(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U101(tt, M, N) → A__U102(a__isNatKind(M), M, N)
A__U101(tt, M, N) → A__ISNATKIND(M)
A__U102(tt, M, N) → A__U103(a__isNat(N), M, N)
A__U102(tt, M, N) → A__ISNAT(N)
A__U103(tt, M, N) → A__U104(a__isNatKind(N), M, N)
A__U103(tt, M, N) → A__ISNATKIND(N)
A__U104(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__U104(tt, M, N) → A__X(mark(N), mark(M))
A__U104(tt, M, N) → MARK(N)
A__U104(tt, M, N) → MARK(M)
A__U11(tt, V1, V2) → A__U12(a__isNatKind(V1), V1, V2)
A__U11(tt, V1, V2) → A__ISNATKIND(V1)
A__U12(tt, V1, V2) → A__U13(a__isNatKind(V2), V1, V2)
A__U12(tt, V1, V2) → A__ISNATKIND(V2)
A__U13(tt, V1, V2) → A__U14(a__isNatKind(V2), V1, V2)
A__U13(tt, V1, V2) → A__ISNATKIND(V2)
A__U14(tt, V1, V2) → A__U15(a__isNat(V1), V2)
A__U14(tt, V1, V2) → A__ISNAT(V1)
A__U15(tt, V2) → A__U16(a__isNat(V2))
A__U15(tt, V2) → A__ISNAT(V2)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNATKIND(V1)
A__U22(tt, V1) → A__U23(a__isNat(V1))
A__U22(tt, V1) → A__ISNAT(V1)
A__U31(tt, V1, V2) → A__U32(a__isNatKind(V1), V1, V2)
A__U31(tt, V1, V2) → A__ISNATKIND(V1)
A__U32(tt, V1, V2) → A__U33(a__isNatKind(V2), V1, V2)
A__U32(tt, V1, V2) → A__ISNATKIND(V2)
A__U33(tt, V1, V2) → A__U34(a__isNatKind(V2), V1, V2)
A__U33(tt, V1, V2) → A__ISNATKIND(V2)
A__U34(tt, V1, V2) → A__U35(a__isNat(V1), V2)
A__U34(tt, V1, V2) → A__ISNAT(V1)
A__U35(tt, V2) → A__U36(a__isNat(V2))
A__U35(tt, V2) → A__ISNAT(V2)
A__U41(tt, V2) → A__U42(a__isNatKind(V2))
A__U41(tt, V2) → A__ISNATKIND(V2)
A__U61(tt, V2) → A__U62(a__isNatKind(V2))
A__U61(tt, V2) → A__ISNATKIND(V2)
A__U71(tt, N) → A__U72(a__isNatKind(N), N)
A__U71(tt, N) → A__ISNATKIND(N)
A__U72(tt, N) → MARK(N)
A__U81(tt, M, N) → A__U82(a__isNatKind(M), M, N)
A__U81(tt, M, N) → A__ISNATKIND(M)
A__U82(tt, M, N) → A__U83(a__isNat(N), M, N)
A__U82(tt, M, N) → A__ISNAT(N)
A__U83(tt, M, N) → A__U84(a__isNatKind(N), M, N)
A__U83(tt, M, N) → A__ISNATKIND(N)
A__U84(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U84(tt, M, N) → MARK(N)
A__U84(tt, M, N) → MARK(M)
A__U91(tt, N) → A__U92(a__isNatKind(N))
A__U91(tt, N) → A__ISNATKIND(N)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNatKind(V1), V1, V2)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(x(V1, V2)) → A__U31(a__isNatKind(V1), V1, V2)
A__ISNAT(x(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__U41(a__isNatKind(V1), V2)
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__U51(a__isNatKind(V1))
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(x(V1, V2)) → A__U61(a__isNatKind(V1), V2)
A__ISNATKIND(x(V1, V2)) → A__ISNATKIND(V1)
A__PLUS(N, 0) → A__U71(a__isNat(N), N)
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U81(a__isNat(M), M, N)
A__PLUS(N, s(M)) → A__ISNAT(M)
A__X(N, 0) → A__U91(a__isNat(N), N)
A__X(N, 0) → A__ISNAT(N)
A__X(N, s(M)) → A__U101(a__isNat(M), M, N)
A__X(N, s(M)) → A__ISNAT(M)
MARK(U101(X1, X2, X3)) → A__U101(mark(X1), X2, X3)
MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(U102(X1, X2, X3)) → A__U102(mark(X1), X2, X3)
MARK(U102(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(U103(X1, X2, X3)) → A__U103(mark(X1), X2, X3)
MARK(U103(X1, X2, X3)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U104(X1, X2, X3)) → A__U104(mark(X1), X2, X3)
MARK(U104(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → A__U12(mark(X1), X2, X3)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → A__U13(mark(X1), X2, X3)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → A__U14(mark(X1), X2, X3)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → A__U15(mark(X1), X2)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → A__U16(mark(X))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → A__U22(mark(X1), X2)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → A__U23(mark(X))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → A__U31(mark(X1), X2, X3)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → A__U32(mark(X1), X2, X3)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → A__U33(mark(X1), X2, X3)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U34(X1, X2, X3)) → A__U34(mark(X1), X2, X3)
MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → A__U35(mark(X1), X2)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U36(X)) → A__U36(mark(X))
MARK(U36(X)) → MARK(X)
MARK(U41(X1, X2)) → A__U41(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → A__U42(mark(X))
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → A__U51(mark(X))
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → A__U61(mark(X1), X2)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → A__U62(mark(X))
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(U81(X1, X2, X3)) → A__U81(mark(X1), X2, X3)
MARK(U81(X1, X2, X3)) → MARK(X1)
MARK(U82(X1, X2, X3)) → A__U82(mark(X1), X2, X3)
MARK(U82(X1, X2, X3)) → MARK(X1)
MARK(U83(X1, X2, X3)) → A__U83(mark(X1), X2, X3)
MARK(U83(X1, X2, X3)) → MARK(X1)
MARK(U84(X1, X2, X3)) → A__U84(mark(X1), X2, X3)
MARK(U84(X1, X2, X3)) → MARK(X1)
MARK(U91(X1, X2)) → A__U91(mark(X1), X2)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → A__U92(mark(X))
MARK(U92(X)) → MARK(X)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 54 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U41(tt, V2) → A__ISNATKIND(V2)
A__ISNATKIND(plus(V1, V2)) → A__U41(a__isNatKind(V1), V2)
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(x(V1, V2)) → A__U61(a__isNatKind(V1), V2)
A__U61(tt, V2) → A__ISNATKIND(V2)
A__ISNATKIND(x(V1, V2)) → A__ISNATKIND(V1)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNATKIND(plus(V1, V2)) → A__U41(a__isNatKind(V1), V2)
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__U61(tt, V2) → A__ISNATKIND(V2)
A__ISNATKIND(x(V1, V2)) → A__ISNATKIND(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U41(x1, x2)  =  x2
tt  =  tt
A__ISNATKIND(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
a__isNatKind(x1)  =  x1
s(x1)  =  s(x1)
x(x1, x2)  =  x(x1, x2)
A__U61(x1, x2)  =  A__U61(x1, x2)
a__U51(x1)  =  a__U51(x1)
a__U61(x1, x2)  =  x2
a__U62(x1)  =  x1
a__U41(x1, x2)  =  x2
a__U42(x1)  =  x1
isNatKind(x1)  =  x1
0  =  0
U41(x1, x2)  =  x2
U62(x1)  =  x1
U61(x1, x2)  =  x2
U51(x1)  =  U51
U42(x1)  =  U42

