(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V2) → U121(isNat(activate(V2)))
U111(tt, V2) → ISNAT(activate(V2))
U111(tt, V2) → ACTIVATE(V2)
U311(tt, V2) → U321(isNat(activate(V2)))
U311(tt, V2) → ISNAT(activate(V2))
U311(tt, V2) → ACTIVATE(V2)
U411(tt, N) → ACTIVATE(N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)
U511(tt, M, N) → ACTIVATE(M)
U521(tt, M, N) → S(plus(activate(N), activate(M)))
U521(tt, M, N) → PLUS(activate(N), activate(M))
U521(tt, M, N) → ACTIVATE(N)
U521(tt, M, N) → ACTIVATE(M)
U611(tt) → 01
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U711(tt, M, N) → ISNAT(activate(N))
U711(tt, M, N) → ACTIVATE(N)
U711(tt, M, N) → ACTIVATE(M)
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
U721(tt, M, N) → X(activate(N), activate(M))
U721(tt, M, N) → ACTIVATE(N)
U721(tt, M, N) → ACTIVATE(M)
ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → U211(isNat(activate(V1)))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
ISNAT(n__x(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__x(V1, V2)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → ACTIVATE(V2)
PLUS(N, 0) → U411(isNat(N), N)
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U511(isNat(M), M, N)
PLUS(N, s(M)) → ISNAT(M)
X(N, 0) → U611(isNat(N))
X(N, 0) → ISNAT(N)
X(N, s(M)) → U711(isNat(M), M, N)
X(N, s(M)) → ISNAT(M)
ACTIVATE(n__0) → 01
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__x(X1, X2)) → X(activate(X1), activate(X2))
ACTIVATE(n__x(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__x(X1, X2)) → ACTIVATE(X2)

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 8 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
U111(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U411(isNat(N), N)
U411(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__x(X1, X2)) → X(activate(X1), activate(X2))
X(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__x(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__x(X1, X2)) → ACTIVATE(X2)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
U311(tt, V2) → ISNAT(activate(V2))
ISNAT(n__x(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__x(V1, V2)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → ACTIVATE(V2)
U311(tt, V2) → ACTIVATE(V2)
X(N, s(M)) → U711(isNat(M), M, N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U511(isNat(M), M, N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U521(tt, M, N) → ACTIVATE(N)
U521(tt, M, N) → ACTIVATE(M)
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)
U511(tt, M, N) → ACTIVATE(M)
U721(tt, M, N) → X(activate(N), activate(M))
X(N, s(M)) → ISNAT(M)
U721(tt, M, N) → ACTIVATE(N)
U721(tt, M, N) → ACTIVATE(M)
U711(tt, M, N) → ISNAT(activate(N))
U711(tt, M, N) → ACTIVATE(N)
U711(tt, M, N) → ACTIVATE(M)

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(tt, M, N) → ACTIVATE(M)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(U111(x1, x2)) = 0A + -I·x1 + 0A·x2

POL(tt) = 0A

POL(ISNAT(x1)) = 0A + 0A·x1

POL(activate(x1)) = -I + 0A·x1

POL(n__plus(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(isNat(x1)) = -I + 1A·x1

POL(ACTIVATE(x1)) = 0A + 0A·x1

POL(PLUS(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(0) = 0A

POL(U411(x1, x2)) = 0A + -I·x1 + 0A·x2

POL(n__s(x1)) = -I + 0A·x1

POL(n__x(x1, x2)) = 0A + 0A·x1 + 3A·x2

POL(X(x1, x2)) = 0A + 0A·x1 + 3A·x2

POL(U311(x1, x2)) = 0A + -I·x1 + 0A·x2

POL(s(x1)) = -I + 0A·x1

POL(U711(x1, x2, x3)) = -I + 1A·x1 + 3A·x2 + 0A·x3

POL(U721(x1, x2, x3)) = 0A + -I·x1 + 3A·x2 + 0A·x3

POL(x(x1, x2)) = 0A + 0A·x1 + 3A·x2

POL(U511(x1, x2, x3)) = 0A + -I·x1 + 0A·x2 + 0A·x3

POL(U521(x1, x2, x3)) = 0A + -I·x1 + 0A·x2 + 0A·x3

POL(U21(x1)) = -I + 0A·x1

POL(U31(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(plus(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(U51(x1, x2, x3)) = -I + -I·x1 + 0A·x2 + 0A·x3

POL(n__0) = 0A

POL(U11(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(U52(x1, x2, x3)) = -I + -I·x1 + 0A·x2 + 0A·x3

POL(U61(x1)) = 0A + -I·x1

POL(U12(x1)) = 0A + -I·x1

POL(U32(x1)) = 0A + -I·x1

POL(U41(x1, x2)) = -I + -I·x1 + 0A·x2

POL(U72(x1, x2, x3)) = 0A + -I·x1 + 3A·x2 + 0A·x3

POL(U71(x1, x2, x3)) = 0A + 0A·x1 + 3A·x2 + 0A·x3

The following usable rules [FROCOS05] were oriented:

isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, s(M)) → U51(isNat(M), M, N)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U11(tt, V2) → U12(isNat(activate(V2)))
activate(X) → X
activate(n__s(X)) → s(activate(X))
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
plus(N, 0) → U41(isNat(N), N)
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
U41(tt, N) → activate(N)
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
x(N, s(M)) → U71(isNat(M), M, N)
activate(n__0) → 0
x(X1, X2) → n__x(X1, X2)
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
0n__0
x(N, 0) → U61(isNat(N))

