(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, V2) → a__U32(a__isNat(V2))
a__U32(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → a__U52(a__isNat(N), M, N)
a__U52(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__U72(a__isNat(N), M, N)
a__U72(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(x(V1, V2)) → a__U31(a__isNat(V1), V2)
a__plus(N, 0) → a__U41(a__isNat(N), N)
a__plus(N, s(M)) → a__U51(a__isNat(M), M, N)
a__x(N, 0) → a__U61(a__isNat(N))
a__x(N, s(M)) → a__U71(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2, X3)) → a__U52(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2, X3)) → a__U72(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2, X3) → U52(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2, X3) → U72(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, V2) → A__U12(a__isNat(V2))
A__U11(tt, V2) → A__ISNAT(V2)
A__U31(tt, V2) → A__U32(a__isNat(V2))
A__U31(tt, V2) → A__ISNAT(V2)
A__U41(tt, N) → MARK(N)
A__U51(tt, M, N) → A__U52(a__isNat(N), M, N)
A__U51(tt, M, N) → A__ISNAT(N)
A__U52(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U52(tt, M, N) → MARK(N)
A__U52(tt, M, N) → MARK(M)
A__U71(tt, M, N) → A__U72(a__isNat(N), M, N)
A__U71(tt, M, N) → A__ISNAT(N)
A__U72(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__U72(tt, M, N) → A__X(mark(N), mark(M))
A__U72(tt, M, N) → MARK(N)
A__U72(tt, M, N) → MARK(M)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNat(V1), V2)
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__U21(a__isNat(V1))
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__ISNAT(x(V1, V2)) → A__U31(a__isNat(V1), V2)
A__ISNAT(x(V1, V2)) → A__ISNAT(V1)
A__PLUS(N, 0) → A__U41(a__isNat(N), N)
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U51(a__isNat(M), M, N)
A__PLUS(N, s(M)) → A__ISNAT(M)
A__X(N, 0) → A__U61(a__isNat(N))
A__X(N, 0) → A__ISNAT(N)
A__X(N, s(M)) → A__U71(a__isNat(M), M, N)
A__X(N, s(M)) → A__ISNAT(M)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → A__U12(mark(X))
MARK(U12(X)) → MARK(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U21(X)) → A__U21(mark(X))
MARK(U21(X)) → MARK(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → A__U32(mark(X))
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2)) → A__U41(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2, X3)) → A__U52(mark(X1), X2, X3)
MARK(U52(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(U61(X)) → A__U61(mark(X))
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → A__U71(mark(X1), X2, X3)
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(U72(X1, X2, X3)) → A__U72(mark(X1), X2, X3)
MARK(U72(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, V2) → a__U32(a__isNat(V2))
a__U32(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → a__U52(a__isNat(N), M, N)
a__U52(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__U72(a__isNat(N), M, N)
a__U72(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(x(V1, V2)) → a__U31(a__isNat(V1), V2)
a__plus(N, 0) → a__U41(a__isNat(N), N)
a__plus(N, s(M)) → a__U51(a__isNat(M), M, N)
a__x(N, 0) → a__U61(a__isNat(N))
a__x(N, s(M)) → a__U71(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2, X3)) → a__U52(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2, X3)) → a__U72(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2, X3) → U52(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2, X3) → U72(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 17 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNat(V1), V2)
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__ISNAT(x(V1, V2)) → A__U31(a__isNat(V1), V2)
A__U31(tt, V2) → A__ISNAT(V2)
A__ISNAT(x(V1, V2)) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, V2) → a__U32(a__isNat(V2))
a__U32(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → a__U52(a__isNat(N), M, N)
a__U52(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__U72(a__isNat(N), M, N)
a__U72(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(x(V1, V2)) → a__U31(a__isNat(V1), V2)
a__plus(N, 0) → a__U41(a__isNat(N), N)
a__plus(N, s(M)) → a__U51(a__isNat(M), M, N)
a__x(N, 0) → a__U61(a__isNat(N))
a__x(N, s(M)) → a__U71(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2, X3)) → a__U52(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2, X3)) → a__U72(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2, X3) → U52(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2, X3) → U72(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U11(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNat(V1), V2)
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
A__ISNAT(x(V1, V2)) → A__U31(a__isNat(V1), V2)
A__U31(tt, V2) → A__ISNAT(V2)
A__ISNAT(x(V1, V2)) → A__ISNAT(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U11(x1, x2)  =  A__U11(x2)
tt  =  tt
A__ISNAT(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
a__isNat(x1)  =  a__isNat
s(x1)  =  x1
x(x1, x2)  =  x(x1, x2)
A__U31(x1, x2)  =  A__U31(x2)
0  =  0
a__U11(x1, x2)  =  a__U11(x1, x2)
a__U21(x1)  =  x1
a__U31(x1, x2)  =  a__U31(x1, x2)
isNat(x1)  =  isNat
U11(x1, x2)  =  U11
U21(x1)  =  U21
U31(x1, x2)  =  U31
a__U32(x1)  =  a__U32(x1)
U32(x1)  =  U32
a__U12(x1)  =  a__U12(x1)
U12(x1)  =  U12

