(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__U12(tt, V2) → A__U13(a__isNat(V2))
A__U12(tt, V2) → A__ISNAT(V2)
A__U21(tt, V1) → A__U22(a__isNat(V1))
A__U21(tt, V1) → A__ISNAT(V1)
A__U31(tt, V1, V2) → A__U32(a__isNat(V1), V2)
A__U31(tt, V1, V2) → A__ISNAT(V1)
A__U32(tt, V2) → A__U33(a__isNat(V2))
A__U32(tt, V2) → A__ISNAT(V2)
A__U41(tt, N) → MARK(N)
A__U51(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U51(tt, M, N) → MARK(N)
A__U51(tt, M, N) → MARK(M)
A__U71(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__U71(tt, M, N) → A__X(mark(N), mark(M))
A__U71(tt, M, N) → MARK(N)
A__U71(tt, M, N) → MARK(M)
A__AND(tt, X) → MARK(X)
A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(x(V1, V2)) → A__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__ISNAT(x(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNAT(x(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(x(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(x(V1, V2)) → A__ISNATKIND(V1)
A__PLUS(N, 0) → A__U41(a__and(a__isNat(N), isNatKind(N)), N)
A__PLUS(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__PLUS(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__PLUS(N, s(M)) → A__ISNAT(M)
A__X(N, 0) → A__U61(a__and(a__isNat(N), isNatKind(N)))
A__X(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__X(N, 0) → A__ISNAT(N)
A__X(N, s(M)) → A__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__X(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__X(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__X(N, s(M)) → A__ISNAT(M)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U13(X)) → A__U13(mark(X))
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → A__U22(mark(X))
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → A__U31(mark(X1), X2, X3)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2)) → A__U32(mark(X1), X2)
MARK(U32(X1, X2)) → MARK(X1)
MARK(U33(X)) → A__U33(mark(X))
MARK(U33(X)) → MARK(X)
MARK(U41(X1, X2)) → A__U41(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(U61(X)) → A__U61(mark(X))
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → A__U71(mark(X1), X2, X3)
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 8 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(x(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(x(V1, V2)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(x(V1, V2)) → A__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U31(tt, V1, V2) → A__U32(a__isNat(V1), V2)
A__U32(tt, V2) → A__ISNAT(V2)
A__ISNAT(x(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNAT(x(V1, V2)) → A__ISNATKIND(V1)
A__U31(tt, V1, V2) → A__ISNAT(V1)
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → A__U31(mark(X1), X2, X3)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2)) → A__U32(mark(X1), X2)
MARK(U32(X1, X2)) → MARK(X1)
MARK(U33(X)) → MARK(X)
MARK(U41(X1, X2)) → A__U41(mark(X1), X2)
A__U41(tt, N) → MARK(N)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
A__U51(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, 0) → A__U41(a__and(a__isNat(N), isNatKind(N)), N)
A__PLUS(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__U51(tt, M, N) → MARK(N)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → A__U71(mark(X1), X2, X3)
A__U71(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__U71(tt, M, N) → A__X(mark(N), mark(M))
