(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNat(V1), V2))
ACTIVE(U11(tt, V1, V2)) → U121(isNat(V1), V2)
ACTIVE(U11(tt, V1, V2)) → ISNAT(V1)
ACTIVE(U12(tt, V2)) → MARK(U13(isNat(V2)))
ACTIVE(U12(tt, V2)) → U131(isNat(V2))
ACTIVE(U12(tt, V2)) → ISNAT(V2)
ACTIVE(U13(tt)) → MARK(tt)
ACTIVE(U21(tt, V1)) → MARK(U22(isNat(V1)))
ACTIVE(U21(tt, V1)) → U221(isNat(V1))
ACTIVE(U21(tt, V1)) → ISNAT(V1)
ACTIVE(U22(tt)) → MARK(tt)
ACTIVE(U31(tt, V1, V2)) → MARK(U32(isNat(V1), V2))
ACTIVE(U31(tt, V1, V2)) → U321(isNat(V1), V2)
ACTIVE(U31(tt, V1, V2)) → ISNAT(V1)
ACTIVE(U32(tt, V2)) → MARK(U33(isNat(V2)))
ACTIVE(U32(tt, V2)) → U331(isNat(V2))
ACTIVE(U32(tt, V2)) → ISNAT(V2)
ACTIVE(U33(tt)) → MARK(tt)
ACTIVE(U41(tt, N)) → MARK(N)
ACTIVE(U51(tt, M, N)) → MARK(s(plus(N, M)))
ACTIVE(U51(tt, M, N)) → S(plus(N, M))
ACTIVE(U51(tt, M, N)) → PLUS(N, M)
ACTIVE(U61(tt)) → MARK(0)
ACTIVE(U71(tt, M, N)) → MARK(plus(x(N, M), N))
ACTIVE(U71(tt, M, N)) → PLUS(x(N, M), N)
ACTIVE(U71(tt, M, N)) → X(N, M)
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(isNat(0)) → MARK(tt)
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
ACTIVE(isNat(plus(V1, V2))) → U111(and(isNatKind(V1), isNatKind(V2)), V1, V2)
ACTIVE(isNat(plus(V1, V2))) → AND(isNatKind(V1), isNatKind(V2))
ACTIVE(isNat(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNat(plus(V1, V2))) → ISNATKIND(V2)
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
ACTIVE(isNat(s(V1))) → U211(isNatKind(V1), V1)
ACTIVE(isNat(s(V1))) → ISNATKIND(V1)
ACTIVE(isNat(x(V1, V2))) → MARK(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
ACTIVE(isNat(x(V1, V2))) → U311(and(isNatKind(V1), isNatKind(V2)), V1, V2)
ACTIVE(isNat(x(V1, V2))) → AND(isNatKind(V1), isNatKind(V2))
ACTIVE(isNat(x(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNat(x(V1, V2))) → ISNATKIND(V2)
ACTIVE(isNatKind(0)) → MARK(tt)
ACTIVE(isNatKind(plus(V1, V2))) → MARK(and(isNatKind(V1), isNatKind(V2)))
ACTIVE(isNatKind(plus(V1, V2))) → AND(isNatKind(V1), isNatKind(V2))
ACTIVE(isNatKind(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatKind(plus(V1, V2))) → ISNATKIND(V2)
ACTIVE(isNatKind(s(V1))) → MARK(isNatKind(V1))
ACTIVE(isNatKind(s(V1))) → ISNATKIND(V1)
ACTIVE(isNatKind(x(V1, V2))) → MARK(and(isNatKind(V1), isNatKind(V2)))
ACTIVE(isNatKind(x(V1, V2))) → AND(isNatKind(V1), isNatKind(V2))
ACTIVE(isNatKind(x(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatKind(x(V1, V2))) → ISNATKIND(V2)
ACTIVE(plus(N, 0)) → MARK(U41(and(isNat(N), isNatKind(N)), N))
ACTIVE(plus(N, 0)) → U411(and(isNat(N), isNatKind(N)), N)
ACTIVE(plus(N, 0)) → AND(isNat(N), isNatKind(N))
ACTIVE(plus(N, 0)) → ISNAT(N)
ACTIVE(plus(N, 0)) → ISNATKIND(N)
ACTIVE(plus(N, s(M))) → MARK(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
ACTIVE(plus(N, s(M))) → U511(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
ACTIVE(plus(N, s(M))) → AND(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
ACTIVE(plus(N, s(M))) → AND(isNat(M), isNatKind(M))
ACTIVE(plus(N, s(M))) → ISNAT(M)
ACTIVE(plus(N, s(M))) → ISNATKIND(M)
ACTIVE(plus(N, s(M))) → AND(isNat(N), isNatKind(N))
ACTIVE(plus(N, s(M))) → ISNAT(N)
ACTIVE(plus(N, s(M))) → ISNATKIND(N)
ACTIVE(x(N, 0)) → MARK(U61(and(isNat(N), isNatKind(N))))
ACTIVE(x(N, 0)) → U611(and(isNat(N), isNatKind(N)))
ACTIVE(x(N, 0)) → AND(isNat(N), isNatKind(N))
ACTIVE(x(N, 0)) → ISNAT(N)
ACTIVE(x(N, 0)) → ISNATKIND(N)
ACTIVE(x(N, s(M))) → MARK(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
ACTIVE(x(N, s(M))) → U711(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
ACTIVE(x(N, s(M))) → AND(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
ACTIVE(x(N, s(M))) → AND(isNat(M), isNatKind(M))
ACTIVE(x(N, s(M))) → ISNAT(M)
ACTIVE(x(N, s(M))) → ISNATKIND(M)
ACTIVE(x(N, s(M))) → AND(isNat(N), isNatKind(N))
ACTIVE(x(N, s(M))) → ISNAT(N)