Lexicographic path order with status [LPO].
Quasi-Precedence:
plus2 > [AU111, tt, aisNat, AU311, aU112, aU312, isNat, U11, U21, U31, aU321, U32, aU121, U12]
x2 > [AU111, tt, aisNat, AU311, aU112, aU312, isNat, U11, U21, U31, aU321, U32, aU121, U12]
0 > [AU111, tt, aisNat, AU311, aU112, aU312, isNat, U11, U21, U31, aU321, U32, aU121, U12]

Status:
AU111: [1]
tt: []
plus2: [1,2]
aisNat: []
x2: [1,2]
AU311: [1]
0: []
aU112: [2,1]
aU312: [2,1]
isNat: []
U11: []
U21: []
U31: []
aU321: [1]
U32: []
aU121: [1]
U12: []


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNAT(s(V1)) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, V2) → a__U32(a__isNat(V2))
a__U32(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → a__U52(a__isNat(N), M, N)
a__U52(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__U72(a__isNat(N), M, N)
a__U72(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(x(V1, V2)) → a__U31(a__isNat(V1), V2)
a__plus(N, 0) → a__U41(a__isNat(N), N)
a__plus(N, s(M)) → a__U51(a__isNat(M), M, N)
a__x(N, 0) → a__U61(a__isNat(N))
a__x(N, s(M)) → a__U71(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2, X3)) → a__U52(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2, X3)) → a__U72(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2, X3) → U52(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2, X3) → U72(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNAT(s(V1)) → A__ISNAT(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__ISNAT(x1)  =  x1
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, V2) → a__U32(a__isNat(V2))
a__U32(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → a__U52(a__isNat(N), M, N)
a__U52(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__U72(a__isNat(N), M, N)
a__U72(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(x(V1, V2)) → a__U31(a__isNat(V1), V2)
a__plus(N, 0) → a__U41(a__isNat(N), N)
a__plus(N, s(M)) → a__U51(a__isNat(M), M, N)
a__x(N, 0) → a__U61(a__isNat(N))
a__x(N, s(M)) → a__U71(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2, X3)) → a__U52(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2, X3)) → a__U72(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2, X3) → U52(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2, X3) → U72(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
MARK(U21(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2)) → A__U41(mark(X1), X2)
A__U41(tt, N) → MARK(N)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
A__U51(tt, M, N) → A__U52(a__isNat(N), M, N)
A__U52(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, 0) → A__U41(a__isNat(N), N)
A__PLUS(N, s(M)) → A__U51(a__isNat(M), M, N)
A__U52(tt, M, N) → MARK(N)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2, X3)) → A__U52(mark(X1), X2, X3)
A__U52(tt, M, N) → MARK(M)
MARK(U52(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → A__U71(mark(X1), X2, X3)
A__U71(tt, M, N) → A__U72(a__isNat(N), M, N)
A__U72(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__U72(tt, M, N) → A__X(mark(N), mark(M))
A__X(N, s(M)) → A__U71(a__isNat(M), M, N)
A__U72(tt, M, N) → MARK(N)
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(U72(X1, X2, X3)) → A__U72(mark(X1), X2, X3)