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
U111(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U411(isNat(N), N)
U411(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__x(X1, X2)) → X(activate(X1), activate(X2))
X(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__x(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__x(X1, X2)) → ACTIVATE(X2)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
U311(tt, V2) → ISNAT(activate(V2))
ISNAT(n__x(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__x(V1, V2)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → ACTIVATE(V2)
U311(tt, V2) → ACTIVATE(V2)
X(N, s(M)) → U711(isNat(M), M, N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U511(isNat(M), M, N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U521(tt, M, N) → ACTIVATE(N)
U521(tt, M, N) → ACTIVATE(M)
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)
U511(tt, M, N) → ACTIVATE(M)
U721(tt, M, N) → X(activate(N), activate(M))
X(N, s(M)) → ISNAT(M)
U721(tt, M, N) → ACTIVATE(N)
U721(tt, M, N) → ACTIVATE(M)
U711(tt, M, N) → ISNAT(activate(N))
U711(tt, M, N) → ACTIVATE(N)

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__x(X1, X2)) → ACTIVATE(X2)
ISNAT(n__x(V1, V2)) → ACTIVATE(V2)
U721(tt, M, N) → ACTIVATE(M)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(U111(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(tt) = 0A

POL(ISNAT(x1)) = 0A + 0A·x1

POL(activate(x1)) = -I + 0A·x1

POL(n__plus(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(isNat(x1)) = 0A + 0A·x1

POL(ACTIVATE(x1)) = -I + 0A·x1

POL(PLUS(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(0) = 0A

POL(U411(x1, x2)) = -I + -I·x1 + 0A·x2

POL(n__s(x1)) = -I + 0A·x1

POL(n__x(x1, x2)) = 0A + 0A·x1 + 1A·x2

POL(X(x1, x2)) = 0A + 0A·x1 + 1A·x2

POL(U311(x1, x2)) = 0A + -I·x1 + 0A·x2

POL(s(x1)) = -I + 0A·x1

POL(U711(x1, x2, x3)) = 0A + -I·x1 + 1A·x2 + 0A·x3

POL(U721(x1, x2, x3)) = 0A + 0A·x1 + 1A·x2 + 0A·x3

POL(x(x1, x2)) = 0A + 0A·x1 + 1A·x2

POL(U511(x1, x2, x3)) = 0A + -I·x1 + 0A·x2 + 0A·x3

POL(U521(x1, x2, x3)) = 0A + -I·x1 + 0A·x2 + 0A·x3

POL(U21(x1)) = 0A + -I·x1

POL(U31(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(plus(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(U51(x1, x2, x3)) = 0A + 0A·x1 + 0A·x2 + 0A·x3

POL(n__0) = 0A

POL(U11(x1, x2)) = 0A + -I·x1 + -I·x2

POL(U52(x1, x2, x3)) = -I + 0A·x1 + 0A·x2 + 0A·x3

POL(U61(x1)) = 0A + -I·x1

POL(U12(x1)) = 0A + -I·x1

POL(U32(x1)) = -I + 0A·x1

POL(U41(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(U72(x1, x2, x3)) = -I + 0A·x1 + 1A·x2 + 0A·x3

POL(U71(x1, x2, x3)) = 0A + -I·x1 + 1A·x2 + 0A·x3

The following usable rules [FROCOS05] were oriented:

isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, s(M)) → U51(isNat(M), M, N)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U11(tt, V2) → U12(isNat(activate(V2)))
activate(X) → X
activate(n__s(X)) → s(activate(X))
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
plus(N, 0) → U41(isNat(N), N)
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
U41(tt, N) → activate(N)
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
x(N, s(M)) → U71(isNat(M), M, N)
activate(n__0) → 0
x(X1, X2) → n__x(X1, X2)
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
0n__0
x(N, 0) → U61(isNat(N))

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
U111(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U411(isNat(N), N)
U411(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__x(X1, X2)) → X(activate(X1), activate(X2))
X(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__x(X1, X2)) → ACTIVATE(X1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
U311(tt, V2) → ISNAT(activate(V2))
ISNAT(n__x(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__x(V1, V2)) → ACTIVATE(V1)
U311(tt, V2) → ACTIVATE(V2)
X(N, s(M)) → U711(isNat(M), M, N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U511(isNat(M), M, N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U521(tt, M, N) → ACTIVATE(N)
U521(tt, M, N) → ACTIVATE(M)
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)
U511(tt, M, N) → ACTIVATE(M)
U721(tt, M, N) → X(activate(N), activate(M))
X(N, s(M)) → ISNAT(M)
U721(tt, M, N) → ACTIVATE(N)
U711(tt, M, N) → ISNAT(activate(N))
U711(tt, M, N) → ACTIVATE(N)

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(tt, M, N) → ISNAT(activate(N))
U711(tt, M, N) → ACTIVATE(N)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(U111(x1, x2)) = 1A + -I·x1 + 0A·x2

POL(tt) = 0A

POL(ISNAT(x1)) = 1A + 0A·x1

POL(activate(x1)) = 0A + 0A·x1

POL(n__plus(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(isNat(x1)) = 0A + 0A·x1

POL(ACTIVATE(x1)) = 1A + 0A·x1

POL(PLUS(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(0) = 1A

POL(U411(x1, x2)) = 1A + -I·x1 + 0A·x2

POL(n__s(x1)) = 2A + 0A·x1

POL(n__x(x1, x2)) = 1A + 1A·x1 + 0A·x2

POL(X(x1, x2)) = -I + 1A·x1 + 0A·x2

POL(U311(x1, x2)) = 1A + -I·x1 + 0A·x2

POL(s(x1)) = 2A + 0A·x1

POL(U711(x1, x2, x3)) = 2A + -I·x1 + 0A·x2 + 1A·x3

POL(U721(x1, x2, x3)) = -I + 1A·x1 + 0A·x2 + 1A·x3

POL(x(x1, x2)) = 1A + 1A·x1 + 0A·x2

POL(U511(x1, x2, x3)) = 1A + -I·x1 + 0A·x2 + 0A·x3

POL(U521(x1, x2, x3)) = 1A + -I·x1 + 0A·x2 + 0A·x3

POL(U21(x1)) = 0A + -I·x1

POL(U31(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(plus(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(U51(x1, x2, x3)) = 2A + -I·x1 + 0A·x2 + 0A·x3