Recursive Path Order [RPO].
Precedence:
plus2 > U42
[s1, aU511] > tt > U42
[s1, aU511] > U51 > U42
[x2, AU612] > U42
0 > tt > U42


The following usable rules [FROCOS05] were oriented:

a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__isNatKind(X) → isNatKind(X)
a__U62(tt) → tt
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__U41(X1, X2) → U41(X1, X2)
a__U62(X) → U62(X)
a__U61(X1, X2) → U61(X1, X2)
a__U51(X) → U51(X)
a__U42(X) → U42(X)
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U41(tt, V2) → A__ISNATKIND(V2)
A__ISNATKIND(x(V1, V2)) → A__U61(a__isNatKind(V1), V2)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V1, V2) → A__U13(a__isNatKind(V2), V1, V2)
A__U13(tt, V1, V2) → A__U14(a__isNatKind(V2), V1, V2)
A__U14(tt, V1, V2) → A__U15(a__isNat(V1), V2)
A__U15(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNatKind(V1), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNatKind(V1), V1, V2)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U22(tt, V1) → A__ISNAT(V1)
A__ISNAT(x(V1, V2)) → A__U31(a__isNatKind(V1), V1, V2)
A__U31(tt, V1, V2) → A__U32(a__isNatKind(V1), V1, V2)
A__U32(tt, V1, V2) → A__U33(a__isNatKind(V2), V1, V2)
A__U33(tt, V1, V2) → A__U34(a__isNatKind(V2), V1, V2)
A__U34(tt, V1, V2) → A__U35(a__isNat(V1), V2)
A__U35(tt, V2) → A__ISNAT(V2)
A__U34(tt, V1, V2) → A__ISNAT(V1)
A__U14(tt, V1, V2) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U14(tt, V1, V2) → A__U15(a__isNat(V1), V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNatKind(V1), V1, V2)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__ISNAT(x(V1, V2)) → A__U31(a__isNatKind(V1), V1, V2)
A__U34(tt, V1, V2) → A__U35(a__isNat(V1), V2)
A__U34(tt, V1, V2) → A__ISNAT(V1)
A__U14(tt, V1, V2) → A__ISNAT(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U12(x1, x2, x3)  =  A__U12(x1, x2, x3)
tt  =  tt
A__U13(x1, x2, x3)  =  A__U13(x1, x2, x3)
a__isNatKind(x1)  =  a__isNatKind
A__U14(x1, x2, x3)  =  A__U14(x1, x2, x3)
A__U15(x1, x2)  =  A__U15(x2)
a__isNat(x1)  =  a__isNat
A__ISNAT(x1)  =  A__ISNAT(x1)
plus(x1, x2)  =  plus(x1, x2)
A__U11(x1, x2, x3)  =  A__U11(x1, x2, x3)
s(x1)  =  s(x1)
A__U21(x1, x2)  =  A__U21(x1, x2)
A__U22(x1, x2)  =  A__U22(x2)
x(x1, x2)  =  x(x1, x2)
A__U31(x1, x2, x3)  =  A__U31(x1, x2, x3)
A__U32(x1, x2, x3)  =  A__U32(x1, x2, x3)
A__U33(x1, x2, x3)  =  A__U33(x1, x2, x3)
A__U34(x1, x2, x3)  =  A__U34(x1, x2, x3)
A__U35(x1, x2)  =  A__U35(x2)
a__U51(x1)  =  x1
a__U61(x1, x2)  =  a__U61
a__U62(x1)  =  x1
a__U41(x1, x2)  =  a__U41
a__U42(x1)  =  x1
a__U35(x1, x2)  =  x1
a__U36(x1)  =  x1
a__U33(x1, x2, x3)  =  x2
a__U34(x1, x2, x3)  =  x3
0  =  0
a__U31(x1, x2, x3)  =  a__U31(x1, x2, x3)