ACTIVE(x(N, s(M))) → ISNATKIND(N)
MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
MARK(U11(X1, X2, X3)) → U111(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(U12(X1, X2)) → ACTIVE(U12(mark(X1), X2))
MARK(U12(X1, X2)) → U121(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U13(X)) → ACTIVE(U13(mark(X)))
MARK(U13(X)) → U131(mark(X))
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → U211(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → ACTIVE(U22(mark(X)))
MARK(U22(X)) → U221(mark(X))
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → ACTIVE(U31(mark(X1), X2, X3))
MARK(U31(X1, X2, X3)) → U311(mark(X1), X2, X3)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2)) → ACTIVE(U32(mark(X1), X2))
MARK(U32(X1, X2)) → U321(mark(X1), X2)
MARK(U32(X1, X2)) → MARK(X1)
MARK(U33(X)) → ACTIVE(U33(mark(X)))
MARK(U33(X)) → U331(mark(X))
MARK(U33(X)) → MARK(X)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(U41(X1, X2)) → U411(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
MARK(U51(X1, X2, X3)) → U511(mark(X1), X2, X3)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
MARK(plus(X1, X2)) → PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(U61(X)) → ACTIVE(U61(mark(X)))
MARK(U61(X)) → U611(mark(X))
MARK(U61(X)) → MARK(X)
MARK(0) → ACTIVE(0)
MARK(U71(X1, X2, X3)) → ACTIVE(U71(mark(X1), X2, X3))
MARK(U71(X1, X2, X3)) → U711(mark(X1), X2, X3)
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))
MARK(x(X1, X2)) → X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)
U121(mark(X1), X2) → U121(X1, X2)
U121(X1, mark(X2)) → U121(X1, X2)
U121(active(X1), X2) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)
ISNAT(mark(X)) → ISNAT(X)
ISNAT(active(X)) → ISNAT(X)
U131(mark(X)) → U131(X)
U131(active(X)) → U131(X)
U211(mark(X1), X2) → U211(X1, X2)
U211(X1, mark(X2)) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)
U221(mark(X)) → U221(X)
U221(active(X)) → U221(X)
U311(mark(X1), X2, X3) → U311(X1, X2, X3)
U311(X1, mark(X2), X3) → U311(X1, X2, X3)
U311(X1, X2, mark(X3)) → U311(X1, X2, X3)
U311(active(X1), X2, X3) → U311(X1, X2, X3)
U311(X1, active(X2), X3) → U311(X1, X2, X3)
U311(X1, X2, active(X3)) → U311(X1, X2, X3)
U321(mark(X1), X2) → U321(X1, X2)
U321(X1, mark(X2)) → U321(X1, X2)
U321(active(X1), X2) → U321(X1, X2)
U321(X1, active(X2)) → U321(X1, X2)
U331(mark(X)) → U331(X)
U331(active(X)) → U331(X)
U411(mark(X1), X2) → U411(X1, X2)
U411(X1, mark(X2)) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
U411(X1, active(X2)) → U411(X1, X2)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, mark(X3)) → U511(X1, X2, X3)
U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)
S(mark(X)) → S(X)
S(active(X)) → S(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)
U611(mark(X)) → U611(X)
U611(active(X)) → U611(X)
U711(mark(X1), X2, X3) → U711(X1, X2, X3)
U711(X1, mark(X2), X3) → U711(X1, X2, X3)
U711(X1, X2, mark(X3)) → U711(X1, X2, X3)
U711(active(X1), X2, X3) → U711(X1, X2, X3)
U711(X1, active(X2), X3) → U711(X1, X2, X3)
U711(X1, X2, active(X3)) → U711(X1, X2, X3)
X(mark(X1), X2) → X(X1, X2)
X(X1, mark(X2)) → X(X1, X2)
X(active(X1), X2) → X(X1, X2)
X(X1, active(X2)) → X(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
ISNATKIND(mark(X)) → ISNATKIND(X)
ISNATKIND(active(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 19 SCCs with 79 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(active(X)) → ISNATKIND(X)
ISNATKIND(mark(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(X1, mark(X2)) → X(X1, X2)
X(mark(X1), X2) → X(X1, X2)
X(active(X1), X2) → X(X1, X2)
X(X1, active(X2)) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(X1, mark(X2), X3) → U711(X1, X2, X3)
U711(mark(X1), X2, X3) → U711(X1, X2, X3)
U711(X1, X2, mark(X3)) → U711(X1, X2, X3)