POL(n__0) = 1A

POL(U11(x1, x2)) = -I + 0A·x1 + -I·x2

POL(U52(x1, x2, x3)) = 2A + 0A·x1 + 0A·x2 + 0A·x3

POL(U61(x1)) = -I + 1A·x1

POL(U12(x1)) = 0A + -I·x1

POL(U32(x1)) = 0A + 0A·x1

POL(U41(x1, x2)) = 1A + 0A·x1 + 0A·x2

POL(U72(x1, x2, x3)) = 1A + -I·x1 + 0A·x2 + 1A·x3

POL(U71(x1, x2, x3)) = 1A + -I·x1 + 0A·x2 + 1A·x3

The following usable rules [FROCOS05] were oriented:

isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, s(M)) → U51(isNat(M), M, N)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U11(tt, V2) → U12(isNat(activate(V2)))
activate(X) → X
activate(n__s(X)) → s(activate(X))
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
plus(N, 0) → U41(isNat(N), N)
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
U41(tt, N) → activate(N)
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
x(N, s(M)) → U71(isNat(M), M, N)
activate(n__0) → 0
x(X1, X2) → n__x(X1, X2)
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
0n__0
x(N, 0) → U61(isNat(N))

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
U111(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U411(isNat(N), N)
U411(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__x(X1, X2)) → X(activate(X1), activate(X2))
X(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__x(X1, X2)) → ACTIVATE(X1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
U311(tt, V2) → ISNAT(activate(V2))
ISNAT(n__x(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__x(V1, V2)) → ACTIVATE(V1)
U311(tt, V2) → ACTIVATE(V2)
X(N, s(M)) → U711(isNat(M), M, N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U511(isNat(M), M, N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U521(tt, M, N) → ACTIVATE(N)
U521(tt, M, N) → ACTIVATE(M)
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)
U511(tt, M, N) → ACTIVATE(M)
U721(tt, M, N) → X(activate(N), activate(M))
X(N, s(M)) → ISNAT(M)
U721(tt, M, N) → ACTIVATE(N)

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(N, 0) → ISNAT(N)
ACTIVATE(n__x(X1, X2)) → ACTIVATE(X1)
ISNAT(n__x(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__x(V1, V2)) → ACTIVATE(V1)
U721(tt, M, N) → ACTIVATE(N)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(U111(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(tt) = 0A

POL(ISNAT(x1)) = 0A + 0A·x1

POL(activate(x1)) = 0A + 0A·x1

POL(n__plus(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(isNat(x1)) = 0A + 0A·x1

POL(ACTIVATE(x1)) = 0A + 0A·x1

POL(PLUS(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(0) = 0A

POL(U411(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(n__s(x1)) = 0A + 0A·x1

POL(n__x(x1, x2)) = 1A + 1A·x1 + 0A·x2

POL(X(x1, x2)) = 1A + 1A·x1 + 0A·x2

POL(U311(x1, x2)) = -I + 1A·x1 + 0A·x2

POL(s(x1)) = 0A + 0A·x1

POL(U711(x1, x2, x3)) = 1A + 0A·x1 + 0A·x2 + 1A·x3

POL(U721(x1, x2, x3)) = 1A + 0A·x1 + 0A·x2 + 1A·x3

POL(x(x1, x2)) = 1A + 1A·x1 + 0A·x2

POL(U511(x1, x2, x3)) = -I + 0A·x1 + 0A·x2 + 0A·x3

POL(U521(x1, x2, x3)) = -I + 0A·x1 + 0A·x2 + 0A·x3

POL(U21(x1)) = 0A + 0A·x1

POL(U31(x1, x2)) = 1A + -I·x1 + 0A·x2

POL(plus(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(U51(x1, x2, x3)) = -I + 0A·x1 + 0A·x2 + 0A·x3

POL(n__0) = 0A

POL(U11(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(U52(x1, x2, x3)) = 0A + -I·x1 + 0A·x2 + 0A·x3

POL(U61(x1)) = 0A + -I·x1

POL(U12(x1)) = 0A + 0A·x1

POL(U32(x1)) = 1A + -I·x1

POL(U41(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(U72(x1, x2, x3)) = 1A + -I·x1 + 0A·x2 + 1A·x3

POL(U71(x1, x2, x3)) = 1A + 0A·x1 + 0A·x2 + 1A·x3

The following usable rules [FROCOS05] were oriented:

isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, s(M)) → U51(isNat(M), M, N)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U11(tt, V2) → U12(isNat(activate(V2)))
activate(X) → X
activate(n__s(X)) → s(activate(X))
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
plus(N, 0) → U41(isNat(N), N)
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
U41(tt, N) → activate(N)
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
x(N, s(M)) → U71(isNat(M), M, N)
activate(n__0) → 0
x(X1, X2) → n__x(X1, X2)
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
0n__0
x(N, 0) → U61(isNat(N))