a__U21(x1, x2)  =  a__U21(x1)
a__U11(x1, x2, x3)  =  a__U11(x2, x3)
a__U16(x1)  =  a__U16
a__U22(x1, x2)  =  x2
a__U14(x1, x2, x3)  =  a__U14(x3)
a__U15(x1, x2)  =  x1
a__U32(x1, x2, x3)  =  a__U32(x1, x2, x3)
a__U23(x1)  =  x1
a__U12(x1, x2, x3)  =  a__U12(x2, x3)
a__U13(x1, x2, x3)  =  a__U13
isNatKind(x1)  =  isNatKind
isNat(x1)  =  isNat
U13(x1, x2, x3)  =  x3
U14(x1, x2, x3)  =  U14(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2)
U12(x1, x2, x3)  =  U12(x1, x2, x3)
U22(x1, x2)  =  U22(x1, x2)
U21(x1, x2)  =  U21(x1, x2)
U16(x1)  =  U16(x1)
U15(x1, x2)  =  U15(x1, x2)
U33(x1, x2, x3)  =  x2
U32(x1, x2, x3)  =  x2
U31(x1, x2, x3)  =  x1
U23(x1)  =  U23(x1)
U41(x1, x2)  =  U41
U36(x1)  =  U36
U35(x1, x2)  =  x2
U34(x1, x2, x3)  =  U34(x1, x3)
U62(x1)  =  U62
U61(x1, x2)  =  U61
U51(x1)  =  x1
U42(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
x2 > [AU313, AU323, AU333, AU343] > [AU123, tt, AU133, aisNatKind, AU143, AU151, AISNAT1, plus2, AU113, s1, AU212, AU221, AU351, aU61, aU41, U41] > [aisNat, aU141] > aU211 > [U112, U62]
x2 > [AU313, AU323, AU333, AU343] > [AU123, tt, AU133, aisNatKind, AU143, AU151, AISNAT1, plus2, AU113, s1, AU212, AU221, AU351, aU61, aU41, U41] > [aisNat, aU141] > aU112 > [U112, U62]
x2 > [AU313, AU323, AU333, AU343] > [AU123, tt, AU133, aisNatKind, AU143, AU151, AISNAT1, plus2, AU113, s1, AU212, AU221, AU351, aU61, aU41, U41] > [aisNat, aU141] > U142 > [U112, U62]
x2 > [AU313, AU323, AU333, AU343] > [AU123, tt, AU133, aisNatKind, AU143, AU151, AISNAT1, plus2, AU113, s1, AU212, AU221, AU351, aU61, aU41, U41] > aU16 > U161 > [U112, U62]
x2 > [AU313, AU323, AU333, AU343] > [AU123, tt, AU133, aisNatKind, AU143, AU151, AISNAT1, plus2, AU113, s1, AU212, AU221, AU351, aU61, aU41, U41] > aU323 > [U112, U62]
x2 > [AU313, AU323, AU333, AU343] > [AU123, tt, AU133, aisNatKind, AU143, AU151, AISNAT1, plus2, AU113, s1, AU212, AU221, AU351, aU61, aU41, U41] > aU122 > U123 > [U112, U62]
x2 > [AU313, AU323, AU333, AU343] > [AU123, tt, AU133, aisNatKind, AU143, AU151, AISNAT1, plus2, AU113, s1, AU212, AU221, AU351, aU61, aU41, U41] > aU13 > [U112, U62]
x2 > [AU313, AU323, AU333, AU343] > [AU123, tt, AU133, aisNatKind, AU143, AU151, AISNAT1, plus2, AU113, s1, AU212, AU221, AU351, aU61, aU41, U41] > isNatKind > [U112, U62]
x2 > [AU313, AU323, AU333, AU343] > [AU123, tt, AU133, aisNatKind, AU143, AU151, AISNAT1, plus2, AU113, s1, AU212, AU221, AU351, aU61, aU41, U41] > U61 > [U112, U62]
x2 > aU313 > aU323 > [U112, U62]
0 > [U112, U62]
isNat > [U112, U62]
U222 > [U112, U62]
U212 > [U112, U62]
U152 > [U112, U62]
U231 > [U112, U62]
U36 > [U112, U62]
U342 > [U112, U62]


