(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V2)) → U121(isNat(V2))
ACTIVE(U11(tt, V2)) → ISNAT(V2)
ACTIVE(U31(tt, V2)) → U321(isNat(V2))
ACTIVE(U31(tt, V2)) → ISNAT(V2)
ACTIVE(U51(tt, M, N)) → U521(isNat(N), M, N)
ACTIVE(U51(tt, M, N)) → ISNAT(N)
ACTIVE(U52(tt, M, N)) → S(plus(N, M))
ACTIVE(U52(tt, M, N)) → PLUS(N, M)
ACTIVE(U71(tt, M, N)) → U721(isNat(N), M, N)
ACTIVE(U71(tt, M, N)) → ISNAT(N)
ACTIVE(U72(tt, M, N)) → PLUS(x(N, M), N)
ACTIVE(U72(tt, M, N)) → X(N, M)
ACTIVE(isNat(plus(V1, V2))) → U111(isNat(V1), V2)
ACTIVE(isNat(plus(V1, V2))) → ISNAT(V1)
ACTIVE(isNat(s(V1))) → U211(isNat(V1))
ACTIVE(isNat(s(V1))) → ISNAT(V1)
ACTIVE(isNat(x(V1, V2))) → U311(isNat(V1), V2)
ACTIVE(isNat(x(V1, V2))) → ISNAT(V1)
ACTIVE(plus(N, 0)) → U411(isNat(N), N)
ACTIVE(plus(N, 0)) → ISNAT(N)
ACTIVE(plus(N, s(M))) → U511(isNat(M), M, N)
ACTIVE(plus(N, s(M))) → ISNAT(M)
ACTIVE(x(N, 0)) → U611(isNat(N))
ACTIVE(x(N, 0)) → ISNAT(N)
ACTIVE(x(N, s(M))) → U711(isNat(M), M, N)
ACTIVE(x(N, s(M))) → ISNAT(M)
ACTIVE(U11(X1, X2)) → U111(active(X1), X2)
ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(U12(X)) → U121(active(X))
ACTIVE(U12(X)) → ACTIVE(X)
ACTIVE(U21(X)) → U211(active(X))
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → U311(active(X1), X2)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X)) → U321(active(X))
ACTIVE(U32(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → U411(active(X1), X2)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U51(X1, X2, X3)) → U511(active(X1), X2, X3)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U52(X1, X2, X3)) → U521(active(X1), X2, X3)
ACTIVE(U52(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → PLUS(active(X1), X2)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → PLUS(X1, active(X2))
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(U61(X)) → U611(active(X))
ACTIVE(U61(X)) → ACTIVE(X)
ACTIVE(U71(X1, X2, X3)) → U711(active(X1), X2, X3)
ACTIVE(U71(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U72(X1, X2, X3)) → U721(active(X1), X2, X3)
ACTIVE(U72(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → X(active(X1), X2)
ACTIVE(x(X1, X2)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → X(X1, active(X2))
ACTIVE(x(X1, X2)) → ACTIVE(X2)
U111(mark(X1), X2) → U111(X1, X2)
U121(mark(X)) → U121(X)
U211(mark(X)) → U211(X)
U311(mark(X1), X2) → U311(X1, X2)
U321(mark(X)) → U321(X)
U411(mark(X1), X2) → U411(X1, X2)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U521(mark(X1), X2, X3) → U521(X1, X2, X3)
S(mark(X)) → S(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
U611(mark(X)) → U611(X)
U711(mark(X1), X2, X3) → U711(X1, X2, X3)
U721(mark(X1), X2, X3) → U721(X1, X2, X3)
X(mark(X1), X2) → X(X1, X2)
X(X1, mark(X2)) → X(X1, X2)
PROPER(U11(X1, X2)) → U111(proper(X1), proper(X2))
PROPER(U11(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(U12(X)) → U121(proper(X))
PROPER(U12(X)) → PROPER(X)
PROPER(isNat(X)) → ISNAT(proper(X))
PROPER(isNat(X)) → PROPER(X)
PROPER(U21(X)) → U211(proper(X))
PROPER(U21(X)) → PROPER(X)
PROPER(U31(X1, X2)) → U311(proper(X1), proper(X2))
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U32(X)) → U321(proper(X))
PROPER(U32(X)) → PROPER(X)
PROPER(U41(X1, X2)) → U411(proper(X1), proper(X2))
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → U511(proper(X1), proper(X2), proper(X3))
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(U52(X1, X2, X3)) → U521(proper(X1), proper(X2), proper(X3))
PROPER(U52(X1, X2, X3)) → PROPER(X1)
PROPER(U52(X1, X2, X3)) → PROPER(X2)
PROPER(U52(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(plus(X1, X2)) → PLUS(proper(X1), proper(X2))
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(U61(X)) → U611(proper(X))
PROPER(U61(X)) → PROPER(X)
PROPER(U71(X1, X2, X3)) → U711(proper(X1), proper(X2), proper(X3))
PROPER(U71(X1, X2, X3)) → PROPER(X1)
PROPER(U71(X1, X2, X3)) → PROPER(X2)
PROPER(U71(X1, X2, X3)) → PROPER(X3)
PROPER(U72(X1, X2, X3)) → U721(proper(X1), proper(X2), proper(X3))
PROPER(U72(X1, X2, X3)) → PROPER(X1)
PROPER(U72(X1, X2, X3)) → PROPER(X2)
PROPER(U72(X1, X2, X3)) → PROPER(X3)
PROPER(x(X1, X2)) → X(proper(X1), proper(X2))
PROPER(x(X1, X2)) → PROPER(X1)
PROPER(x(X1, X2)) → PROPER(X2)
U111(ok(X1), ok(X2)) → U111(X1, X2)
U121(ok(X)) → U121(X)
ISNAT(ok(X)) → ISNAT(X)
U211(ok(X)) → U211(X)
U311(ok(X1), ok(X2)) → U311(X1, X2)
U321(ok(X)) → U321(X)
U411(ok(X1), ok(X2)) → U411(X1, X2)
U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
U521(ok(X1), ok(X2), ok(X3)) → U521(X1, X2, X3)
S(ok(X)) → S(X)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
U611(ok(X)) → U611(X)
U711(ok(X1), ok(X2), ok(X3)) → U711(X1, X2, X3)
U721(ok(X1), ok(X2), ok(X3)) → U721(X1, X2, X3)
X(ok(X1), ok(X2)) → X(X1, X2)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 18 SCCs with 59 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(ok(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(ok(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  ISNAT(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  x1
tt  =  tt
mark(x1)  =  mark
U12(x1)  =  x1
isNat(x1)  =  x1
U21(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2)  =  x1
U51(x1, x2, x3)  =  x1
U52(x1, x2, x3)  =  x1
s(x1)  =  x1
plus(x1, x2)  =  x2
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  x2
U72(x1, x2, x3)  =  x3
x(x1, x2)  =  x1
proper(x1)  =  proper
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
ISNAT1 > [tt, mark]
[active1, top] > 0 > [tt, mark]
proper > ok1 > [tt, mark]
proper > 0 > [tt, mark]