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
U111(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U411(isNat(N), N)
U411(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__x(X1, X2)) → X(activate(X1), activate(X2))
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
U311(tt, V2) → ISNAT(activate(V2))
U311(tt, V2) → ACTIVATE(V2)
X(N, s(M)) → U711(isNat(M), M, N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U511(isNat(M), M, N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U521(tt, M, N) → ACTIVATE(N)
U521(tt, M, N) → ACTIVATE(M)
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)
U511(tt, M, N) → ACTIVATE(M)
U721(tt, M, N) → X(activate(N), activate(M))
X(N, s(M)) → ISNAT(M)

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(tt, V2) → ISNAT(activate(V2))
U111(tt, V2) → ACTIVATE(V2)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(U111(x1, x2)) = -I + 0A·x1 + 1A·x2

POL(tt) = 1A

POL(ISNAT(x1)) = 0A + 0A·x1

POL(activate(x1)) = -I + 0A·x1

POL(n__plus(x1, x2)) = -I + 0A·x1 + 1A·x2

POL(isNat(x1)) = 0A + 0A·x1

POL(ACTIVATE(x1)) = 0A + 0A·x1

POL(PLUS(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(0) = 5A

POL(U411(x1, x2)) = 5A + 0A·x1 + 0A·x2

POL(n__s(x1)) = 2A + 0A·x1

POL(n__x(x1, x2)) = -I + 1A·x1 + 0A·x2

POL(X(x1, x2)) = -I + 1A·x1 + 0A·x2

POL(U311(x1, x2)) = 0A + -I·x1 + 0A·x2

POL(s(x1)) = 2A + 0A·x1

POL(U711(x1, x2, x3)) = 0A + -I·x1 + 0A·x2 + 1A·x3

POL(U721(x1, x2, x3)) = 0A + -I·x1 + 0A·x2 + 1A·x3

POL(x(x1, x2)) = -I + 1A·x1 + 0A·x2

POL(U511(x1, x2, x3)) = -I + 0A·x1 + 0A·x2 + 0A·x3

POL(U521(x1, x2, x3)) = 0A + -I·x1 + 0A·x2 + 0A·x3

POL(U21(x1)) = 1A + -I·x1

POL(U31(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(plus(x1, x2)) = -I + 0A·x1 + 1A·x2

POL(U51(x1, x2, x3)) = 3A + -I·x1 + 1A·x2 + 0A·x3

POL(n__0) = 5A

POL(U11(x1, x2)) = -I + 0A·x1 + -I·x2

POL(U52(x1, x2, x3)) = 2A + 0A·x1 + 1A·x2 + 0A·x3

POL(U61(x1)) = 5A + 0A·x1

POL(U12(x1)) = 1A + -I·x1

POL(U32(x1)) = 0A + 0A·x1

POL(U41(x1, x2)) = -I + -I·x1 + 0A·x2

POL(U72(x1, x2, x3)) = 0A + -I·x1 + 0A·x2 + 1A·x3

POL(U71(x1, x2, x3)) = 0A + -I·x1 + 0A·x2 + 1A·x3

The following usable rules [FROCOS05] were oriented:

isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, s(M)) → U51(isNat(M), M, N)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U11(tt, V2) → U12(isNat(activate(V2)))
activate(X) → X
activate(n__s(X)) → s(activate(X))
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
plus(N, 0) → U41(isNat(N), N)
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
U41(tt, N) → activate(N)
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
x(N, s(M)) → U71(isNat(M), M, N)
activate(n__0) → 0
x(X1, X2) → n__x(X1, X2)
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
0n__0
x(N, 0) → U61(isNat(N))

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U411(isNat(N), N)
U411(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__x(X1, X2)) → X(activate(X1), activate(X2))
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
U311(tt, V2) → ISNAT(activate(V2))
U311(tt, V2) → ACTIVATE(V2)
X(N, s(M)) → U711(isNat(M), M, N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U511(isNat(M), M, N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U521(tt, M, N) → ACTIVATE(N)
U521(tt, M, N) → ACTIVATE(M)
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)
U511(tt, M, N) → ACTIVATE(M)
U721(tt, M, N) → X(activate(N), activate(M))
X(N, s(M)) → ISNAT(M)

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U411(isNat(N), N)
U411(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__x(X1, X2)) → X(activate(X1), activate(X2))
X(N, s(M)) → U711(isNat(M), M, N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
PLUS(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
U311(tt, V2) → ISNAT(activate(V2))
U311(tt, V2) → ACTIVATE(V2)
PLUS(N, s(M)) → U511(isNat(M), M, N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U521(tt, M, N) → ACTIVATE(N)
U521(tt, M, N) → ACTIVATE(M)
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)
U511(tt, M, N) → ACTIVATE(M)
U721(tt, M, N) → X(activate(N), activate(M))
X(N, s(M)) → ISNAT(M)

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(ISNAT(x1)) = -I + 0A·x1

POL(n__plus(x1, x2)) = -I + 0A·x1 + 2A·x2

POL(ACTIVATE(x1)) = -I + 0A·x1

POL(PLUS(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(activate(x1)) = -I + 0A·x1