A__X(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__X(N, 0) → A__ISNAT(N)
A__X(N, s(M)) → A__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__U71(tt, M, N) → MARK(N)
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
A__X(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__X(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__X(N, s(M)) → A__ISNAT(M)
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(s(X)) → MARK(X)
A__U71(tt, M, N) → MARK(M)
A__U51(tt, M, N) → MARK(M)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(x(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(x(V1, V2)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(x(V1, V2)) → A__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U31(tt, V1, V2) → A__U32(a__isNat(V1), V2)
A__U32(tt, V2) → A__ISNAT(V2)
A__ISNAT(x(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNAT(x(V1, V2)) → A__ISNATKIND(V1)
A__U31(tt, V1, V2) → A__ISNAT(V1)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U31(X1, X2, X3)) → A__U31(mark(X1), X2, X3)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2)) → A__U32(mark(X1), X2)
MARK(U32(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → A__U41(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
A__PLUS(N, 0) → A__U41(a__and(a__isNat(N), isNatKind(N)), N)
A__PLUS(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__U51(tt, M, N) → MARK(N)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
A__U71(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__U71(tt, M, N) → A__X(mark(N), mark(M))
A__X(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__X(N, 0) → A__ISNAT(N)
A__X(N, s(M)) → A__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__U71(tt, M, N) → MARK(N)
MARK(U71(X1, X2, X3)) → MARK(X1)
A__X(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__X(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__X(N, s(M)) → A__ISNAT(M)
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__U71(tt, M, N) → MARK(M)
A__U51(tt, M, N) → MARK(M)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U12(x1, x2)  =  x2
tt  =  tt
A__ISNAT(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
A__U11(x1, x2, x3)  =  A__U11(x1, x2, x3)
a__and(x1, x2)  =  a__and(x1, x2)
a__isNatKind(x1)  =  x1
isNatKind(x1)  =  x1
a__isNat(x1)  =  x1
A__AND(x1, x2)  =  x2
MARK(x1)  =  x1
U11(x1, x2, x3)  =  U11(x1, x2, x3)
mark(x1)  =  x1
U12(x1, x2)  =  U12(x1, x2)
isNat(x1)  =  x1
A__ISNATKIND(x1)  =  x1
s(x1)  =  s(x1)
x(x1, x2)  =  x(x1, x2)
A__U21(x1, x2)  =  x2
A__U31(x1, x2, x3)  =  A__U31(x2, x3)
A__U32(x1, x2)  =  A__U32(x1, x2)
U13(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  x1
U31(x1, x2, x3)  =  U31(x1, x2, x3)
U32(x1, x2)  =  U32(x1, x2)
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
A__U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
A__U51(x1, x2, x3)  =  A__U51(x2, x3)
A__PLUS(x1, x2)  =  A__PLUS(x1, x2)
0  =  0
and(x1, x2)  =  and(x1, x2)
U61(x1)  =  x1
U71(x1, x2, x3)  =  U71(x1, x2, x3)
A__U71(x1, x2, x3)  =  A__U71(x1, x2, x3)
a__x(x1, x2)  =  a__x(x1, x2)
A__X(x1, x2)  =  A__X(x1, x2)
a__U11(x1, x2, x3)  =  a__U11(x1, x2, x3)
a__U12(x1, x2)  =  a__U12(x1, x2)
a__U13(x1)  =  x1
a__U21(x1, x2)  =  a__U21(x1, x2)
a__U22(x1)  =  x1
a__U31(x1, x2, x3)  =  a__U31(x1, x2, x3)