Status:
ISNAT1: [1]
ok1: [1]
active1: [1]
tt: multiset
mark: multiset
0: multiset
proper: []
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(X1, mark(X2)) → X(X1, X2)
X(mark(X1), X2) → X(X1, X2)
X(ok(X1), ok(X2)) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(ok(X1), ok(X2)) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
X(x1, x2)  =  X(x1, x2)
mark(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNat(x1)  =  isNat(x1)
U21(x1)  =  x1
U31(x1, x2)  =  U31(x2)
U32(x1)  =  U32(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
X2 > [ok1, U611]
[tt, 0] > [active1, U112, isNat1, U311, U321, U512, U523, U713, U723] > U121 > [ok1, U611]
[tt, 0] > [active1, U112, isNat1, U311, U321, U512, U523, U713, U723] > plus2 > U412 > [ok1, U611]
[tt, 0] > [active1, U112, isNat1, U311, U321, U512, U523, U713, U723] > x2 > [ok1, U611]
proper1 > [active1, U112, isNat1, U311, U321, U512, U523, U713, U723] > U121 > [ok1, U611]
proper1 > [active1, U112, isNat1, U311, U321, U512, U523, U713, U723] > plus2 > U412 > [ok1, U611]
proper1 > [active1, U112, isNat1, U311, U321, U512, U523, U713, U723] > x2 > [ok1, U611]
top > [active1, U112, isNat1, U311, U321, U512, U523, U713, U723] > U121 > [ok1, U611]
top > [active1, U112, isNat1, U311, U321, U512, U523, U713, U723] > plus2 > U412 > [ok1, U611]
top > [active1, U112, isNat1, U311, U321, U512, U523, U713, U723] > x2 > [ok1, U611]

Status:
X2: [2,1]
ok1: [1]
active1: [1]
U112: [1,2]
tt: multiset
U121: [1]
isNat1: [1]
U311: [1]
U321: [1]
U412: multiset
U512: [2,1]
U523: [2,3,1]
plus2: multiset
U611: [1]
0: multiset
U713: [2,3,1]
U723: [2,1,3]
x2: [2,1]
proper1: [1]
top: multiset


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(X1, mark(X2)) → X(X1, X2)
X(mark(X1), X2) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(X1, mark(X2)) → X(X1, X2)
X(mark(X1), X2) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
X(x1, x2)  =  X(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNat(x1)  =  isNat(x1)
U21(x1)  =  U21(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
X2 > mark1
[active1, U112] > U121 > tt > U523 > mark1
[active1, U112] > U121 > tt > 0 > mark1
[active1, U112] > U211 > tt > U523 > mark1
[active1, U112] > U211 > tt > 0 > mark1
[active1, U112] > U412 > mark1
[active1, U112] > U723 > [isNat1, plus2, x2] > tt > U523 > mark1
[active1, U112] > U723 > [isNat1, plus2, x2] > tt > 0 > mark1
[active1, U112] > U723 > [isNat1, plus2, x2] > U312 > mark1
[active1, U112] > U723 > [isNat1, plus2, x2] > U513 > U523 > mark1
[active1, U112] > U723 > [isNat1, plus2, x2] > U713 > mark1
top > mark1

Status:
X2: [1,2]
mark1: [1]
active1: multiset
U112: multiset
tt: multiset
U121: [1]
isNat1: multiset
U211: [1]
U312: multiset
U412: multiset
U513: multiset
U523: [3,1,2]
plus2: multiset
0: multiset
U713: multiset
U723: multiset
x2: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U721(ok(X1), ok(X2), ok(X3)) → U721(X1, X2, X3)
U721(mark(X1), X2, X3) → U721(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U721(ok(X1), ok(X2), ok(X3)) → U721(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U721(x1, x2, x3)  =  U721(x1, x2, x3)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNat(x1)  =  isNat(x1)
U21(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, tt, proper1] > U121 > [ok1, s1]
[active1, tt, proper1] > [isNat1, plus2, x2] > U112 > [ok1, s1]
[active1, tt, proper1] > [isNat1, plus2, x2] > U312 > [ok1, s1]
[active1, tt, proper1] > [isNat1, plus2, x2] > U412 > [ok1, s1]
[active1, tt, proper1] > [isNat1, plus2, x2] > U513 > U523 > [ok1, s1]
[active1, tt, proper1] > [isNat1, plus2, x2] > U611 > 0 > [ok1, s1]
[active1, tt, proper1] > [isNat1, plus2, x2] > [U713, U723] > [ok1, s1]

Status:
U72^13: multiset
ok1: [1]
active1: multiset
U112: multiset
tt: multiset
U121: [1]
isNat1: [1]
U312: [1,2]
U412: multiset
U513: [3,1,2]
U523: [2,3,1]
s1: [1]
plus2: multiset
U611: [1]
0: multiset
U713: multiset
U723: multiset
x2: [2,1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U721(mark(X1), X2, X3) → U721(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U721(mark(X1), X2, X3) → U721(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U721(x1, x2, x3)  =  U721(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  x1
tt  =  tt
U12(x1)  =  x1
isNat(x1)  =  isNat
U21(x1)  =  U21(x1)
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > tt > 0 > [U412, U513, U523, plus2, U713, U723, x2, proper1] > [mark1, isNat, U211, s1] > top

Status:
U72^13: [3,1,2]
mark1: multiset
active1: multiset
tt: multiset
isNat: []
U211: multiset
U412: [2,1]
U513: [1,2,3]
U523: [3,1,2]
s1: multiset
plus2: [1,2]
0: multiset
U713: [1,3,2]
U723: [2,3,1]
x2: [1,2]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(21) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(23) TRUE

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(ok(X1), ok(X2), ok(X3)) → U711(X1, X2, X3)
U711(mark(X1), X2, X3) → U711(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(ok(X1), ok(X2), ok(X3)) → U711(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2, x3)  =  x3
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNat(x1)  =  x1
U21(x1)  =  U21(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  U32(x1)
U41(x1, x2)  =  U41(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
proper1 > [active1, U723, top] > U211 > [ok1, U111, U121] > tt > mark
proper1 > [active1, U723, top] > [U312, x1] > [ok1, U111, U121] > tt > mark
proper1 > [active1, U723, top] > U321 > [ok1, U111, U121] > tt > mark
proper1 > [active1, U723, top] > [U411, U513, plus2] > U522 > [ok1, U111, U121] > tt > mark
proper1 > [active1, U723, top] > 0 > tt > mark
proper1 > [active1, U723, top] > U712 > [ok1, U111, U121] > tt > mark