A__U72(tt, M, N) → MARK(M)
MARK(U72(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, V2) → a__U32(a__isNat(V2))
a__U32(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → a__U52(a__isNat(N), M, N)
a__U52(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__U72(a__isNat(N), M, N)
a__U72(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(x(V1, V2)) → a__U31(a__isNat(V1), V2)
a__plus(N, 0) → a__U41(a__isNat(N), N)
a__plus(N, s(M)) → a__U51(a__isNat(M), M, N)
a__x(N, 0) → a__U61(a__isNat(N))
a__x(N, s(M)) → a__U71(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2, X3)) → a__U52(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2, X3)) → a__U72(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2, X3) → U52(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2, X3) → U72(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U41(X1, X2)) → A__U41(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
A__U51(tt, M, N) → A__U52(a__isNat(N), M, N)
A__PLUS(N, 0) → A__U41(a__isNat(N), N)
A__PLUS(N, s(M)) → A__U51(a__isNat(M), M, N)
A__U52(tt, M, N) → MARK(N)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2, X3)) → A__U52(mark(X1), X2, X3)
A__U52(tt, M, N) → MARK(M)
MARK(U52(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
A__U72(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__U72(tt, M, N) → A__X(mark(N), mark(M))
A__X(N, s(M)) → A__U71(a__isNat(M), M, N)
A__U72(tt, M, N) → MARK(N)
MARK(U71(X1, X2, X3)) → MARK(X1)
A__U72(tt, M, N) → MARK(M)
MARK(U72(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U11(x1, x2)  =  x1
U12(x1)  =  x1
U21(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
A__U41(x1, x2)  =  x2
mark(x1)  =  x1
tt  =  tt
U51(x1, x2, x3)  =  U51(x1, x2, x3)
A__U51(x1, x2, x3)  =  A__U51(x1, x2, x3)
A__U52(x1, x2, x3)  =  A__U52(x2, x3)
a__isNat(x1)  =  a__isNat
A__PLUS(x1, x2)  =  A__PLUS(x1, x2)
0  =  0
s(x1)  =  s(x1)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
U71(x1, x2, x3)  =  U71(x1, x2, x3)
A__U71(x1, x2, x3)  =  A__U71(x1, x2, x3)
A__U72(x1, x2, x3)  =  A__U72(x1, x2, x3)
a__x(x1, x2)  =  a__x(x1, x2)
A__X(x1, x2)  =  A__X(x1, x2)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
a__U11(x1, x2)  =  x1
a__U12(x1)  =  x1
isNat(x1)  =  isNat
a__U21(x1)  =  x1
a__U31(x1, x2)  =  x1
a__U32(x1)  =  x1
a__U41(x1, x2)  =  a__U41(x1, x2)
a__plus(x1, x2)  =  a__plus(x1, x2)
a__U71(x1, x2, x3)  =  a__U71(x1, x2, x3)
a__U72(x1, x2, x3)  =  a__U72(x1, x2, x3)
a__U51(x1, x2, x3)  =  a__U51(x1, x2, x3)
a__U52(x1, x2, x3)  =  a__U52(x1, x2, x3)
a__U61(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U713, AU713, AU723, ax2, AX2, U723, x2, aU713, aU723] > [U513, U523, plus2, aplus2, aU513, aU523] > [U412, aU412]
[U713, AU713, AU723, ax2, AX2, U723, x2, aU713, aU723] > [U513, U523, plus2, aplus2, aU513, aU523] > s1 > [AU513, AU522, APLUS2] > [tt, aisNat, isNat] > 0

Status:
U412: [2,1]
tt: []
U513: [2,3,1]
AU513: [3,2,1]
AU522: [2,1]
aisNat: []
APLUS2: [1,2]
0: []
s1: [1]
U523: [2,3,1]
plus2: [2,1]
U713: [2,3,1]
AU713: [2,3,1]
AU723: [2,3,1]
ax2: [2,1]
AX2: [2,1]
U723: [2,3,1]
x2: [2,1]
isNat: []
aU412: [2,1]
aplus2: [2,1]
aU713: [2,3,1]
aU723: [2,3,1]
aU513: [2,3,1]
aU523: [2,3,1]