The following usable rules [FROCOS05] were oriented:

a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U62(tt) → tt
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatKind(X) → isNatKind(X)
a__U41(X1, X2) → U41(X1, X2)
a__U62(X) → U62(X)
a__U61(X1, X2) → U61(X1, X2)
a__U51(X) → U51(X)
a__U42(X) → U42(X)

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V1, V2) → A__U13(a__isNatKind(V2), V1, V2)
A__U13(tt, V1, V2) → A__U14(a__isNatKind(V2), V1, V2)
A__U15(tt, V2) → A__ISNAT(V2)
A__U11(tt, V1, V2) → A__U12(a__isNatKind(V1), V1, V2)
A__U22(tt, V1) → A__ISNAT(V1)
A__U31(tt, V1, V2) → A__U32(a__isNatKind(V1), V1, V2)
A__U32(tt, V1, V2) → A__U33(a__isNatKind(V2), V1, V2)
A__U33(tt, V1, V2) → A__U34(a__isNatKind(V2), V1, V2)
A__U35(tt, V2) → A__ISNAT(V2)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 9 less nodes.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U102(tt, M, N) → A__U103(a__isNat(N), M, N)
A__U103(tt, M, N) → A__U104(a__isNatKind(N), M, N)
A__U104(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__PLUS(N, 0) → A__U71(a__isNat(N), N)
A__U71(tt, N) → A__U72(a__isNatKind(N), N)
A__U72(tt, N) → MARK(N)
MARK(U101(X1, X2, X3)) → A__U101(mark(X1), X2, X3)
A__U101(tt, M, N) → A__U102(a__isNatKind(M), M, N)
MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(U102(X1, X2, X3)) → A__U102(mark(X1), X2, X3)
MARK(U102(X1, X2, X3)) → MARK(X1)
MARK(U103(X1, X2, X3)) → A__U103(mark(X1), X2, X3)
MARK(U103(X1, X2, X3)) → MARK(X1)
MARK(U104(X1, X2, X3)) → A__U104(mark(X1), X2, X3)
A__U104(tt, M, N) → A__X(mark(N), mark(M))
A__X(N, s(M)) → A__U101(a__isNat(M), M, N)
A__U104(tt, M, N) → MARK(N)
MARK(U104(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(N, s(M)) → A__U81(a__isNat(M), M, N)
A__U81(tt, M, N) → A__U82(a__isNatKind(M), M, N)
A__U82(tt, M, N) → A__U83(a__isNat(N), M, N)
A__U83(tt, M, N) → A__U84(a__isNatKind(N), M, N)
A__U84(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U84(tt, M, N) → MARK(N)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U36(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(U81(X1, X2, X3)) → A__U81(mark(X1), X2, X3)
MARK(U81(X1, X2, X3)) → MARK(X1)
MARK(U82(X1, X2, X3)) → A__U82(mark(X1), X2, X3)
MARK(U82(X1, X2, X3)) → MARK(X1)
MARK(U83(X1, X2, X3)) → A__U83(mark(X1), X2, X3)
MARK(U83(X1, X2, X3)) → MARK(X1)
MARK(U84(X1, X2, X3)) → A__U84(mark(X1), X2, X3)
A__U84(tt, M, N) → MARK(M)
MARK(U84(X1, X2, X3)) → MARK(X1)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)
MARK(s(X)) → MARK(X)
A__U104(tt, M, N) → MARK(M)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U104(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__PLUS(N, 0) → A__U71(a__isNat(N), N)
A__U71(tt, N) → A__U72(a__isNatKind(N), N)
MARK(U101(X1, X2, X3)) → A__U101(mark(X1), X2, X3)
MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(U102(X1, X2, X3)) → A__U102(mark(X1), X2, X3)
MARK(U102(X1, X2, X3)) → MARK(X1)
MARK(U103(X1, X2, X3)) → A__U103(mark(X1), X2, X3)
MARK(U103(X1, X2, X3)) → MARK(X1)
MARK(U104(X1, X2, X3)) → A__U104(mark(X1), X2, X3)
A__U104(tt, M, N) → A__X(mark(N), mark(M))
A__X(N, s(M)) → A__U101(a__isNat(M), M, N)