U711(active(X1), X2, X3) → U711(X1, X2, X3)
U711(X1, active(X2), X3) → U711(X1, X2, X3)
U711(X1, X2, active(X3)) → U711(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(active(X)) → U611(X)
U611(mark(X)) → U611(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(active(X1), X2) → PLUS(X1, X2)
PLUS(X1, active(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, X2, mark(X3)) → U511(X1, X2, X3)
U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(X1, mark(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
U411(X1, active(X2)) → U411(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U331(active(X)) → U331(X)
U331(mark(X)) → U331(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(X1, mark(X2)) → U321(X1, X2)
U321(mark(X1), X2) → U321(X1, X2)
U321(active(X1), X2) → U321(X1, X2)
U321(X1, active(X2)) → U321(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2), X3) → U311(X1, X2, X3)
U311(mark(X1), X2, X3) → U311(X1, X2, X3)
U311(X1, X2, mark(X3)) → U311(X1, X2, X3)
U311(active(X1), X2, X3) → U311(X1, X2, X3)
U311(X1, active(X2), X3) → U311(X1, X2, X3)
U311(X1, X2, active(X3)) → U311(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(active(X)) → U221(X)
U221(mark(X)) → U221(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(active(X)) → U131(X)
U131(mark(X)) → U131(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, mark(X2)) → U121(X1, X2)
U121(mark(X1), X2) → U121(X1, X2)
U121(active(X1), X2) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNat(V1), V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → ACTIVE(U12(mark(X1), X2))
ACTIVE(U12(tt, V2)) → MARK(U13(isNat(V2)))
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U21(tt, V1)) → MARK(U22(isNat(V1)))
MARK(U13(X)) → ACTIVE(U13(mark(X)))
ACTIVE(U31(tt, V1, V2)) → MARK(U32(isNat(V1), V2))
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U32(tt, V2)) → MARK(U33(isNat(V2)))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → ACTIVE(U22(mark(X)))
ACTIVE(U41(tt, N)) → MARK(N)
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → ACTIVE(U31(mark(X1), X2, X3))
ACTIVE(U51(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2)) → ACTIVE(U32(mark(X1), X2))
ACTIVE(U71(tt, M, N)) → MARK(plus(x(N, M), N))
MARK(U32(X1, X2)) → MARK(X1)
MARK(U33(X)) → ACTIVE(U33(mark(X)))
ACTIVE(and(tt, X)) → MARK(X)
MARK(U33(X)) → MARK(X)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
MARK(U41(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(isNat(x(V1, V2))) → MARK(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(and(isNatKind(V1), isNatKind(V2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(U61(X)) → ACTIVE(U61(mark(X)))
ACTIVE(isNatKind(s(V1))) → MARK(isNatKind(V1))
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → ACTIVE(U71(mark(X1), X2, X3))
ACTIVE(isNatKind(x(V1, V2))) → MARK(and(isNatKind(V1), isNatKind(V2)))
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))
ACTIVE(plus(N, 0)) → MARK(U41(and(isNat(N), isNatKind(N)), N))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(plus(N, s(M))) → MARK(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(x(N, 0)) → MARK(U61(and(isNat(N), isNatKind(N))))
ACTIVE(x(N, s(M))) → MARK(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
U11(x1, x2, x3)  =  U11
ACTIVE(x1)  =  x1
mark(x1)  =  mark
tt  =  tt
U12(x1, x2)  =  U12
isNat(x1)  =  isNat
U13(x1)  =  U13
U21(x1, x2)  =  U21
U22(x1)  =  U22
U31(x1, x2, x3)  =  U31
U32(x1, x2)  =  U32
U33(x1)  =  U33
U41(x1, x2)  =  U41
U51(x1, x2, x3)  =  U51
s(x1)  =  s
plus(x1, x2)  =  plus
U71(x1, x2, x3)  =  U71
x(x1, x2)  =  x
and(x1, x2)  =  and
isNatKind(x1)  =  isNatKind
U61(x1)  =  U61
0  =  0
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[MARK, U11, mark, tt, U12, isNat, U13, U21, U22, U31, U32, U33, U41, U51, plus, U71, x, and, isNatKind, U61, 0] > s