The following usable rules [FROCOS05] were oriented:

mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
a__U41(tt, N) → mark(N)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(N, 0) → a__U41(a__isNat(N), N)
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
a__U71(tt, M, N) → a__U72(a__isNat(N), M, N)
a__U72(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
mark(U72(X1, X2, X3)) → a__U72(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
a__x(N, s(M)) → a__U71(a__isNat(M), M, N)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2, X3)) → a__U52(mark(X1), X2, X3)
mark(U61(X)) → a__U61(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(x(V1, V2)) → a__U31(a__isNat(V1), V2)
a__isNat(X) → isNat(X)
a__x(N, 0) → a__U61(a__isNat(N))
a__x(X1, X2) → x(X1, X2)
a__U52(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(X1, X2) → plus(X1, X2)
a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U11(X1, X2) → U11(X1, X2)
a__U12(tt) → tt
a__U12(X) → U12(X)
a__U21(tt) → tt
a__U21(X) → U21(X)
a__U31(tt, V2) → a__U32(a__isNat(V2))
a__U31(X1, X2) → U31(X1, X2)
a__U32(tt) → tt
a__U32(X) → U32(X)
a__U41(X1, X2) → U41(X1, X2)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2, X3) → U72(X1, X2, X3)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2, X3) → U52(X1, X2, X3)
a__U61(tt) → 0
a__U61(X) → U61(X)
a__U51(tt, M, N) → a__U52(a__isNat(N), M, N)
a__plus(N, s(M)) → a__U51(a__isNat(M), M, N)

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
MARK(U21(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
A__U41(tt, N) → MARK(N)
A__U52(tt, M, N) → A__PLUS(mark(N), mark(M))
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → A__U71(mark(X1), X2, X3)
A__U71(tt, M, N) → A__U72(a__isNat(N), M, N)
MARK(U72(X1, X2, X3)) → A__U72(mark(X1), X2, X3)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))

The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, V2) → a__U32(a__isNat(V2))
a__U32(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → a__U52(a__isNat(N), M, N)
a__U52(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__U72(a__isNat(N), M, N)
a__U72(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(x(V1, V2)) → a__U31(a__isNat(V1), V2)
a__plus(N, 0) → a__U41(a__isNat(N), N)
a__plus(N, s(M)) → a__U51(a__isNat(M), M, N)
a__x(N, 0) → a__U61(a__isNat(N))
a__x(N, s(M)) → a__U71(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2, X3)) → a__U52(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2, X3)) → a__U72(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2, X3) → U52(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2, X3) → U72(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 6 less nodes.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X)) → MARK(X)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U21(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U61(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, V2) → a__U32(a__isNat(V2))
a__U32(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → a__U52(a__isNat(N), M, N)
a__U52(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__U72(a__isNat(N), M, N)
a__U72(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(x(V1, V2)) → a__U31(a__isNat(V1), V2)
a__plus(N, 0) → a__U41(a__isNat(N), N)
a__plus(N, s(M)) → a__U51(a__isNat(M), M, N)
a__x(N, 0) → a__U61(a__isNat(N))
a__x(N, s(M)) → a__U71(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2, X3)) → a__U52(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2, X3)) → a__U72(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2, X3) → U52(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2, X3) → U72(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U12(X)) → MARK(X)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U21(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U12(x1)  =  U12(x1)
U11(x1, x2)  =  U11(x1)
U21(x1)  =  U21(x1)
U31(x1, x2)  =  U31(x1)
U32(x1)  =  U32(x1)
U61(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U121: [1]
U111: [1]
U211: [1]
U311: [1]
U321: [1]


The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U61(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, V2) → a__U32(a__isNat(V2))
a__U32(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → a__U52(a__isNat(N), M, N)
a__U52(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__U72(a__isNat(N), M, N)
a__U72(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(x(V1, V2)) → a__U31(a__isNat(V1), V2)
a__plus(N, 0) → a__U41(a__isNat(N), N)
a__plus(N, s(M)) → a__U51(a__isNat(M), M, N)
a__x(N, 0) → a__U61(a__isNat(N))
a__x(N, s(M)) → a__U71(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2, X3)) → a__U52(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2, X3)) → a__U72(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2, X3) → U52(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2, X3) → U72(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U61(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U61(x1)  =  U61(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U611: [1]


The following usable rules [FROCOS05] were oriented: none

(20) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, V2) → a__U32(a__isNat(V2))
a__U32(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → a__U52(a__isNat(N), M, N)
a__U52(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__U72(a__isNat(N), M, N)
a__U72(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(x(V1, V2)) → a__U31(a__isNat(V1), V2)
a__plus(N, 0) → a__U41(a__isNat(N), N)
a__plus(N, s(M)) → a__U51(a__isNat(M), M, N)
a__x(N, 0) → a__U61(a__isNat(N))
a__x(N, s(M)) → a__U71(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2, X3)) → a__U52(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2, X3)) → a__U72(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2, X3) → U52(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2, X3) → U72(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(22) TRUE