A__U104(tt, M, N) → MARK(N)
MARK(U104(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(N, s(M)) → A__U81(a__isNat(M), M, N)
A__U82(tt, M, N) → A__U83(a__isNat(N), M, N)
A__U84(tt, M, N) → MARK(N)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(U81(X1, X2, X3)) → A__U81(mark(X1), X2, X3)
MARK(U81(X1, X2, X3)) → MARK(X1)
MARK(U82(X1, X2, X3)) → A__U82(mark(X1), X2, X3)
MARK(U82(X1, X2, X3)) → MARK(X1)
MARK(U83(X1, X2, X3)) → A__U83(mark(X1), X2, X3)
MARK(U83(X1, X2, X3)) → MARK(X1)
MARK(U84(X1, X2, X3)) → A__U84(mark(X1), X2, X3)
A__U84(tt, M, N) → MARK(M)
MARK(U84(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__U104(tt, M, N) → MARK(M)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U102(x1, x2, x3)  =  A__U102(x1, x2, x3)
tt  =  tt
A__U103(x1, x2, x3)  =  A__U103(x1, x2, x3)
a__isNat(x1)  =  a__isNat
A__U104(x1, x2, x3)  =  A__U104(x1, x2, x3)
a__isNatKind(x1)  =  a__isNatKind
A__PLUS(x1, x2)  =  A__PLUS(x1, x2)
a__x(x1, x2)  =  a__x(x1, x2)
mark(x1)  =  x1
0  =  0
A__U71(x1, x2)  =  A__U71(x1, x2)
A__U72(x1, x2)  =  A__U72(x2)
MARK(x1)  =  MARK(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
A__U101(x1, x2, x3)  =  A__U101(x1, x2, x3)
U102(x1, x2, x3)  =  U102(x1, x2, x3)
U103(x1, x2, x3)  =  U103(x1, x2, x3)
U104(x1, x2, x3)  =  U104(x1, x2, x3)
A__X(x1, x2)  =  A__X(x1, x2)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
A__U81(x1, x2, x3)  =  A__U81(x1, x2, x3)
A__U82(x1, x2, x3)  =  A__U82(x1, x2, x3)
A__U83(x1, x2, x3)  =  A__U83(x2, x3)
A__U84(x1, x2, x3)  =  A__U84(x2, x3)
x(x1, x2)  =  x(x1, x2)
U11(x1, x2, x3)  =  x1
U12(x1, x2, x3)  =  x1
U13(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  x1
U15(x1, x2)  =  x1
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U31(x1, x2, x3)  =  x1
U32(x1, x2, x3)  =  x1
U33(x1, x2, x3)  =  x1
U34(x1, x2, x3)  =  x1
U35(x1, x2)  =  x1
U36(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U62(x1)  =  x1
U71(x1, x2)  =  U71(x1, x2)
U72(x1, x2)  =  U72(x1, x2)
U81(x1, x2, x3)  =  U81(x1, x2, x3)
U82(x1, x2, x3)  =  U82(x1, x2, x3)
U83(x1, x2, x3)  =  U83(x1, x2, x3)
U84(x1, x2, x3)  =  U84(x1, x2, x3)
U91(x1, x2)  =  x1
U92(x1)  =  x1
a__U16(x1)  =  x1
a__U21(x1, x2)  =  x1
a__U22(x1, x2)  =  x1
a__U14(x1, x2, x3)  =  x1
a__U15(x1, x2)  =  x1
a__U31(x1, x2, x3)  =  x1
a__U32(x1, x2, x3)  =  x1
a__U33(x1, x2, x3)  =  x1
a__U23(x1)  =  x1
a__plus(x1, x2)  =  a__plus(x1, x2)
a__U101(x1, x2, x3)  =  a__U101(x1, x2, x3)
a__U72(x1, x2)  =  a__U72(x1, x2)
a__U104(x1, x2, x3)  =  a__U104(x1, x2, x3)
a__U102(x1, x2, x3)  =  a__U102(x1, x2, x3)
a__U103(x1, x2, x3)  =  a__U103(x1, x2, x3)
a__U71(x1, x2)  =  a__U71(x1, x2)
a__U12(x1, x2, x3)  =  x1
a__U13(x1, x2, x3)  =  x1
a__U11(x1, x2, x3)  =  x1
isNat(x1)  =  isNat
a__U42(x1)  =  x1
a__U41(x1, x2)  =  x1
a__U61(x1, x2)  =  x1
a__U51(x1)  =  x1
a__U34(x1, x2, x3)  =  x1
a__U36(x1)  =  x1
a__U35(x1, x2)  =  x1
a__U83(x1, x2, x3)  =  a__U83(x1, x2, x3)
a__U82(x1, x2, x3)  =  a__U82(x1, x2, x3)
a__U91(x1, x2)  =  x1
a__U84(x1, x2, x3)  =  a__U84(x1, x2, x3)
a__U62(x1)  =  x1
a__U81(x1, x2, x3)  =  a__U81(x1, x2, x3)
a__U92(x1)  =  x1
isNatKind(x1)  =  isNatKind