Status:
ok1: [1]
mark: []
active1: [1]
U111: [1]
tt: multiset
U121: [1]
U211: [1]
U312: multiset
U321: multiset
U411: [1]
U513: [2,3,1]
U522: [1,2]
plus2: multiset
0: multiset
U712: multiset
U723: [2,3,1]
x1: multiset
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(mark(X1), X2, X3) → U711(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(mark(X1), X2, X3) → U711(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  x1
tt  =  tt
U12(x1)  =  x1
isNat(x1)  =  isNat
U21(x1)  =  U21(x1)
U31(x1, x2)  =  x1
U32(x1)  =  U32(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
proper1 > [active1, x2] > U211 > mark1
proper1 > [active1, x2] > U211 > tt
proper1 > [active1, x2] > U211 > ok
proper1 > [active1, x2] > U321 > mark1
proper1 > [active1, x2] > U321 > tt
proper1 > [active1, x2] > U321 > ok
proper1 > [active1, x2] > 0 > tt
proper1 > [active1, x2] > 0 > ok
proper1 > [active1, x2] > U713 > [U412, U513, U523, plus2, U723] > mark1
proper1 > [active1, x2] > U713 > [U412, U513, U523, plus2, U723] > isNat > tt
proper1 > [active1, x2] > U713 > [U412, U513, U523, plus2, U723] > isNat > ok

Status:
mark1: [1]
active1: [1]
tt: multiset
isNat: multiset
U211: multiset
U321: multiset
U412: [2,1]
U513: [1,3,2]
U523: multiset
plus2: [1,2]
0: multiset
U713: [3,2,1]
U723: [1,3,2]
x2: [1,2]
proper1: [1]
ok: []
top: multiset


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(28) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(30) TRUE

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(ok(X)) → U611(X)
U611(mark(X)) → U611(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(ok(X)) → U611(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1)  =  U611(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x2)
tt  =  tt
U12(x1)  =  x1
isNat(x1)  =  isNat(x1)
U21(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > U111 > isNat1 > [U312, U723, x2] > [ok1, top]
active1 > tt > isNat1 > [U312, U723, x2] > [ok1, top]
active1 > tt > plus2 > [U513, U522] > [ok1, top]
active1 > tt > 0 > [ok1, top]
active1 > U713 > isNat1 > [U312, U723, x2] > [ok1, top]
proper1 > U111 > isNat1 > [U312, U723, x2] > [ok1, top]
proper1 > tt > isNat1 > [U312, U723, x2] > [ok1, top]
proper1 > tt > plus2 > [U513, U522] > [ok1, top]
proper1 > tt > 0 > [ok1, top]
proper1 > U713 > isNat1 > [U312, U723, x2] > [ok1, top]

Status:
U61^11: [1]
ok1: [1]
active1: [1]
U111: [1]
tt: multiset
isNat1: multiset
U312: multiset
U513: multiset
U522: multiset
plus2: multiset
0: multiset
U713: [3,1,2]
U723: [2,3,1]
x2: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X)) → U611(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X)) → U611(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1)  =  U611(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNat(x1)  =  isNat(x1)
U21(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
U61^11 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U121 > [tt, plus2] > U112 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U121 > [tt, plus2] > U523 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U121 > [tt, plus2] > U723 > x2 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U312 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U412 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U513 > U523 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U611 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U713 > U723 > x2 > [mark1, 0]

Status:
U61^11: [1]
mark1: [1]
active1: [1]
U112: [2,1]
tt: multiset
U121: multiset
isNat1: [1]
U312: multiset
U412: [1,2]
U513: [1,3,2]
U523: [3,1,2]
plus2: [1,2]
U611: [1]
0: multiset
U713: [2,3,1]
U723: multiset
x2: multiset
proper1: [1]
ok: []
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(35) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(37) TRUE

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1)
mark(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNat(x1)  =  x1
U21(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x2, x3)
U72(x1, x2, x3)  =  U72(x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
PLUS1 > ok1
active1 > [U523, proper1] > U112 > ok1
active1 > [U523, proper1] > U121 > [tt, plus2] > ok1
active1 > [U523, proper1] > U412 > ok1
active1 > [U523, proper1] > U513 > ok1
active1 > [U523, proper1] > U712 > U722 > [tt, plus2] > ok1
active1 > [U523, proper1] > x2 > U312 > ok1
active1 > [U523, proper1] > x2 > U611 > 0 > [tt, plus2] > ok1
top > ok1

Status:
PLUS1: multiset
ok1: [1]
active1: [1]
U112: [1,2]
tt: multiset
U121: [1]
U312: multiset
U412: multiset
U513: [2,3,1]
U523: [1,3,2]
plus2: multiset
U611: [1]
0: multiset
U712: multiset
U722: multiset
x2: [1,2]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNat(x1)  =  isNat(x1)
U21(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  U32(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, U312, U611, U713, x2] > [U112, U121, U412, U513, U523, plus2, U723] > [mark1, s1] > PLUS2
[active1, U312, U611, U713, x2] > [U112, U121, U412, U513, U523, plus2, U723] > [mark1, s1] > isNat1
[active1, U312, U611, U713, x2] > [U112, U121, U412, U513, U523, plus2, U723] > [mark1, s1] > top
[active1, U312, U611, U713, x2] > [U112, U121, U412, U513, U523, plus2, U723] > tt > 0 > isNat1
[active1, U312, U611, U713, x2] > U321 > [mark1, s1] > PLUS2
[active1, U312, U611, U713, x2] > U321 > [mark1, s1] > isNat1
[active1, U312, U611, U713, x2] > U321 > [mark1, s1] > top
[active1, U312, U611, U713, x2] > U321 > tt > 0 > isNat1

Status:
PLUS2: [1,2]
mark1: multiset
active1: [1]
U112: [2,1]
tt: multiset
U121: [1]
isNat1: multiset
U312: [2,1]
U321: [1]
U412: multiset
U513: multiset
U523: multiset
s1: multiset
plus2: [1,2]
U611: [1]
0: multiset
U713: [2,1,3]
U723: [1,2,3]
x2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(42) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(44) TRUE

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x2)
tt  =  tt
U12(x1)  =  x1
isNat(x1)  =  isNat(x1)
U21(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > U111 > isNat1 > [U312, U723, x2] > [ok1, top]
active1 > tt > isNat1 > [U312, U723, x2] > [ok1, top]
active1 > tt > plus2 > [U513, U522] > [ok1, top]
active1 > tt > 0 > [ok1, top]
active1 > U713 > isNat1 > [U312, U723, x2] > [ok1, top]
proper1 > U111 > isNat1 > [U312, U723, x2] > [ok1, top]
proper1 > tt > isNat1 > [U312, U723, x2] > [ok1, top]
proper1 > tt > plus2 > [U513, U522] > [ok1, top]
proper1 > tt > 0 > [ok1, top]
proper1 > U713 > isNat1 > [U312, U723, x2] > [ok1, top]

