X2), X3) → U711(X1, X2, X3)
U711(X1, X2, active(X3)) → U711(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(X1, X2, mark(X3)) → U711(X1, X2, X3)
U711(X1, X2, active(X3)) → U711(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2, x3)  =  x3
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(X1, mark(X2), X3) → U711(X1, X2, X3)
U711(mark(X1), X2, X3) → U711(X1, X2, X3)
U711(active(X1), X2, X3) → U711(X1, X2, X3)
U711(X1, active(X2), X3) → U711(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(mark(X1), X2, X3) → U711(X1, X2, X3)
U711(active(X1), X2, X3) → U711(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(X1, mark(X2), X3) → U711(X1, X2, X3)
U711(X1, active(X2), X3) → U711(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(X1, mark(X2), X3) → U711(X1, X2, X3)
U711(X1, active(X2), X3) → U711(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2, x3)  =  U711(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
mark1 > U71^11
active1 > U71^11

The following usable rules [FROCOS05] were oriented: none

(29) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(31) TRUE

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(active(X)) → U611(X)
U611(mark(X)) → U611(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(active(X)) → U611(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X)) → U611(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X)) → U611(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
mark1 > U61^11

The following usable rules [FROCOS05] were oriented: none

(36) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(38) TRUE

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(mark(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(active(X1), X2) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(active(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
active1 > PLUS1

The following usable rules [FROCOS05] were oriented: none

(45) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(47) TRUE

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
mark1 > S1

The following usable rules [FROCOS05] were oriented: none

(52) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(54) TRUE

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(X1, mark(X2), X3) → U521(X1, X2, X3)
U521(mark(X1), X2, X3) → U521(X1, X2, X3)
U521(X1, X2, mark(X3)) → U521(X1, X2, X3)
U521(active(X1), X2, X3) → U521(X1, X2, X3)
U521(X1, active(X2), X3) → U521(X1, X2, X3)
U521(X1, X2, active(X3)) → U521(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(X1, X2, mark(X3)) → U521(X1, X2, X3)
U521(X1, X2, active(X3)) → U521(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2, x3)  =  x3
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(X1, mark(X2), X3) → U521(X1, X2, X3)
U521(mark(X1), X2, X3) → U521(X1, X2, X3)
U521(active(X1), X2, X3) → U521(X1, X2, X3)
U521(X1, active(X2), X3) → U521(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(mark(X1), X2, X3) → U521(X1, X2, X3)
U521(active(X1), X2, X3) → U521(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(X1, mark(X2), X3) → U521(X1, X2, X3)
U521(X1, active(X2), X3) → U521(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(X1, mark(X2), X3) → U521(X1, X2, X3)
U521(X1, active(X2), X3) → U521(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2, x3)  =  U521(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
mark1 > U52^11
active1 > U52^11

The following usable rules [FROCOS05] were oriented: none

(61) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(63) TRUE

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, X2, mark(X3)) → U511(X1, X2, X3)
U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(X1, X2, mark(X3)) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  x3
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(active(X1), X2, X3) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  U511(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
mark1 > U51^11
active1 > U51^11

The following usable rules [FROCOS05] were oriented: none

(70) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(72) TRUE

(73) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(X1, mark(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
U411(X1, active(X2)) → U411(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(74) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(X1, mark(X2)) → U411(X1, X2)
U411(X1, active(X2)) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X1), X2) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(76) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X1), X2) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(77) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(active(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(active(X1), X2) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
active1 > U41^11

The following usable rules [FROCOS05] were oriented: none

(79) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(81) TRUE

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(active(X)) → U321(X)
U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(83) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(active(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(84) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(85) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(mark(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
mark1 > U32^11

The following usable rules [FROCOS05] were oriented: none

(86) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(87) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(88) TRUE

(89) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(90) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, mark(X2)) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(91) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(92) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(93) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(active(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(94) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(active(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
active1 > U31^11

The following usable rules [FROCOS05] were oriented: none

(95) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(96) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(97) TRUE

(98) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(active(X)) → U211(X)
U211(mark(X)) → U211(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(99) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(active(X)) → U211(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(100) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X)) → U211(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(101) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X)) → U211(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
mark1 > U21^11

The following usable rules [FROCOS05] were oriented: none

(102) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(103) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(104) TRUE

(105) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(106) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(active(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(107) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(108) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(mark(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
mark1 > ISNAT1

The following usable rules [FROCOS05] were oriented: none

(109) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(110) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(111) TRUE

(112) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(active(X)) → U121(X)
U121(mark(X)) → U121(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(113) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(active(X)) → U121(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(114) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X)) → U121(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(115) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X)) → U121(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
mark1 > U12^11

The following usable rules [FROCOS05] were oriented: none

(116) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(117) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(118) TRUE

(119) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2)) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, mark(X2)) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(121) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(122) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(123) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(active(X1), X2) → U111(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(124) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(active(X1), X2) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  U111(x1)
active(x1)  =  active(x1)

Lexicographic Path Order [LPO].
Precedence:
active1 > U11^11

The following usable rules [FROCOS05] were oriented: none

(125) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(126) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(127) TRUE

(128) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(U11(tt, V2)) → MARK(U12(isNat(V2)))
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → ACTIVE(U12(mark(X)))
ACTIVE(U31(tt, V2)) → MARK(U32(isNat(V2)))
MARK(U12(X)) → MARK(X)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U41(tt, N)) → MARK(N)
MARK(U21(X)) → ACTIVE(U21(mark(X)))
ACTIVE(U51(tt, M, N)) → MARK(U52(isNat(N), M, N))
MARK(U21(X)) → MARK(X)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U52(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(U71(tt, M, N)) → MARK(U72(isNat(N), M, N))
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
ACTIVE(U72(tt, M, N)) → MARK(plus(x(N, M), N))
MARK(U41(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(isNat(V1), V2))
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2, X3)) → ACTIVE(U52(mark(X1), X2, X3))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U52(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(isNat(x(V1, V2))) → MARK(U31(isNat(V1), V2))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
ACTIVE(plus(N, 0)) → MARK(U41(isNat(N), N))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(U61(X)) → ACTIVE(U61(mark(X)))
ACTIVE(plus(N, s(M))) → MARK(U51(isNat(M), M, N))
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → ACTIVE(U71(mark(X1), X2, X3))
ACTIVE(x(N, 0)) → MARK(U61(isNat(N)))
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(U72(X1, X2, X3)) → ACTIVE(U72(mark(X1), X2, X3))
ACTIVE(x(N, s(M))) → MARK(U71(isNat(M), M, N))
MARK(U72(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2, X3)) → active(U52(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(U72(X1, X2, X3)) → active(U72(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, mark(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, mark(X3)) → U52(X1, X2, X3)
U52(active(X1), X2, X3) → U52(X1, X2, X3)
U52(X1, active(X2), X3) → U52(X1, X2, X3)
U52(X1, X2, active(X3)) → U52(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
U72(mark(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, mark(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, mark(X3)) → U72(X1, X2, X3)
U72(active(X1), X2, X3) → U72(X1, X2, X3)
U72(X1, active(X2), X3) → U72(X1, X2, X3)
U72(X1, X2, active(X3)) → U72(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.