POL(0) = 4A

POL(U411(x1, x2)) = 4A + -I·x1 + 0A·x2

POL(isNat(x1)) = 0A + 0A·x1

POL(tt) = 2A

POL(n__s(x1)) = 2A + 0A·x1

POL(n__x(x1, x2)) = 0A + 2A·x1 + 0A·x2

POL(X(x1, x2)) = 0A + 2A·x1 + 0A·x2

POL(s(x1)) = 2A + 0A·x1

POL(U711(x1, x2, x3)) = 2A + 0A·x1 + 0A·x2 + 2A·x3

POL(U721(x1, x2, x3)) = 0A + 0A·x1 + 0A·x2 + 2A·x3

POL(x(x1, x2)) = 0A + 2A·x1 + 0A·x2

POL(U311(x1, x2)) = 0A + -I·x1 + 0A·x2

POL(U511(x1, x2, x3)) = -I + -I·x1 + 0A·x2 + 0A·x3

POL(U521(x1, x2, x3)) = -I + -I·x1 + 0A·x2 + 0A·x3

POL(U21(x1)) = 0A + 0A·x1

POL(U31(x1, x2)) = -I + 0A·x1 + -I·x2

POL(plus(x1, x2)) = -I + 0A·x1 + 2A·x2

POL(U51(x1, x2, x3)) = -I + 0A·x1 + 2A·x2 + 0A·x3

POL(n__0) = 4A

POL(U11(x1, x2)) = 0A + 0A·x1 + 2A·x2

POL(U52(x1, x2, x3)) = 2A + 0A·x1 + 2A·x2 + 0A·x3

POL(U61(x1)) = -I + 2A·x1

POL(U12(x1)) = 0A + 2A·x1

POL(U32(x1)) = 2A + -I·x1

POL(U41(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(U72(x1, x2, x3)) = -I + 0A·x1 + 0A·x2 + 2A·x3

POL(U71(x1, x2, x3)) = 0A + 0A·x1 + 0A·x2 + 2A·x3

The following usable rules [FROCOS05] were oriented:

isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, s(M)) → U51(isNat(M), M, N)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U11(tt, V2) → U12(isNat(activate(V2)))
activate(X) → X
activate(n__s(X)) → s(activate(X))
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
plus(N, 0) → U41(isNat(N), N)
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
U41(tt, N) → activate(N)
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
x(N, s(M)) → U71(isNat(M), M, N)
activate(n__0) → 0
x(X1, X2) → n__x(X1, X2)
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
0n__0
x(N, 0) → U61(isNat(N))

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U411(isNat(N), N)
U411(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__x(X1, X2)) → X(activate(X1), activate(X2))
X(N, s(M)) → U711(isNat(M), M, N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
PLUS(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
U311(tt, V2) → ISNAT(activate(V2))
U311(tt, V2) → ACTIVATE(V2)
PLUS(N, s(M)) → U511(isNat(M), M, N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U521(tt, M, N) → ACTIVATE(N)
U521(tt, M, N) → ACTIVATE(M)
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)
U511(tt, M, N) → ACTIVATE(M)
U721(tt, M, N) → X(activate(N), activate(M))
X(N, s(M)) → ISNAT(M)

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(tt, M, N) → ACTIVATE(M)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(ISNAT(x1)) = 1A + 0A·x1

POL(n__plus(x1, x2)) = -I + 0A·x1 + 1A·x2

POL(ACTIVATE(x1)) = 0A + 0A·x1

POL(PLUS(x1, x2)) = 0A + 0A·x1 + 1A·x2

POL(activate(x1)) = -I + 0A·x1

POL(0) = 1A

POL(U411(x1, x2)) = 2A + 0A·x1 + 0A·x2

POL(isNat(x1)) = -I + 0A·x1

POL(tt) = 0A

POL(n__s(x1)) = 0A + 0A·x1

POL(n__x(x1, x2)) = 1A + 1A·x1 + 0A·x2

POL(X(x1, x2)) = 1A + 1A·x1 + 0A·x2

POL(s(x1)) = 0A + 0A·x1

POL(U711(x1, x2, x3)) = 1A + -I·x1 + 0A·x2 + 1A·x3

POL(U721(x1, x2, x3)) = 1A + 0A·x1 + 0A·x2 + 1A·x3

POL(x(x1, x2)) = 1A + 1A·x1 + 0A·x2

POL(U311(x1, x2)) = 1A + 1A·x1 + 0A·x2

POL(U511(x1, x2, x3)) = 1A + -I·x1 + 1A·x2 + 0A·x3

POL(U521(x1, x2, x3)) = 0A + 0A·x1 + 1A·x2 + 0A·x3

POL(U21(x1)) = -I + 0A·x1

POL(U31(x1, x2)) = 1A + 1A·x1 + 0A·x2

POL(plus(x1, x2)) = -I + 0A·x1 + 1A·x2

POL(U51(x1, x2, x3)) = 0A + -I·x1 + 1A·x2 + 0A·x3

POL(n__0) = 1A

POL(U11(x1, x2)) = -I + -I·x1 + 1A·x2

POL(U52(x1, x2, x3)) = -I + 0A·x1 + 1A·x2 + 0A·x3

POL(U61(x1)) = -I + 1A·x1

POL(U12(x1)) = -I + 1A·x1

POL(U32(x1)) = 1A + 0A·x1

POL(U41(x1, x2)) = -I + -I·x1 + 0A·x2

POL(U72(x1, x2, x3)) = 1A + -I·x1 + 0A·x2 + 1A·x3

POL(U71(x1, x2, x3)) = 1A + -I·x1 + 0A·x2 + 1A·x3

The following usable rules [FROCOS05] were oriented:

isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, s(M)) → U51(isNat(M), M, N)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U11(tt, V2) → U12(isNat(activate(V2)))
activate(X) → X
activate(n__s(X)) → s(activate(X))
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
plus(N, 0) → U41(isNat(N), N)
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
U41(tt, N) → activate(N)
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
x(N, s(M)) → U71(isNat(M), M, N)
activate(n__0) → 0
x(X1, X2) → n__x(X1, X2)
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
0n__0
x(N, 0) → U61(isNat(N))