a__U32(x1, x2)  =  a__U32(x1, x2)
a__U33(x1)  =  x1
a__U41(x1, x2)  =  a__U41(x1, x2)
a__U51(x1, x2, x3)  =  a__U51(x1, x2, x3)
a__plus(x1, x2)  =  a__plus(x1, x2)
a__U61(x1)  =  x1
a__U71(x1, x2, x3)  =  a__U71(x1, x2, x3)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[tt, 0] > AU322
[x2, U713, AU713, ax2, AX2, aU713] > [plus2, U513, aU513, aplus2] > [U113, aU113] > AU113
[x2, U713, AU713, ax2, AX2, aU713] > [plus2, U513, aU513, aplus2] > [U113, aU113] > [U122, aU122]
[x2, U713, AU713, ax2, AX2, aU713] > [plus2, U513, aU513, aplus2] > s1 > [U212, aU212]
[x2, U713, AU713, ax2, AX2, aU713] > [plus2, U513, aU513, aplus2] > s1 > [AU512, APLUS2] > [aand2, and2]
[x2, U713, AU713, ax2, AX2, aU713] > [plus2, U513, aU513, aplus2] > [U412, aU412]
[x2, U713, AU713, ax2, AX2, aU713] > [U313, aU313] > AU312 > AU322
[x2, U713, AU713, ax2, AX2, aU713] > [U313, aU313] > [U322, aU322] > AU322

Status:
tt: []
plus2: [2,1]
AU113: [1,3,2]
aand2: [1,2]
U113: [2,3,1]
U122: [1,2]
s1: [1]
x2: [1,2]
AU312: [2,1]
AU322: [1,2]
U212: [1,2]
U313: [3,1,2]
U322: [2,1]
U412: [2,1]
U513: [2,3,1]
AU512: [1,2]
APLUS2: [2,1]
0: []
and2: [1,2]
U713: [3,2,1]
AU713: [3,2,1]
ax2: [1,2]
AX2: [1,2]
aU113: [2,3,1]
aU122: [1,2]
aU212: [1,2]
aU313: [3,1,2]
aU322: [2,1]
aU412: [2,1]
aU513: [2,3,1]
aplus2: [2,1]
aU713: [3,2,1]


The following usable rules [FROCOS05] were oriented:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V2) → A__ISNAT(V2)
A__AND(tt, X) → MARK(X)
MARK(isNat(X)) → A__ISNAT(X)
A__U21(tt, V1) → A__ISNAT(V1)
MARK(U13(X)) → MARK(X)
MARK(U22(X)) → MARK(X)
MARK(U33(X)) → MARK(X)
A__U41(tt, N) → MARK(N)
A__U51(tt, M, N) → A__PLUS(mark(N), mark(M))
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → A__U71(mark(X1), X2, X3)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(isNatKind(X)) → A__ISNATKIND(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 9 less nodes.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U22(X)) → MARK(X)
MARK(U13(X)) → MARK(X)
MARK(U33(X)) → MARK(X)
MARK(U61(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U13(X)) → MARK(X)
MARK(U61(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U22(x1)  =  x1
U13(x1)  =  U13(x1)
U33(x1)  =  x1
U61(x1)  =  U61(x1)
a__U11(x1, x2, x3)  =  a__U11(x1, x3)
tt  =  tt
a__U12(x1, x2)  =  a__U12(x2)
a__isNat(x1)  =  x1
a__U13(x1)  =  a__U13(x1)
a__U21(x1, x2)  =  a__U21(x2)
a__U22(x1)  =  x1
a__U31(x1, x2, x3)  =  a__U31(x1, x3)
a__U32(x1, x2)  =  x2
a__U33(x1)  =  x1
a__U41(x1, x2)  =  x2
mark(x1)  =  x1
a__U51(x1, x2, x3)  =  a__U51(x1, x2, x3)
s(x1)  =  s(x1)
a__plus(x1, x2)  =  a__plus(x1, x2)
a__U61(x1)  =  a__U61(x1)
0  =  0
a__U71(x1, x2, x3)  =  a__U71(x1, x2, x3)
a__x(x1, x2)  =  a__x(x1, x2)
a__and(x1, x2)  =  x2
plus(x1, x2)  =  plus(x1, x2)
a__isNatKind(x1)  =  a__isNatKind
isNatKind(x1)  =  isNatKind
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  x2
isNat(x1)  =  x1
U11(x1, x2, x3)  =  U11(x1, x3)
U12(x1, x2)  =  U12(x2)
U21(x1, x2)  =  U21(x2)
U31(x1, x2, x3)  =  U31(x1, x3)
U32(x1, x2)  =  x2
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U71(x1, x2, x3)  =  U71(x1, x2, x3)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[aU312, aU713, ax2, x2, U312, U713] > [U611, aU611] > 0 > [tt, aisNatKind, isNatKind]