Recursive Path Order [RPO].
Precedence:
[AU1023, AU1033, AU1043, ax2, U1013, AU1013, U1023, U1033, U1043, AX2, x2, aU1013, aU1043, aU1023, aU1033] > [plus2, U813, U823, U833, U843, aplus2, aU833, aU823, aU843, aU813] > s1 > [tt, aisNat, aisNatKind, APLUS2, AU813, AU823, AU832, AU842, isNat, isNatKind] > 0 > [AU712, AU721, MARK1]
[AU1023, AU1033, AU1043, ax2, U1013, AU1013, U1023, U1033, U1043, AX2, x2, aU1013, aU1043, aU1023, aU1033] > [plus2, U813, U823, U833, U843, aplus2, aU833, aU823, aU843, aU813] > s1 > [tt, aisNat, aisNatKind, APLUS2, AU813, AU823, AU832, AU842, isNat, isNatKind] > 0 > [U712, aU712] > [U722, aU722]


The following usable rules [FROCOS05] were oriented:

a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
a__U72(tt, N) → mark(N)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U51(X)) → a__U51(mark(X))
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U36(X)) → a__U36(mark(X))
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U62(X)) → a__U62(mark(X))
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U62(tt) → tt
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(0) → tt
a__U92(tt) → 0
mark(isNatKind(X)) → a__isNatKind(X)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__U21(X1, X2) → U21(X1, X2)
a__U16(X) → U16(X)
a__U15(X1, X2) → U15(X1, X2)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U23(X) → U23(X)
a__U41(X1, X2) → U41(X1, X2)
a__U36(X) → U36(X)
a__U35(X1, X2) → U35(X1, X2)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U62(X) → U62(X)
a__U61(X1, X2) → U61(X1, X2)
a__U51(X) → U51(X)
a__U42(X) → U42(X)