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U411(isNat(N), N)
U411(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__x(X1, X2)) → X(activate(X1), activate(X2))
X(N, s(M)) → U711(isNat(M), M, N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
PLUS(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
U311(tt, V2) → ISNAT(activate(V2))
U311(tt, V2) → ACTIVATE(V2)
PLUS(N, s(M)) → U511(isNat(M), M, N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U521(tt, M, N) → ACTIVATE(N)
U521(tt, M, N) → ACTIVATE(M)
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)
U721(tt, M, N) → X(activate(N), activate(M))
X(N, s(M)) → ISNAT(M)

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(tt, V2) → ISNAT(activate(V2))
U311(tt, V2) → ACTIVATE(V2)
X(N, s(M)) → ISNAT(M)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(ISNAT(x1)) = -I + 0A·x1

POL(n__plus(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(ACTIVATE(x1)) = -I + 0A·x1

POL(PLUS(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(activate(x1)) = -I + 0A·x1

POL(0) = 0A

POL(U411(x1, x2)) = 0A + 0A·x1 + 0A·x2

POL(isNat(x1)) = 0A + -I·x1

POL(tt) = 0A

POL(n__s(x1)) = -I + 0A·x1

POL(n__x(x1, x2)) = -I + 0A·x1 + 1A·x2

POL(X(x1, x2)) = -I + 0A·x1 + 1A·x2

POL(s(x1)) = -I + 0A·x1

POL(U711(x1, x2, x3)) = -I + -I·x1 + 1A·x2 + 0A·x3

POL(U721(x1, x2, x3)) = -I + -I·x1 + 1A·x2 + 0A·x3

POL(x(x1, x2)) = -I + 0A·x1 + 1A·x2

POL(U311(x1, x2)) = -I + -I·x1 + 1A·x2

POL(U511(x1, x2, x3)) = -I + -I·x1 + 0A·x2 + 0A·x3

POL(U521(x1, x2, x3)) = -I + -I·x1 + 0A·x2 + 0A·x3

POL(U21(x1)) = 0A + -I·x1

POL(U31(x1, x2)) = 0A + 0A·x1 + -I·x2

POL(plus(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(U51(x1, x2, x3)) = -I + -I·x1 + 0A·x2 + 0A·x3

POL(n__0) = 0A

POL(U11(x1, x2)) = 0A + 0A·x1 + -I·x2

POL(U52(x1, x2, x3)) = -I + -I·x1 + 0A·x2 + 0A·x3

POL(U61(x1)) = 1A + -I·x1

POL(U12(x1)) = 0A + -I·x1

POL(U32(x1)) = 0A + -I·x1

POL(U41(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(U72(x1, x2, x3)) = -I + -I·x1 + 1A·x2 + 0A·x3

POL(U71(x1, x2, x3)) = -I + -I·x1 + 1A·x2 + 0A·x3

The following usable rules [FROCOS05] were oriented:

isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, s(M)) → U51(isNat(M), M, N)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U11(tt, V2) → U12(isNat(activate(V2)))
activate(X) → X
activate(n__s(X)) → s(activate(X))
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
plus(N, 0) → U41(isNat(N), N)
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
U41(tt, N) → activate(N)
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
x(N, s(M)) → U71(isNat(M), M, N)
activate(n__0) → 0
x(X1, X2) → n__x(X1, X2)
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
0n__0
x(N, 0) → U61(isNat(N))

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U411(isNat(N), N)
U411(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__x(X1, X2)) → X(activate(X1), activate(X2))
X(N, s(M)) → U711(isNat(M), M, N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
PLUS(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → U311(isNat(activate(V1)), activate(V2))
PLUS(N, s(M)) → U511(isNat(M), M, N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U521(tt, M, N) → ACTIVATE(N)
U521(tt, M, N) → ACTIVATE(M)
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)
U721(tt, M, N) → X(activate(N), activate(M))

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U411(isNat(N), N)
U411(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__x(X1, X2)) → X(activate(X1), activate(X2))
X(N, s(M)) → U711(isNat(M), M, N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
PLUS(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, s(M)) → U511(isNat(M), M, N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U521(tt, M, N) → ACTIVATE(N)
U521(tt, M, N) → ACTIVATE(M)
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)
U721(tt, M, N) → X(activate(N), activate(M))

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(tt, M, N) → ACTIVATE(M)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(ACTIVATE(x1)) = 0A + 0A·x1

POL(n__plus(x1, x2)) = 4A + 0A·x1 + 1A·x2

POL(PLUS(x1, x2)) = 0A + 0A·x1 + 1A·x2

POL(activate(x1)) = -I + 0A·x1

POL(0) = 1A

POL(U411(x1, x2)) = 2A + -I·x1 + 0A·x2

POL(isNat(x1)) = -I + 0A·x1

POL(tt) = 1A

POL(n__s(x1)) = -I + 0A·x1

POL(n__x(x1, x2)) = 0A + 1A·x1 + 5A·x2

POL(X(x1, x2)) = 0A + 1A·x1 + 5A·x2

POL(s(x1)) = -I + 0A·x1

POL(U711(x1, x2, x3)) = 0A + -I·x1 + 5A·x2 + 1A·x3

POL(U721(x1, x2, x3)) = 0A + -I·x1 + 5A·x2 + 1A·x3

POL(x(x1, x2)) = 0A + 1A·x1 + 5A·x2

POL(ISNAT(x1)) = 0A + 0A·x1

POL(U511(x1, x2, x3)) = -I + 0A·x1 + 1A·x2 + 0A·x3

POL(U521(x1, x2, x3)) = -I + 0A·x1 + 1A·x2 + 0A·x3

POL(U21(x1)) = -I + 0A·x1

POL(U31(x1, x2)) = -I + 0A·x1 + -I·x2

POL(plus(x1, x2)) = 4A + 0A·x1 + 1A·x2

POL(U51(x1, x2, x3)) = 4A + 0A·x1 + 1A·x2 + 0A·x3

POL(n__0) = 1A

POL(U11(x1, x2)) = -I + 0A·x1 + -I·x2

POL(U52(x1, x2, x3)) = 4A + -I·x1 + 1A·x2 + 0A·x3

POL(U61(x1)) = 2A + -I·x1

POL(U12(x1)) = 1A + -I·x1

POL(U32(x1)) = 1A + -I·x1

POL(U41(x1, x2)) = 4A + 0A·x1 + 0A·x2

POL(U72(x1, x2, x3)) = 4A + 0A·x1 + 5A·x2 + 1A·x3

POL(U71(x1, x2, x3)) = -I + 3A·x1 + 5A·x2 + 1A·x3

The following usable rules [FROCOS05] were oriented:

isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, s(M)) → U51(isNat(M), M, N)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U11(tt, V2) → U12(isNat(activate(V2)))
activate(X) → X
activate(n__s(X)) → s(activate(X))
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
plus(N, 0) → U41(isNat(N), N)
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
U41(tt, N) → activate(N)
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
x(N, s(M)) → U71(isNat(M), M, N)
activate(n__0) → 0
x(X1, X2) → n__x(X1, X2)
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
0n__0
x(N, 0) → U61(isNat(N))

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U411(isNat(N), N)
U411(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__x(X1, X2)) → X(activate(X1), activate(X2))
X(N, s(M)) → U711(isNat(M), M, N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
PLUS(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, s(M)) → U511(isNat(M), M, N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U521(tt, M, N) → ACTIVATE(N)
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)
U721(tt, M, N) → X(activate(N), activate(M))

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(N, s(M)) → ISNAT(M)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(ACTIVATE(x1)) = 0A + 0A·x1

POL(n__plus(x1, x2)) = -I + 0A·x1 + 1A·x2

POL(PLUS(x1, x2)) = 0A + 0A·x1 + 1A·x2

POL(activate(x1)) = -I + 0A·x1

POL(0) = 0A

POL(U411(x1, x2)) = 1A + 0A·x1 + 0A·x2

POL(isNat(x1)) = 0A + 0A·x1

POL(tt) = 0A

POL(n__s(x1)) = 0A + 0A·x1

POL(n__x(x1, x2)) = 0A + 1A·x1 + 1A·x2

POL(X(x1, x2)) = 0A + 1A·x1 + 1A·x2

POL(s(x1)) = 0A + 0A·x1

POL(U711(x1, x2, x3)) = -I + 0A·x1 + 1A·x2 + 1A·x3

POL(U721(x1, x2, x3)) = 0A + -I·x1 + 1A·x2 + 1A·x3

POL(x(x1, x2)) = 0A + 1A·x1 + 1A·x2

POL(ISNAT(x1)) = 0A + 0A·x1

POL(U511(x1, x2, x3)) = -I + 0A·x1 + 1A·x2 + 0A·x3

POL(U521(x1, x2, x3)) = -I + 0A·x1 + 1A·x2 + 0A·x3

POL(U21(x1)) = 0A + -I·x1

POL(U31(x1, x2)) = 0A + -I·x1 + 1A·x2

POL(plus(x1, x2)) = -I + 0A·x1 + 1A·x2

POL(U51(x1, x2, x3)) = 1A + -I·x1 + 1A·x2 + 0A·x3

POL(n__0) = 0A

POL(U11(x1, x2)) = 0A + -I·x1 + -I·x2

POL(U52(x1, x2, x3)) = 0A + 0A·x1 + 1A·x2 + 0A·x3

POL(U61(x1)) = 1A + -I·x1

POL(U12(x1)) = 0A + -I·x1

POL(U32(x1)) = -I + 0A·x1

POL(U41(x1, x2)) = 1A + 0A·x1 + 0A·x2

POL(U72(x1, x2, x3)) = 0A + -I·x1 + 1A·x2 + 1A·x3

POL(U71(x1, x2, x3)) = -I + 0A·x1 + 1A·x2 + 1A·x3

The following usable rules [FROCOS05] were oriented:

isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, s(M)) → U51(isNat(M), M, N)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U11(tt, V2) → U12(isNat(activate(V2)))
activate(X) → X
activate(n__s(X)) → s(activate(X))
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
plus(N, 0) → U41(isNat(N), N)
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
U41(tt, N) → activate(N)
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
x(N, s(M)) → U71(isNat(M), M, N)
activate(n__0) → 0
x(X1, X2) → n__x(X1, X2)
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
0n__0
x(N, 0) → U61(isNat(N))

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U411(isNat(N), N)
U411(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__x(X1, X2)) → X(activate(X1), activate(X2))
X(N, s(M)) → U711(isNat(M), M, N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
PLUS(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, s(M)) → U511(isNat(M), M, N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))
U521(tt, M, N) → ACTIVATE(N)
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)
U721(tt, M, N) → X(activate(N), activate(M))

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__x(X1, X2)) → X(activate(X1), activate(X2))
X(N, s(M)) → U711(isNat(M), M, N)
U721(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U721(tt, M, N) → X(activate(N), activate(M))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE(x1)
n__plus(x1, x2)  =  n__plus(x1, x2)
PLUS(x1, x2)  =  PLUS(x1)
activate(x1)  =  x1
0  =  0
U411(x1, x2)  =  U411(x2)
isNat(x1)  =  isNat
tt  =  tt
n__s(x1)  =  n__s(x1)
n__x(x1, x2)  =  n__x(x1, x2)
X(x1, x2)  =  X(x1, x2)
s(x1)  =  s(x1)
U711(x1, x2, x3)  =  U711(x1, x2, x3)
U721(x1, x2, x3)  =  U721(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
ISNAT(x1)  =  ISNAT(x1)
U511(x1, x2, x3)  =  U511(x3)
U521(x1, x2, x3)  =  U521(x3)
U21(x1)  =  U21
U31(x1, x2)  =  U31
plus(x1, x2)  =  plus(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
n__0  =  n__0
U11(x1, x2)  =  U11
U52(x1, x2, x3)  =  U52(x1, x2, x3)
U61(x1)  =  U61
U12(x1)  =  U12
U32(x1)  =  U32
U41(x1, x2)  =  U41(x1, x2)
U72(x1, x2, x3)  =  U72(x1, x2, x3)
U71(x1, x2, x3)  =  U71(x1, x2, x3)