Status:
MARK: multiset
U11: multiset
mark: multiset
tt: multiset
U12: multiset
isNat: multiset
U13: multiset
U21: multiset
U22: multiset
U31: multiset
U32: multiset
U33: multiset
U41: multiset
U51: multiset
s: multiset
plus: multiset
U71: multiset
x: multiset
and: multiset
isNatKind: multiset
U61: multiset
0: multiset


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNat(V1), V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → ACTIVE(U12(mark(X1), X2))
ACTIVE(U12(tt, V2)) → MARK(U13(isNat(V2)))
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U21(tt, V1)) → MARK(U22(isNat(V1)))
MARK(U13(X)) → ACTIVE(U13(mark(X)))
ACTIVE(U31(tt, V1, V2)) → MARK(U32(isNat(V1), V2))
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U32(tt, V2)) → MARK(U33(isNat(V2)))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → ACTIVE(U22(mark(X)))
ACTIVE(U41(tt, N)) → MARK(N)
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → ACTIVE(U31(mark(X1), X2, X3))
ACTIVE(U51(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2)) → ACTIVE(U32(mark(X1), X2))
ACTIVE(U71(tt, M, N)) → MARK(plus(x(N, M), N))
MARK(U32(X1, X2)) → MARK(X1)
MARK(U33(X)) → ACTIVE(U33(mark(X)))
ACTIVE(and(tt, X)) → MARK(X)
MARK(U33(X)) → MARK(X)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
MARK(U41(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U51(X1, X2, X3)) → MARK(X1)
ACTIVE(isNat(x(V1, V2))) → MARK(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(and(isNatKind(V1), isNatKind(V2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(U61(X)) → ACTIVE(U61(mark(X)))
ACTIVE(isNatKind(s(V1))) → MARK(isNatKind(V1))
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → ACTIVE(U71(mark(X1), X2, X3))
ACTIVE(isNatKind(x(V1, V2))) → MARK(and(isNatKind(V1), isNatKind(V2)))
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))
ACTIVE(plus(N, 0)) → MARK(U41(and(isNat(N), isNatKind(N)), N))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(plus(N, s(M))) → MARK(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(x(N, 0)) → MARK(U61(and(isNat(N), isNatKind(N))))
ACTIVE(x(N, s(M))) → MARK(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U11(tt, V1, V2)) → MARK(U12(isNat(V1), V2))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → ACTIVE(U12(mark(X1), X2))
ACTIVE(U12(tt, V2)) → MARK(U13(isNat(V2)))
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U21(tt, V1)) → MARK(U22(isNat(V1)))
MARK(U13(X)) → ACTIVE(U13(mark(X)))
ACTIVE(U31(tt, V1, V2)) → MARK(U32(isNat(V1), V2))
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U32(tt, V2)) → MARK(U33(isNat(V2)))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → ACTIVE(U22(mark(X)))
ACTIVE(U41(tt, N)) → MARK(N)
MARK(U31(X1, X2, X3)) → ACTIVE(U31(mark(X1), X2, X3))
ACTIVE(U51(tt, M, N)) → MARK(s(plus(N, M)))
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2)) → ACTIVE(U32(mark(X1), X2))
ACTIVE(U71(tt, M, N)) → MARK(plus(x(N, M), N))
MARK(U32(X1, X2)) → MARK(X1)
MARK(U33(X)) → ACTIVE(U33(mark(X)))
ACTIVE(and(tt, X)) → MARK(X)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
ACTIVE(isNat(plus(V1, V2))) → MARK(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
MARK(U41(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U51(X1, X2, X3)) → MARK(X1)
ACTIVE(isNat(x(V1, V2))) → MARK(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → ACTIVE(plus(mark(X1), mark(X2)))
ACTIVE(isNatKind(plus(V1, V2))) → MARK(and(isNatKind(V1), isNatKind(V2)))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(U61(X)) → ACTIVE(U61(mark(X)))
ACTIVE(isNatKind(s(V1))) → MARK(isNatKind(V1))
MARK(U71(X1, X2, X3)) → ACTIVE(U71(mark(X1), X2, X3))
ACTIVE(isNatKind(x(V1, V2))) → MARK(and(isNatKind(V1), isNatKind(V2)))
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → ACTIVE(x(mark(X1), mark(X2)))
ACTIVE(plus(N, 0)) → MARK(U41(and(isNat(N), isNatKind(N)), N))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(plus(N, s(M))) → MARK(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
ACTIVE(x(N, 0)) → MARK(U61(and(isNat(N), isNatKind(N))))
ACTIVE(x(N, s(M))) → MARK(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
ACTIVE(x1)  =  ACTIVE(x1)
mark(x1)  =  x1
tt  =  tt
U12(x1, x2)  =  U12(x1, x2)
isNat(x1)  =  isNat(x1)
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  x1
U31(x1, x2, x3)  =  U31(x1, x2, x3)
U32(x1, x2)  =  U32(x1, x2)
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind(x1)
U61(x1)  =  x1
0  =  0
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U713, x2] > U313 > U322 > [MARK1, U412, and2] > [tt, U131, 0] > isNat1 > ACTIVE1
[U713, x2] > [U513, plus2] > U113 > U122 > [MARK1, U412, and2] > [tt, U131, 0] > isNat1 > ACTIVE1
[U713, x2] > [U513, plus2] > s1 > U212 > [MARK1, U412, and2] > [tt, U131, 0] > isNat1 > ACTIVE1
[U713, x2] > [U513, plus2] > s1 > isNatKind1 > [MARK1, U412, and2] > [tt, U131, 0] > isNat1 > ACTIVE1