Status:
S1: [1]
ok1: [1]
active1: [1]
U111: [1]
tt: multiset
isNat1: multiset
U312: multiset
U513: multiset
U522: multiset
plus2: multiset
0: multiset
U713: [3,1,2]
U723: [2,3,1]
x2: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNat(x1)  =  isNat(x1)
U21(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
S1 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U121 > [tt, plus2] > U112 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U121 > [tt, plus2] > U523 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U121 > [tt, plus2] > U723 > x2 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U312 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U412 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U513 > U523 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U611 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U713 > U723 > x2 > [mark1, 0]

Status:
S1: [1]
mark1: [1]
active1: [1]
U112: [2,1]
tt: multiset
U121: multiset
isNat1: [1]
U312: multiset
U412: [1,2]
U513: [1,3,2]
U523: [3,1,2]
plus2: [1,2]
U611: [1]
0: multiset
U713: [2,3,1]
U723: multiset
x2: multiset
proper1: [1]
ok: []
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(49) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(51) TRUE

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(ok(X1), ok(X2), ok(X3)) → U521(X1, X2, X3)
U521(mark(X1), X2, X3) → U521(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(mark(X1), X2, X3) → U521(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2, x3)  =  U521(x1, x3)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  x1
isNat(x1)  =  isNat(x1)
U21(x1)  =  U21(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  U32(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
U52^12 > mark1
active1 > [isNat1, proper1] > U112 > mark1
active1 > [isNat1, proper1] > U211 > [tt, 0] > U321 > mark1
active1 > [isNat1, proper1] > U211 > [tt, 0] > [U523, plus2] > U412 > mark1
active1 > [isNat1, proper1] > U211 > [tt, 0] > [U713, U723] > mark1
active1 > [isNat1, proper1] > U513 > [U523, plus2] > U412 > mark1
active1 > [isNat1, proper1] > x2 > U312 > U321 > mark1
active1 > [isNat1, proper1] > x2 > [U713, U723] > mark1
top > mark1

Status:
U52^12: multiset
mark1: multiset
active1: [1]
U112: [2,1]
tt: multiset
isNat1: multiset
U211: [1]
U312: [1,2]
U321: [1]
U412: multiset
U513: multiset
U523: [2,1,3]
plus2: multiset
0: multiset
U713: multiset
U723: [2,1,3]
x2: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(ok(X1), ok(X2), ok(X3)) → U521(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(ok(X1), ok(X2), ok(X3)) → U521(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2, x3)  =  U521(x2)
ok(x1)  =  ok(x1)
active(x1)  =  x1
U11(x1, x2)  =  x1
tt  =  tt
mark(x1)  =  mark
U12(x1)  =  x1
isNat(x1)  =  x1
U21(x1)  =  x1
U31(x1, x2)  =  x2
U32(x1)  =  x1
U41(x1, x2)  =  x1
U51(x1, x2, x3)  =  x3
U52(x1, x2, x3)  =  x3
s(x1)  =  x1
plus(x1, x2)  =  x1
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  x1
U72(x1, x2, x3)  =  x1
x(x1, x2)  =  x1
proper(x1)  =  proper
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
U52^11 > [tt, mark]
proper > ok1 > top > [tt, mark]
proper > 0 > [tt, mark]

Status:
U52^11: [1]
ok1: [1]
tt: multiset
mark: multiset
0: multiset
proper: []
top: multiset


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(56) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(58) TRUE

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  x3
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNat(x1)  =  x1
U21(x1)  =  U21(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  U32(x1)
U41(x1, x2)  =  U41(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
proper1 > [active1, U723, top] > U211 > [ok1, U111, U121] > tt > mark
proper1 > [active1, U723, top] > [U312, x1] > [ok1, U111, U121] > tt > mark
proper1 > [active1, U723, top] > U321 > [ok1, U111, U121] > tt > mark
proper1 > [active1, U723, top] > [U411, U513, plus2] > U522 > [ok1, U111, U121] > tt > mark
proper1 > [active1, U723, top] > 0 > tt > mark
proper1 > [active1, U723, top] > U712 > [ok1, U111, U121] > tt > mark

Status:
ok1: [1]
mark: []
active1: [1]
U111: [1]
tt: multiset
U121: [1]
U211: [1]
U312: multiset
U321: multiset
U411: [1]
U513: [2,3,1]
U522: [1,2]
plus2: multiset
0: multiset
U712: multiset
U723: [2,3,1]
x1: multiset
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(mark(X1), X2, X3) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2, X3) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  x1
tt  =  tt
U12(x1)  =  x1
isNat(x1)  =  isNat
U21(x1)  =  U21(x1)
U31(x1, x2)  =  x1
U32(x1)  =  U32(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
proper1 > [active1, x2] > U211 > mark1
proper1 > [active1, x2] > U211 > tt
proper1 > [active1, x2] > U211 > ok
proper1 > [active1, x2] > U321 > mark1
proper1 > [active1, x2] > U321 > tt
proper1 > [active1, x2] > U321 > ok
proper1 > [active1, x2] > 0 > tt
proper1 > [active1, x2] > 0 > ok
proper1 > [active1, x2] > U713 > [U412, U513, U523, plus2, U723] > mark1
proper1 > [active1, x2] > U713 > [U412, U513, U523, plus2, U723] > isNat > tt
proper1 > [active1, x2] > U713 > [U412, U513, U523, plus2, U723] > isNat > ok

Status:
mark1: [1]
active1: [1]
tt: multiset
isNat: multiset
U211: multiset
U321: multiset
U412: [2,1]
U513: [1,3,2]
U523: multiset
plus2: [1,2]
0: multiset
U713: [3,2,1]
U723: [1,3,2]
x2: [1,2]
proper1: [1]
ok: []
top: multiset


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(63) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(65) TRUE