Recursive path order with status [RPO].
Quasi-Precedence:
[nx2, X2, U71^13, U72^13, x2, U723, U713] > [nplus2, plus2, U513, U523] > [ACTIVATE1, PLUS1, U41^11, ISNAT1, U51^11, U52^11] > [isNat, tt, U21, U31, U11, U12, U32] > [ns1, s1, U412]
[nx2, X2, U71^13, U72^13, x2, U723, U713] > U61 > [0, n0] > [isNat, tt, U21, U31, U11, U12, U32] > [ns1, s1, U412]

Status:
nplus2: [1,2]
U41^11: multiset
U31: multiset
U11: multiset
x2: [2,1]
ns1: multiset
U51^11: multiset
PLUS1: multiset
U71^13: [2,3,1]
isNat: multiset
U61: multiset
tt: multiset
s1: multiset
U513: [3,2,1]
ACTIVATE1: multiset
plus2: [1,2]
U21: multiset
X2: [2,1]
U32: multiset
U72^13: [2,3,1]
U12: multiset
0: multiset
ISNAT1: multiset
U523: [3,2,1]
U52^11: multiset
U412: multiset
n0: multiset
nx2: [2,1]
U723: [2,3,1]
U713: [2,3,1]


The following usable rules [FROCOS05] were oriented:

isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, s(M)) → U51(isNat(M), M, N)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U11(tt, V2) → U12(isNat(activate(V2)))
activate(X) → X
activate(n__s(X)) → s(activate(X))
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
plus(N, 0) → U41(isNat(N), N)
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
U41(tt, N) → activate(N)
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
x(N, s(M)) → U71(isNat(M), M, N)
activate(n__0) → 0
x(X1, X2) → n__x(X1, X2)
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
0n__0
x(N, 0) → U61(isNat(N))

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(N, 0) → U411(isNat(N), N)
U411(tt, N) → ACTIVATE(N)
U711(tt, M, N) → U721(isNat(activate(N)), activate(M), activate(N))
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U511(isNat(M), M, N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))
U521(tt, M, N) → ACTIVATE(N)
U511(tt, M, N) → ISNAT(activate(N))
U511(tt, M, N) → ACTIVATE(N)

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 7 less nodes.

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(N, s(M)) → U511(isNat(M), M, N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
U521(tt, M, N) → PLUS(activate(N), activate(M))

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(N, s(M)) → U511(isNat(M), M, N)
U511(tt, M, N) → U521(isNat(activate(N)), activate(M), activate(N))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x2)
s(x1)  =  s(x1)
U511(x1, x2, x3)  =  U511(x1, x2)
isNat(x1)  =  isNat
tt  =  tt
U521(x1, x2, x3)  =  U521(x2)
activate(x1)  =  x1
n__s(x1)  =  n__s(x1)
U21(x1)  =  U21
n__x(x1, x2)  =  n__x(x1, x2)
U31(x1, x2)  =  U31
plus(x1, x2)  =  plus(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
n__0  =  n__0
n__plus(x1, x2)  =  n__plus(x1, x2)
U11(x1, x2)  =  x1
U52(x1, x2, x3)  =  U52(x1, x2, x3)
U61(x1)  =  U61
0  =  0
U12(x1)  =  x1
U32(x1)  =  U32
x(x1, x2)  =  x(x1, x2)
U41(x1, x2)  =  x2
U72(x1, x2, x3)  =  U72(x1, x2, x3)
U71(x1, x2, x3)  =  U71(x1, x2, x3)

Recursive path order with status [RPO].
Quasi-Precedence:
[nx2, x2, U723, U713] > [plus2, U513, nplus2, U523] > [s1, ns1] > [PLUS1, U51^12, isNat, tt, U52^11, U21, U31, U32]
[nx2, x2, U723, U713] > U61 > [n0, 0] > [PLUS1, U51^12, isNat, tt, U52^11, U21, U31, U32]

Status:
nplus2: multiset
U51^12: multiset
U21: multiset
plus2: multiset
U32: multiset
U31: multiset
x2: multiset
ns1: multiset
0: multiset
PLUS1: multiset
isNat: multiset
U52^11: multiset
U523: multiset
U61: multiset
tt: multiset
n0: multiset
nx2: multiset
s1: multiset
U723: multiset
U513: multiset
U713: multiset


The following usable rules [FROCOS05] were oriented:

isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, s(M)) → U51(isNat(M), M, N)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U11(tt, V2) → U12(isNat(activate(V2)))
activate(X) → X
activate(n__s(X)) → s(activate(X))
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
plus(N, 0) → U41(isNat(N), N)
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
U41(tt, N) → activate(N)
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
x(N, s(M)) → U71(isNat(M), M, N)
activate(n__0) → 0
x(X1, X2) → n__x(X1, X2)
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
0n__0
x(N, 0) → U61(isNat(N))

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(tt, M, N) → PLUS(activate(N), activate(M))

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(36) TRUE