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U102(tt, M, N) → A__U103(a__isNat(N), M, N)
A__U103(tt, M, N) → A__U104(a__isNatKind(N), M, N)
A__U72(tt, N) → MARK(N)
A__U101(tt, M, N) → A__U102(a__isNatKind(M), M, N)
A__U81(tt, M, N) → A__U82(a__isNatKind(M), M, N)
A__U83(tt, M, N) → A__U84(a__isNatKind(N), M, N)
A__U84(tt, M, N) → A__PLUS(mark(N), mark(M))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U36(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 7 less nodes.

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U36(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U36(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U91(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U12(x1, x2, x3)  =  U12(x1)
U11(x1, x2, x3)  =  x1
U13(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  x1
U15(x1, x2)  =  U15(x1, x2)
U16(x1)  =  U16(x1)
U21(x1, x2)  =  U21(x1, x2)
U22(x1, x2)  =  x1
U23(x1)  =  U23(x1)
U31(x1, x2, x3)  =  x1
U32(x1, x2, x3)  =  x1
U33(x1, x2, x3)  =  x1
U34(x1, x2, x3)  =  x1
U35(x1, x2)  =  x1
U36(x1)  =  U36(x1)
U41(x1, x2)  =  U41(x1, x2)
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U62(x1)  =  x1
U91(x1, x2)  =  U91(x1, x2)
U92(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
[MARK1, U152]


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U22(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U11(x1, x2, x3)  =  x1
U13(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  x1
U22(x1, x2)  =  U22(x1)
U31(x1, x2, x3)  =  x1
U32(x1, x2, x3)  =  x1
U33(x1, x2, x3)  =  x1
U34(x1, x2, x3)  =  x1
U35(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U62(x1)  =  x1
U92(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U221 > MARK1


The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U31(X1, X2, X3)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U11(x1, x2, x3)  =  x1
U13(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  x1
U31(x1, x2, x3)  =  U31(x1, x2, x3)
U32(x1, x2, x3)  =  x1
U33(x1, x2, x3)  =  x1
U34(x1, x2, x3)  =  x1
U35(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U62(x1)  =  x1
U92(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U313 > MARK1


The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U11(x1, x2, x3)  =  x1
U13(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  x1
U32(x1, x2, x3)  =  x1
U33(x1, x2, x3)  =  x1
U34(x1, x2, x3)  =  U34(x1, x2, x3)
U35(x1, x2)  =  U35(x1, x2)
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)
U62(x1)  =  U62(x1)
U92(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial


The following usable rules [FROCOS05] were oriented: none

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U11(x1, x2, x3)  =  U11(x1, x2)
U13(x1, x2, x3)  =  U13(x1)
U14(x1, x2, x3)  =  x1
U32(x1, x2, x3)  =  x1
U33(x1, x2, x3)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U92(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U112 > [MARK1, U131]


The following usable rules [FROCOS05] were oriented: none

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U32(X1, X2, X3)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U14(x1, x2, x3)  =  x1
U32(x1, x2, x3)  =  U32(x1, x2, x3)
U33(x1, x2, x3)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U92(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U323 > MARK1


The following usable rules [FROCOS05] were oriented: none

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U14(X1, X2, X3)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U14(x1, x2, x3)  =  U14(x1, x2, x3)
U33(x1, x2, x3)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U92(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U143 > MARK1


The following usable rules [FROCOS05] were oriented: none

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U33(X1, X2, X3)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U33(x1, x2, x3)  =  U33(x1, x2, x3)
U42(x1)  =  x1
U51(x1)  =  x1
U92(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U333 > MARK1


The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U42(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U42(x1)  =  U42(x1)
U51(x1)  =  x1
U92(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U421 > MARK1


The following usable rules [FROCOS05] were oriented: none

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U51(X)) → MARK(X)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U51(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U51(x1)  =  U51(x1)
U92(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
[MARK1, U511]


The following usable rules [FROCOS05] were oriented: none

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U92(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
U921 > MARK1


The following usable rules [FROCOS05] were oriented: none

(41) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(43) TRUE