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X1), X2) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNat(x1)  =  isNat(x1)
U21(x1)  =  U21(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  U32(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, U713, proper1, top] > [isNat1, x2] > [tt, U523] > U321 > [mark1, U121, U211] > U41^11
[active1, U713, proper1, top] > [isNat1, x2] > [tt, U523] > s1 > [mark1, U121, U211] > U41^11
[active1, U713, proper1, top] > [isNat1, x2] > [tt, U523] > plus2 > U112 > [mark1, U121, U211] > U41^11
[active1, U713, proper1, top] > [isNat1, x2] > U312 > U321 > [mark1, U121, U211] > U41^11
[active1, U713, proper1, top] > [isNat1, x2] > U611 > [mark1, U121, U211] > U41^11
[active1, U713, proper1, top] > U412 > [mark1, U121, U211] > U41^11
[active1, U713, proper1, top] > U513 > [mark1, U121, U211] > U41^11
[active1, U713, proper1, top] > 0 > [tt, U523] > U321 > [mark1, U121, U211] > U41^11
[active1, U713, proper1, top] > 0 > [tt, U523] > s1 > [mark1, U121, U211] > U41^11
[active1, U713, proper1, top] > 0 > [tt, U523] > plus2 > U112 > [mark1, U121, U211] > U41^11
[active1, U713, proper1, top] > 0 > U611 > [mark1, U121, U211] > U41^11
[active1, U713, proper1, top] > U723 > plus2 > U112 > [mark1, U121, U211] > U41^11

Status:
U41^11: multiset
mark1: [1]
active1: [1]
U112: [1,2]
tt: multiset
U121: [1]
isNat1: multiset
U211: [1]
U312: [1,2]
U321: [1]
U412: [1,2]
U513: [1,3,2]
U523: [2,1,3]
s1: [1]
plus2: [1,2]
U611: [1]
0: multiset
U713: [2,1,3]
U723: [2,1,3]
x2: [1,2]
proper1: [1]
top: multiset


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2)) → U411(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(ok(X1), ok(X2)) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  x2
tt  =  tt
mark(x1)  =  mark
U12(x1)  =  x1
isNat(x1)  =  x1
U21(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2)  =  x1
U51(x1, x2, x3)  =  U51(x2, x3)
U52(x1, x2, x3)  =  x3
s(x1)  =  x1
plus(x1, x2)  =  x1
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  x1
U72(x1, x2, x3)  =  x1
x(x1, x2)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[U512, proper1, top] > ok1 > active1 > [tt, mark]
0 > ok1 > active1 > [tt, mark]

Status:
ok1: [1]
active1: [1]
tt: multiset
mark: multiset
U512: [1,2]
0: multiset
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(70) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(72) TRUE

(73) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(ok(X)) → U321(X)
U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(74) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(ok(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1)  =  U321(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x2)
tt  =  tt
U12(x1)  =  x1
isNat(x1)  =  isNat(x1)
U21(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > U111 > isNat1 > [U312, U723, x2] > [ok1, top]
active1 > tt > isNat1 > [U312, U723, x2] > [ok1, top]
active1 > tt > plus2 > [U513, U522] > [ok1, top]
active1 > tt > 0 > [ok1, top]
active1 > U713 > isNat1 > [U312, U723, x2] > [ok1, top]
proper1 > U111 > isNat1 > [U312, U723, x2] > [ok1, top]
proper1 > tt > isNat1 > [U312, U723, x2] > [ok1, top]
proper1 > tt > plus2 > [U513, U522] > [ok1, top]
proper1 > tt > 0 > [ok1, top]
proper1 > U713 > isNat1 > [U312, U723, x2] > [ok1, top]

Status:
U32^11: [1]
ok1: [1]
active1: [1]
U111: [1]
tt: multiset
isNat1: multiset
U312: multiset
U513: multiset
U522: multiset
plus2: multiset
0: multiset
U713: [3,1,2]
U723: [2,3,1]
x2: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(76) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(mark(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1)  =  U321(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNat(x1)  =  isNat(x1)
U21(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
U32^11 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U121 > [tt, plus2] > U112 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U121 > [tt, plus2] > U523 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U121 > [tt, plus2] > U723 > x2 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U312 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U412 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U513 > U523 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U611 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U713 > U723 > x2 > [mark1, 0]

Status:
U32^11: [1]
mark1: [1]
active1: [1]
U112: [2,1]
tt: multiset
U121: multiset
isNat1: [1]
U312: multiset
U412: [1,2]
U513: [1,3,2]
U523: [3,1,2]
plus2: [1,2]
U611: [1]
0: multiset
U713: [2,3,1]
U723: multiset
x2: multiset
proper1: [1]
ok: []
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(77) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(79) TRUE

(80) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X1), ok(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(81) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNat(x1)  =  isNat(x1)
U21(x1)  =  U21(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  U32(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, U713, proper1, top] > [isNat1, x2] > [tt, U523] > U321 > [mark1, U121, U211] > U31^11
[active1, U713, proper1, top] > [isNat1, x2] > [tt, U523] > s1 > [mark1, U121, U211] > U31^11
[active1, U713, proper1, top] > [isNat1, x2] > [tt, U523] > plus2 > U112 > [mark1, U121, U211] > U31^11
[active1, U713, proper1, top] > [isNat1, x2] > U312 > U321 > [mark1, U121, U211] > U31^11
[active1, U713, proper1, top] > [isNat1, x2] > U611 > [mark1, U121, U211] > U31^11
[active1, U713, proper1, top] > U412 > [mark1, U121, U211] > U31^11
[active1, U713, proper1, top] > U513 > [mark1, U121, U211] > U31^11
[active1, U713, proper1, top] > 0 > [tt, U523] > U321 > [mark1, U121, U211] > U31^11
[active1, U713, proper1, top] > 0 > [tt, U523] > s1 > [mark1, U121, U211] > U31^11
[active1, U713, proper1, top] > 0 > [tt, U523] > plus2 > U112 > [mark1, U121, U211] > U31^11
[active1, U713, proper1, top] > 0 > U611 > [mark1, U121, U211] > U31^11
[active1, U713, proper1, top] > U723 > plus2 > U112 > [mark1, U121, U211] > U31^11

Status:
U31^11: multiset
mark1: [1]
active1: [1]
U112: [1,2]
tt: multiset
U121: [1]
isNat1: multiset
U211: [1]
U312: [1,2]
U321: [1]
U412: [1,2]
U513: [1,3,2]
U523: [2,1,3]
s1: [1]
plus2: [1,2]
U611: [1]
0: multiset
U713: [2,1,3]
U723: [2,1,3]
x2: [1,2]
proper1: [1]
top: multiset


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X1), ok(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(83) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(ok(X1), ok(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  x2
tt  =  tt
mark(x1)  =  mark
U12(x1)  =  x1
isNat(x1)  =  x1
U21(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2)  =  x1
U51(x1, x2, x3)  =  U51(x2, x3)
U52(x1, x2, x3)  =  x3
s(x1)  =  x1
plus(x1, x2)  =  x1
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  x1
U72(x1, x2, x3)  =  x1
x(x1, x2)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[U512, proper1, top] > ok1 > active1 > [tt, mark]
0 > ok1 > active1 > [tt, mark]

Status:
ok1: [1]
active1: [1]
tt: multiset
mark: multiset
U512: [1,2]
0: multiset
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(84) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(85) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(86) TRUE

