(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(n__x(X1, X2)) → x(X1, X2)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V2) → U121(isNat(activate(V2)))
U111(tt, V2) → ISNAT(activate(V2))
U111(tt, V2) → ACTIVATE(V2)
U311(tt, V2) → U321(isNat(activate(V2)))
U311(tt, V2) → ISNAT(activate(V2))
U311(tt, V2) → ACTIVATE(V2)
U411(tt, N) → ACTIVATE(N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)
U511(tt, M, N) → ACTIVATE(M)
U521(tt, M, N) → S(plus(activate(N), activate(M)))
U521(tt, M, N) → PLUS(activate(N), activate(M))
U521(tt, M, N) → ACTIVATE(N)
U521(tt, M, N) → ACTIVATE(M)
U611(tt) → 01
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U711(tt, M, N) → ISNAT(activate(N))
U711(tt, M, N) → ACTIVATE(N)
U711(tt, M, N) → ACTIVATE(M)
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
U721(tt, M, N) → X(activate(N), activate(M))
U721(tt, M, N) → ACTIVATE(N)
U721(tt, M, N) → ACTIVATE(M)
ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → U211(isNat(activate(V1)))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
ISNAT(n__x(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__x(V1, V2)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → ACTIVATE(V2)
PLUS(N, 0) → U411(isNat(N), N)
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U511(isNat(M), M, N)
PLUS(N, s(M)) → ISNAT(M)
X(N, 0) → U611(isNat(N))
X(N, 0) → ISNAT(N)
X(N, s(M)) → U711(isNat(M), M, N)
X(N, s(M)) → ISNAT(M)
ACTIVATE(n__0) → 01
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__x(X1, X2)) → X(X1, X2)

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(n__x(X1, X2)) → x(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 8 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
U111(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
PLUS(N, 0) → U411(isNat(N), N)
U411(tt, N) → ACTIVATE(N)
ACTIVATE(n__x(X1, X2)) → X(X1, X2)
X(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
U311(tt, V2) → ISNAT(activate(V2))
ISNAT(n__x(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__x(V1, V2)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → ACTIVATE(V2)
U311(tt, V2) → ACTIVATE(V2)
X(N, s(M)) → U711(isNat(M), M, N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U511(isNat(M), M, N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U521(tt, M, N) → ACTIVATE(N)
U521(tt, M, N) → ACTIVATE(M)
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)
U511(tt, M, N) → ACTIVATE(M)
U721(tt, M, N) → X(activate(N), activate(M))
X(N, s(M)) → ISNAT(M)
U721(tt, M, N) → ACTIVATE(N)
U721(tt, M, N) → ACTIVATE(M)
U711(tt, M, N) → ISNAT(activate(N))
U711(tt, M, N) → ACTIVATE(N)
U711(tt, M, N) → ACTIVATE(M)

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(n__x(X1, X2)) → x(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
PLUS(N, 0) → U411(isNat(N), N)
U411(tt, N) → ACTIVATE(N)
X(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
U311(tt, V2) → ISNAT(activate(V2))
ISNAT(n__x(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__x(V1, V2)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → ACTIVATE(V2)
U311(tt, V2) → ACTIVATE(V2)
X(N, s(M)) → U711(isNat(M), M, N)
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U511(isNat(M), M, N)
PLUS(N, s(M)) → ISNAT(M)
U521(tt, M, N) → ACTIVATE(N)
U521(tt, M, N) → ACTIVATE(M)
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)
U511(tt, M, N) → ACTIVATE(M)
U721(tt, M, N) → X(activate(N), activate(M))
X(N, s(M)) → ISNAT(M)
U721(tt, M, N) → ACTIVATE(N)
U721(tt, M, N) → ACTIVATE(M)
U711(tt, M, N) → ISNAT(activate(N))
U711(tt, M, N) → ACTIVATE(N)
U711(tt, M, N) → ACTIVATE(M)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  x2
tt  =  tt
ISNAT(x1)  =  x1
activate(x1)  =  x1
n__plus(x1, x2)  =  n__plus(x1, x2)
isNat(x1)  =  isNat
ACTIVATE(x1)  =  x1
PLUS(x1, x2)  =  PLUS(x1, x2)
0  =  0
U411(x1, x2)  =  U411(x2)
n__x(x1, x2)  =  n__x(x1, x2)
X(x1, x2)  =  X(x1, x2)
n__s(x1)  =  n__s(x1)
U311(x1, x2)  =  U311(x2)
s(x1)  =  s(x1)
U711(x1, x2, x3)  =  U711(x1, x2, x3)
U721(x1, x2, x3)  =  U721(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
U511(x1, x2, x3)  =  U511(x2, x3)
U521(x1, x2, x3)  =  U521(x2, x3)
U11(x1, x2)  =  x1
U12(x1)  =  x1
U21(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
U71(x1, x2, x3)  =  U71(x1, x2, x3)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
n__0  =  n__0

Recursive path order with status [RPO].
Quasi-Precedence:
[nx2, X2, U71^13, U72^13, x2, U713, U723] > [nplus2, U513, U523, plus2] > [ns1, s1] > [tt, isNat] > [0, n0] > [PLUS2, U41^11, U51^12, U52^12]
[nx2, X2, U71^13, U72^13, x2, U713, U723] > U31^11 > [PLUS2, U41^11, U51^12, U52^12]

Status:
tt: multiset
nplus2: [1,2]
isNat: []
PLUS2: multiset
0: multiset
U41^11: multiset
nx2: multiset
X2: multiset
ns1: multiset
U31^11: multiset
s1: multiset
U71^13: multiset
U72^13: multiset
x2: multiset
U51^12: multiset
U52^12: multiset
U513: [3,2,1]
U523: [3,2,1]
plus2: [1,2]
U713: multiset
U723: multiset
n0: multiset


The following usable rules [FROCOS05] were oriented:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(n__x(X1, X2)) → x(X1, X2)
activate(X) → X

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V2) → ISNAT(activate(V2))
U111(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__x(X1, X2)) → X(X1, X2)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(n__x(X1, X2)) → x(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 6 less nodes.

(8) TRUE