Status:
MARK1: multiset
U113: [2,3,1]
ACTIVE1: [1]
tt: multiset
U122: [1,2]
isNat1: [1]
U131: [1]
U212: [2,1]
U313: multiset
U322: multiset
U412: multiset
U513: [2,3,1]
s1: [1]
plus2: [2,1]
U713: [2,3,1]
x2: [2,1]
and2: multiset
isNatKind1: [1]
0: multiset


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U22(X)) → MARK(X)
MARK(U33(X)) → MARK(X)
MARK(U61(X)) → MARK(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U61(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U22(x1)  =  x1
U33(x1)  =  x1
U61(x1)  =  U61(x1)
active(x1)  =  x1
U11(x1, x2, x3)  =  U11
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  U12
isNat(x1)  =  isNat
U13(x1)  =  U13
U21(x1, x2)  =  U21
U31(x1, x2, x3)  =  U31
U32(x1, x2)  =  U32
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  x3
s(x1)  =  x1
plus(x1, x2)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x3)
x(x1, x2)  =  x(x1)
and(x1, x2)  =  x2
isNatKind(x1)  =  isNatKind

Recursive path order with status [RPO].
Quasi-Precedence:
[isNat, U21, U31, U32] > [U11, U12] > U13 > [tt, isNatKind]
[U711, x1] > [U611, 0] > MARK1
[U711, x1] > [U611, 0] > [tt, isNatKind]

Status:
MARK1: multiset
U611: [1]
U11: multiset
tt: multiset
U12: multiset
isNat: []
U13: []
U21: []
U31: []
U32: []
0: multiset
U711: multiset
x1: multiset
isNatKind: multiset