(87) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X)) → U211(X)
U211(mark(X)) → U211(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(88) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(ok(X)) → U211(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1)  =  U211(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x2)
tt  =  tt
U12(x1)  =  x1
isNat(x1)  =  isNat(x1)
U21(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > U111 > isNat1 > [U312, U723, x2] > [ok1, top]
active1 > tt > isNat1 > [U312, U723, x2] > [ok1, top]
active1 > tt > plus2 > [U513, U522] > [ok1, top]
active1 > tt > 0 > [ok1, top]
active1 > U713 > isNat1 > [U312, U723, x2] > [ok1, top]
proper1 > U111 > isNat1 > [U312, U723, x2] > [ok1, top]
proper1 > tt > isNat1 > [U312, U723, x2] > [ok1, top]
proper1 > tt > plus2 > [U513, U522] > [ok1, top]
proper1 > tt > 0 > [ok1, top]
proper1 > U713 > isNat1 > [U312, U723, x2] > [ok1, top]

Status:
U21^11: [1]
ok1: [1]
active1: [1]
U111: [1]
tt: multiset
isNat1: multiset
U312: multiset
U513: multiset
U522: multiset
plus2: multiset
0: multiset
U713: [3,1,2]
U723: [2,3,1]
x2: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(89) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X)) → U211(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(90) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X)) → U211(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1)  =  U211(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNat(x1)  =  isNat(x1)
U21(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
U21^11 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U121 > [tt, plus2] > U112 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U121 > [tt, plus2] > U523 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U121 > [tt, plus2] > U723 > x2 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U312 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U412 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U513 > U523 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U611 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U713 > U723 > x2 > [mark1, 0]

Status:
U21^11: [1]
mark1: [1]
active1: [1]
U112: [2,1]
tt: multiset
U121: multiset
isNat1: [1]
U312: multiset
U412: [1,2]
U513: [1,3,2]
U523: [3,1,2]
plus2: [1,2]
U611: [1]
0: multiset
U713: [2,3,1]
U723: multiset
x2: multiset
proper1: [1]
ok: []
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(91) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(92) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(93) TRUE

(94) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(ok(X)) → U121(X)
U121(mark(X)) → U121(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(95) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(ok(X)) → U121(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1)  =  U121(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x2)
tt  =  tt
U12(x1)  =  x1
isNat(x1)  =  isNat(x1)
U21(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > U111 > isNat1 > [U312, U723, x2] > [ok1, top]
active1 > tt > isNat1 > [U312, U723, x2] > [ok1, top]
active1 > tt > plus2 > [U513, U522] > [ok1, top]
active1 > tt > 0 > [ok1, top]
active1 > U713 > isNat1 > [U312, U723, x2] > [ok1, top]
proper1 > U111 > isNat1 > [U312, U723, x2] > [ok1, top]
proper1 > tt > isNat1 > [U312, U723, x2] > [ok1, top]
proper1 > tt > plus2 > [U513, U522] > [ok1, top]
proper1 > tt > 0 > [ok1, top]
proper1 > U713 > isNat1 > [U312, U723, x2] > [ok1, top]

Status:
U12^11: [1]
ok1: [1]
active1: [1]
U111: [1]
tt: multiset
isNat1: multiset
U312: multiset
U513: multiset
U522: multiset
plus2: multiset
0: multiset
U713: [3,1,2]
U723: [2,3,1]
x2: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(96) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X)) → U121(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(97) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X)) → U121(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1)  =  U121(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNat(x1)  =  isNat(x1)
U21(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
U12^11 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U121 > [tt, plus2] > U112 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U121 > [tt, plus2] > U523 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U121 > [tt, plus2] > U723 > x2 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U312 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U412 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U513 > U523 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U611 > [mark1, 0]
[active1, isNat1, proper1, ok, top] > U713 > U723 > x2 > [mark1, 0]

Status:
U12^11: [1]
mark1: [1]
active1: [1]
U112: [2,1]
tt: multiset
U121: multiset
isNat1: [1]
U312: multiset
U412: [1,2]
U513: [1,3,2]
U523: [3,1,2]
plus2: [1,2]
U611: [1]
0: multiset
U713: [2,3,1]
U723: multiset
x2: multiset
proper1: [1]
ok: []
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(98) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(99) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(100) TRUE

(101) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2)) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(102) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  U111(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNat(x1)  =  isNat(x1)
U21(x1)  =  U21(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  U32(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, U713, proper1, top] > [isNat1, x2] > [tt, U523] > U321 > [mark1, U121, U211] > U11^11
[active1, U713, proper1, top] > [isNat1, x2] > [tt, U523] > s1 > [mark1, U121, U211] > U11^11
[active1, U713, proper1, top] > [isNat1, x2] > [tt, U523] > plus2 > U112 > [mark1, U121, U211] > U11^11
[active1, U713, proper1, top] > [isNat1, x2] > U312 > U321 > [mark1, U121, U211] > U11^11
[active1, U713, proper1, top] > [isNat1, x2] > U611 > [mark1, U121, U211] > U11^11
[active1, U713, proper1, top] > U412 > [mark1, U121, U211] > U11^11
[active1, U713, proper1, top] > U513 > [mark1, U121, U211] > U11^11
[active1, U713, proper1, top] > 0 > [tt, U523] > U321 > [mark1, U121, U211] > U11^11
[active1, U713, proper1, top] > 0 > [tt, U523] > s1 > [mark1, U121, U211] > U11^11
[active1, U713, proper1, top] > 0 > [tt, U523] > plus2 > U112 > [mark1, U121, U211] > U11^11
[active1, U713, proper1, top] > 0 > U611 > [mark1, U121, U211] > U11^11
[active1, U713, proper1, top] > U723 > plus2 > U112 > [mark1, U121, U211] > U11^11

Status:
U11^11: multiset
mark1: [1]
active1: [1]
U112: [1,2]
tt: multiset
U121: [1]
isNat1: multiset
U211: [1]
U312: [1,2]
U321: [1]
U412: [1,2]
U513: [1,3,2]
U523: [2,1,3]
s1: [1]
plus2: [1,2]
U611: [1]
0: multiset
U713: [2,1,3]
U723: [2,1,3]
x2: [1,2]
proper1: [1]
top: multiset


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(103) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2)) → U111(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(104) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X1), ok(X2)) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  x2
tt  =  tt
mark(x1)  =  mark
U12(x1)  =  x1
isNat(x1)  =  x1
U21(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2)  =  x1
U51(x1, x2, x3)  =  U51(x2, x3)
U52(x1, x2, x3)  =  x3
s(x1)  =  x1
plus(x1, x2)  =  x1
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  x1
U72(x1, x2, x3)  =  x1
x(x1, x2)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[U512, proper1, top] > ok1 > active1 > [tt, mark]
0 > ok1 > active1 > [tt, mark]

Status:
ok1: [1]
active1: [1]
tt: multiset
mark: multiset
U512: [1,2]
0: multiset
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(105) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(106) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(107) TRUE

(108) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(U11(X1, X2)) → PROPER(X1)
PROPER(U12(X)) → PROPER(X)
PROPER(isNat(X)) → PROPER(X)
PROPER(U21(X)) → PROPER(X)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U32(X)) → PROPER(X)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(U52(X1, X2, X3)) → PROPER(X1)
PROPER(U52(X1, X2, X3)) → PROPER(X2)
PROPER(U52(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → PROPER(X)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(U61(X)) → PROPER(X)
PROPER(U71(X1, X2, X3)) → PROPER(X1)
PROPER(U71(X1, X2, X3)) → PROPER(X2)
PROPER(U71(X1, X2, X3)) → PROPER(X3)
PROPER(U72(X1, X2, X3)) → PROPER(X1)
PROPER(U72(X1, X2, X3)) → PROPER(X2)
PROPER(U72(X1, X2, X3)) → PROPER(X3)
PROPER(x(X1, X2)) → PROPER(X1)
PROPER(x(X1, X2)) → PROPER(X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(109) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(U11(X1, X2)) → PROPER(X1)
PROPER(isNat(X)) → PROPER(X)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(U52(X1, X2, X3)) → PROPER(X1)
PROPER(U52(X1, X2, X3)) → PROPER(X2)
PROPER(U52(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → PROPER(X)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2, X3)) → PROPER(X1)
PROPER(U71(X1, X2, X3)) → PROPER(X2)
PROPER(U71(X1, X2, X3)) → PROPER(X3)
PROPER(U72(X1, X2, X3)) → PROPER(X1)
PROPER(U72(X1, X2, X3)) → PROPER(X2)
PROPER(U72(X1, X2, X3)) → PROPER(X3)
PROPER(x(X1, X2)) → PROPER(X1)
PROPER(x(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U11(x1, x2)  =  U11(x1, x2)
U12(x1)  =  x1
isNat(x1)  =  isNat(x1)
U21(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
active(x1)  =  active(x1)
tt  =  tt
mark(x1)  =  x1
0  =  0
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, top] > [isNat1, U723, proper1] > U312 > PROPER1
[active1, top] > [isNat1, U723, proper1] > tt > [U513, plus2] > U112
[active1, top] > [isNat1, U723, proper1] > tt > [U513, plus2] > [U412, 0]
[active1, top] > [isNat1, U723, proper1] > tt > [U513, plus2] > U523 > [s1, U713, x2]

Status:
PROPER1: [1]
U112: [1,2]
isNat1: [1]
U312: multiset
U412: [1,2]
U513: multiset
U523: [3,1,2]
s1: multiset
plus2: [1,2]
U713: multiset
U723: [3,2,1]
x2: multiset
active1: [1]
tt: multiset
0: multiset
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(110) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U12(X)) → PROPER(X)
PROPER(U21(X)) → PROPER(X)
PROPER(U32(X)) → PROPER(X)
PROPER(U61(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(111) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U32(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U12(x1)  =  x1
U21(x1)  =  x1
U32(x1)  =  U32(x1)
U61(x1)  =  x1
active(x1)  =  active(x1)
U11(x1, x2)  =  x1
tt  =  tt
mark(x1)  =  mark
isNat(x1)  =  x1
U31(x1, x2)  =  x1
U41(x1, x2)  =  U41(x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  x3
s(x1)  =  s(x1)
plus(x1, x2)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
x(x1, x2)  =  x2
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
PROPER1 > [U321, tt, mark]
[0, proper1] > U411 > [active1, U513, s1] > U712 > [U321, tt, mark]
[0, proper1] > U411 > [active1, U513, s1] > U723 > [U321, tt, mark]
top > [U321, tt, mark]

Status:
PROPER1: [1]
U321: multiset
active1: [1]
tt: multiset
mark: []
U411: [1]
U513: [1,2,3]
s1: [1]
0: multiset
U712: multiset
U723: [3,1,2]
proper1: [1]
top: multiset


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(112) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U12(X)) → PROPER(X)
PROPER(U21(X)) → PROPER(X)
PROPER(U61(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(113) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U21(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U12(x1)  =  x1
U21(x1)  =  U21(x1)
U61(x1)  =  x1
active(x1)  =  active(x1)
U11(x1, x2)  =  x1
tt  =  tt
mark(x1)  =  x1
isNat(x1)  =  isNat
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  x3
U52(x1, x2, x3)  =  x1
s(x1)  =  s
plus(x1, x2)  =  x1
0  =  0
U71(x1, x2, x3)  =  x3
U72(x1, x2, x3)  =  x3
x(x1, x2)  =  x(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[proper1, top] > [active1, s] > [isNat, x1] > U211 > tt
[proper1, top] > [active1, s] > 0 > tt

Status:
PROPER1: [1]
U211: multiset
active1: [1]
tt: multiset
isNat: multiset
s: []
0: multiset
x1: multiset
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(114) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U12(X)) → PROPER(X)
PROPER(U61(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(115) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U61(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
U12(x1)  =  x1
U61(x1)  =  U61(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  U11
tt  =  tt
mark(x1)  =  mark
isNat(x1)  =  isNat(x1)
U21(x1)  =  U21(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  U32
U41(x1, x2)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  x3
s(x1)  =  x1
plus(x1, x2)  =  x2
0  =  0
U71(x1, x2, x3)  =  x1
U72(x1, x2, x3)  =  x1
x(x1, x2)  =  x2
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
U11 > active1 > [U312, proper1] > [U611, tt, mark, isNat1, U211, U32, U513]
0 > [U611, tt, mark, isNat1, U211, U32, U513]
top > active1 > [U312, proper1] > [U611, tt, mark, isNat1, U211, U32, U513]

Status:
U611: [1]
active1: [1]
U11: multiset
tt: multiset
mark: []
isNat1: [1]
U211: multiset
U312: [2,1]
U32: []
U513: multiset
0: multiset
proper1: [1]
top: multiset


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(116) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U12(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(117) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U12(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
U12(x1)  =  U12(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  U11
tt  =  tt
mark(x1)  =  x1
isNat(x1)  =  isNat
U21(x1)  =  U21
U31(x1, x2)  =  U31(x1)
U32(x1)  =  U32(x1)
U41(x1, x2)  =  U41(x2)
U51(x1, x2, x3)  =  U51(x1, x3)
U52(x1, x2, x3)  =  U52(x1, x3)
s(x1)  =  x1
plus(x1, x2)  =  x1
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  x2
U72(x1, x2, x3)  =  U72(x2)
x(x1, x2)  =  x(x2)
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
top > [active1, U721, x1, proper1] > [U121, U11] > isNat > [tt, 0]
top > [active1, U721, x1, proper1] > U21 > [tt, 0]
top > [active1, U721, x1, proper1] > [U311, U321] > isNat > [tt, 0]
top > [active1, U721, x1, proper1] > U411
top > [active1, U721, x1, proper1] > U512 > isNat > [tt, 0]
top > [active1, U721, x1, proper1] > U512 > U522
top > [active1, U721, x1, proper1] > U611 > [tt, 0]