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U22(X)) → MARK(X)
MARK(U33(X)) → MARK(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U33(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U22(x1)  =  x1
U33(x1)  =  U33(x1)
active(x1)  =  x1
U11(x1, x2, x3)  =  x1
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  U12
isNat(x1)  =  isNat(x1)
U13(x1)  =  U13
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2, x3)  =  U31(x2, x3)
U32(x1, x2)  =  U32(x1, x2)
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  x2
isNatKind(x1)  =  isNatKind(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[tt, U12, U13, U312, 0, U713, x2] > [isNat1, U212, U322] > isNatKind1 > [MARK1, U331]
[tt, U12, U13, U312, 0, U713, x2] > [U513, plus2] > s1 > [MARK1, U331]
[tt, U12, U13, U312, 0, U713, x2] > [U513, plus2] > isNatKind1 > [MARK1, U331]
[tt, U12, U13, U312, 0, U713, x2] > U611 > [MARK1, U331]

Status:
MARK1: multiset
U331: multiset
tt: multiset
U12: multiset
isNat1: [1]
U13: multiset
U212: [2,1]
U312: [1,2]
U322: [2,1]
U513: [2,3,1]
s1: multiset
plus2: [2,1]
U611: multiset
0: multiset
U713: [3,2,1]
x2: [1,2]
isNatKind1: [1]


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U22(X)) → MARK(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U22(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U22(x1)  =  U22(x1)
active(x1)  =  x1
U11(x1, x2, x3)  =  U11(x2, x3)
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  U12(x2)
isNat(x1)  =  isNat(x1)
U13(x1)  =  U13
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2, x3)  =  U31(x1, x2, x3)
U32(x1, x2)  =  U32
U33(x1)  =  U33
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  x2
isNatKind(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[isNat1, U212, U313, U32] > [U112, U121] > U13 > [U221, tt] > s1
[isNat1, U212, U313, U32] > U33 > [U221, tt] > s1
[U611, U713, x2] > [U513, plus2] > s1
[U611, U713, x2] > 0 > [U221, tt] > s1

Status:
U221: multiset
U112: [2,1]
tt: multiset
U121: [1]
isNat1: [1]
U13: multiset
U212: [2,1]
U313: [3,1,2]
U32: []
U33: multiset
U513: [2,3,1]
s1: multiset
plus2: [2,1]
U611: [1]
0: multiset
U713: [3,2,1]
x2: [1,2]


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

(33) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(U13(X)) → active(U13(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(U31(X1, X2, X3)) → active(U31(mark(X1), X2, X3))
mark(U32(X1, X2)) → active(U32(mark(X1), X2))
mark(U33(X)) → active(U33(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(s(X)) → active(s(mark(X)))
mark(plus(X1, X2)) → active(plus(mark(X1), mark(X2)))
mark(U61(X)) → active(U61(mark(X)))
mark(0) → active(0)
mark(U71(X1, X2, X3)) → active(U71(mark(X1), X2, X3))
mark(x(X1, X2)) → active(x(mark(X1), mark(X2)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatKind(X)) → active(isNatKind(X))
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U13(mark(X)) → U13(X)
U13(active(X)) → U13(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(mark(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, mark(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, mark(X3)) → U31(X1, X2, X3)
U31(active(X1), X2, X3) → U31(X1, X2, X3)
U31(X1, active(X2), X3) → U31(X1, X2, X3)
U31(X1, X2, active(X3)) → U31(X1, X2, X3)
U32(mark(X1), X2) → U32(X1, X2)
U32(X1, mark(X2)) → U32(X1, X2)
U32(active(X1), X2) → U32(X1, X2)
U32(X1, active(X2)) → U32(X1, X2)
U33(mark(X)) → U33(X)
U33(active(X)) → U33(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(mark(X)) → s(X)
s(active(X)) → s(X)
plus(mark(X1), X2) → plus(X1, X2)
plus(X1, mark(X2)) → plus(X1, X2)
plus(active(X1), X2) → plus(X1, X2)
plus(X1, active(X2)) → plus(X1, X2)
U61(mark(X)) → U61(X)
U61(active(X)) → U61(X)
U71(mark(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, mark(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, mark(X3)) → U71(X1, X2, X3)
U71(active(X1), X2, X3) → U71(X1, X2, X3)
U71(X1, active(X2), X3) → U71(X1, X2, X3)
U71(X1, X2, active(X3)) → U71(X1, X2, X3)
x(mark(X1), X2) → x(X1, X2)
x(X1, mark(X2)) → x(X1, X2)
x(active(X1), X2) → x(X1, X2)
x(X1, active(X2)) → x(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(35) TRUE