Status:
U121: multiset
active1: [1]
U11: multiset
tt: multiset
isNat: []
U21: multiset
U311: multiset
U321: [1]
U411: [1]
U512: [2,1]
U522: [1,2]
U611: [1]
0: multiset
U721: [1]
x1: [1]
proper1: [1]
top: multiset


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(118) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(119) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(120) TRUE

(121) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U12(X)) → ACTIVE(X)
ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U52(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(U61(X)) → ACTIVE(X)
ACTIVE(U71(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U72(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → ACTIVE(X2)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(122) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U12(X)) → ACTIVE(X)
ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(U71(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U12(x1)  =  U12(x1)
U11(x1, x2)  =  U11(x1, x2)
U21(x1)  =  U21(x1)
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2)
U52(x1, x2, x3)  =  x1
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
U71(x1, x2, x3)  =  U71(x1)
U72(x1, x2, x3)  =  x1
x(x1, x2)  =  x(x1, x2)
active(x1)  =  x1
tt  =  tt
mark(x1)  =  mark
isNat(x1)  =  isNat
0  =  0
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[U112, s1, plus2, U711, tt, mark, isNat, 0, proper1, ok] > U211 > [ACTIVE1, U121]
[U112, s1, plus2, U711, tt, mark, isNat, 0, proper1, ok] > U512 > [ACTIVE1, U121]
[U112, s1, plus2, U711, tt, mark, isNat, 0, proper1, ok] > x2 > [ACTIVE1, U121]
[U112, s1, plus2, U711, tt, mark, isNat, 0, proper1, ok] > top

Status:
ACTIVE1: multiset
U121: multiset
U112: [2,1]
U211: multiset
U512: [1,2]
s1: [1]
plus2: [1,2]
U711: [1]
x2: multiset
tt: multiset
mark: []
isNat: []
0: multiset
proper1: [1]
ok: []
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(123) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U61(X)) → ACTIVE(X)
ACTIVE(U72(X1, X2, X3)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(124) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U61(X)) → ACTIVE(X)
ACTIVE(U72(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
U61(x1)  =  U61(x1)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
active(x1)  =  x1
U11(x1, x2)  =  x1
tt  =  tt
mark(x1)  =  x1
U12(x1)  =  x1
isNat(x1)  =  isNat
U21(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U723, U713, x2] > [U523, U513, plus2] > U412
[U723, U713, x2] > [U523, U513, plus2] > [tt, isNat, 0] > s1
[U723, U713, x2] > U611 > [tt, isNat, 0] > s1

Status:
ACTIVE1: [1]
U412: [2,1]
U523: [2,3,1]
U611: [1]
U723: [3,2,1]
tt: multiset
isNat: multiset
U513: [2,3,1]
s1: multiset
plus2: [2,1]
0: multiset
U713: [3,2,1]
x2: [1,2]
top1: [1]


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(125) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(126) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U32(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U31(x1, x2)  =  x1
U32(x1)  =  U32(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  x1
tt  =  tt
mark(x1)  =  x1
U12(x1)  =  x1
isNat(x1)  =  isNat
U21(x1)  =  x1
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  x3
U52(x1, x2, x3)  =  x3
s(x1)  =  s
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x3)
U72(x1, x2, x3)  =  U72(x3)
x(x1, x2)  =  x(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, s] > proper1 > [U321, tt, 0] > ACTIVE1 > [plus2, U712, top]
[active1, s] > proper1 > [U321, tt, 0] > U611 > [isNat, U721, x1, ok] > [plus2, U712, top]

Status:
ACTIVE1: [1]
U321: multiset
active1: [1]
tt: multiset
isNat: []
s: []
plus2: [2,1]
U611: [1]
0: multiset
U712: multiset
U721: multiset
x1: multiset
proper1: multiset
ok: []
top: multiset


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(127) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U31(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(128) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U31(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U31(x1, x2)  =  U31(x1)
active(x1)  =  active(x1)
U11(x1, x2)  =  x2
tt  =  tt
mark(x1)  =  mark
U12(x1)  =  U12
isNat(x1)  =  x1
U21(x1)  =  U21
U32(x1)  =  x1
U41(x1, x2)  =  U41
U51(x1, x2, x3)  =  x1
U52(x1, x2, x3)  =  x1
s(x1)  =  x1
plus(x1, x2)  =  x1
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  x1
U72(x1, x2, x3)  =  x3
x(x1, x2)  =  x1
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
tt > U12 > proper1 > [ACTIVE1, U311] > ok > [mark, 0]
tt > U12 > proper1 > U611 > ok > [mark, 0]
U21 > active1 > U12 > proper1 > [ACTIVE1, U311] > ok > [mark, 0]
U21 > active1 > U12 > proper1 > U611 > ok > [mark, 0]
U41 > active1 > U12 > proper1 > [ACTIVE1, U311] > ok > [mark, 0]
U41 > active1 > U12 > proper1 > U611 > ok > [mark, 0]
top > active1 > U12 > proper1 > [ACTIVE1, U311] > ok > [mark, 0]
top > active1 > U12 > proper1 > U611 > ok > [mark, 0]

Status:
ACTIVE1: multiset
U311: multiset
active1: [1]
tt: multiset
mark: []
U12: []
U21: multiset
U41: []
U611: multiset
0: multiset
proper1: multiset
ok: []
top: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(129) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(130) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(131) TRUE

(132) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, V2)) → mark(U32(isNat(V2)))
active(U32(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(U52(isNat(N), M, N))
active(U52(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(U72(isNat(N), M, N))
active(U72(tt, M, N)) → mark(plus(x(N, M), N))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNat(x(V1, V2))) → mark(U31(isNat(V1), V2))
active(plus(N, 0)) → mark(U41(isNat(N), N))
active(plus(N, s(M))) → mark(U51(isNat(M), M, N))
active(x(N, 0)) → mark(U61(isNat(N)))
active(x(N, s(M))) → mark(U71(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2, X3)) → U52(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(U72(X1, X2, X3)) → U72(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2, X3) → mark(U52(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
U72(mark(X1), X2, X3) → mark(U72(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2, X3)) → U52(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(U72(X1, X2, X3)) → U72(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2), ok(X3)) → ok(U52(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
U72(ok(X1), ok(X2), ok(X3)) → ok(U72(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.