[aU312, aU713, ax2, x2, U312, U713] > [aU513, aplus2, plus2, U513] > [aU112, U112] > [U131, aU121, aU131, U121] > [tt, aisNatKind, isNatKind]
[aU312, aU713, ax2, x2, U312, U713] > [aU513, aplus2, plus2, U513] > [aU211, s1, U211] > [tt, aisNatKind, isNatKind]

Status:
U131: [1]
U611: [1]
aU112: [1,2]
tt: []
aU121: [1]
aU131: [1]
aU211: [1]
aU312: [2,1]
aU513: [2,3,1]
s1: [1]
aplus2: [2,1]
aU611: [1]
0: []
aU713: [2,3,1]
ax2: [2,1]
plus2: [2,1]
aisNatKind: []
isNatKind: []
x2: [2,1]
U112: [1,2]
U121: [1]
U211: [1]
U312: [2,1]
U513: [2,3,1]
U713: [2,3,1]


The following usable rules [FROCOS05] were oriented:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U22(X)) → MARK(X)
MARK(U33(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U22(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U22(x1)  =  U22(x1)
U33(x1)  =  x1
a__U11(x1, x2, x3)  =  a__U11(x2)
tt  =  tt
a__U12(x1, x2)  =  a__U12(x1)
a__isNat(x1)  =  x1
a__U13(x1)  =  a__U13
a__U21(x1, x2)  =  a__U21(x2)
a__U22(x1)  =  a__U22(x1)
a__U31(x1, x2, x3)  =  x3
a__U32(x1, x2)  =  x2
a__U33(x1)  =  x1
a__U41(x1, x2)  =  a__U41(x1, x2)
mark(x1)  =  x1
a__U51(x1, x2, x3)  =  a__U51(x1, x2, x3)
s(x1)  =  s(x1)
a__plus(x1, x2)  =  a__plus(x1, x2)
a__U61(x1)  =  a__U61
0  =  0
a__U71(x1, x2, x3)  =  a__U71(x1, x2, x3)
a__x(x1, x2)  =  a__x(x1, x2)
a__and(x1, x2)  =  x2
plus(x1, x2)  =  plus(x1, x2)
a__isNatKind(x1)  =  a__isNatKind(x1)
isNatKind(x1)  =  isNatKind(x1)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  x2
isNat(x1)  =  x1
U11(x1, x2, x3)  =  U11(x2)
U12(x1, x2)  =  U12(x1)
U13(x1)  =  U13
U21(x1, x2)  =  U21(x2)
U31(x1, x2, x3)  =  x3
U32(x1, x2)  =  x2
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U61(x1)  =  U61
U71(x1, x2, x3)  =  U71(x1, x2, x3)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[aU61, 0, U61] > [tt, aU13, U13] > [aU713, ax2, x2, U713] > [aU513, aplus2, plus2, aisNatKind1, isNatKind1, U513] > [U221, aU211, aU221, s1, U211] > MARK1
[aU61, 0, U61] > [tt, aU13, U13] > [aU713, ax2, x2, U713] > [aU513, aplus2, plus2, aisNatKind1, isNatKind1, U513] > [aU111, aU121, U111, U121]
[aU61, 0, U61] > [tt, aU13, U13] > [aU713, ax2, x2, U713] > [aU513, aplus2, plus2, aisNatKind1, isNatKind1, U513] > [aU412, U412]

Status:
MARK1: [1]
U221: [1]
aU111: [1]
tt: []
aU121: [1]
aU13: []
aU211: [1]
aU221: [1]
aU412: [2,1]
aU513: [3,2,1]
s1: [1]
aplus2: [1,2]
aU61: []
0: []
aU713: [3,2,1]
ax2: [1,2]
plus2: [1,2]
aisNatKind1: [1]
isNatKind1: [1]
x2: [1,2]
U111: [1]
U121: [1]
U13: []
U211: [1]
U412: [2,1]
U513: [3,2,1]
U61: []
U713: [3,2,1]


The following usable rules [FROCOS05] were oriented:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U33(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U33(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U33(x1)  =  U33(x1)
a__U11(x1, x2, x3)  =  x3
tt  =  tt
a__U12(x1, x2)  =  x2
a__isNat(x1)  =  x1
a__U13(x1)  =  x1
a__U21(x1, x2)  =  x2
a__U22(x1)  =  x1
a__U31(x1, x2, x3)  =  a__U31(x1, x3)
a__U32(x1, x2)  =  a__U32(x2)
a__U33(x1)  =  a__U33(x1)
a__U41(x1, x2)  =  a__U41(x1, x2)
mark(x1)  =  x1
a__U51(x1, x2, x3)  =  a__U51(x1, x2, x3)
s(x1)  =  s(x1)
a__plus(x1, x2)  =  a__plus(x1, x2)
a__U61(x1)  =  a__U61(x1)
0  =  0
a__U71(x1, x2, x3)  =  a__U71(x1, x2, x3)
a__x(x1, x2)  =  a__x(x1, x2)
a__and(x1, x2)  =  x2
plus(x1, x2)  =  plus(x1, x2)
a__isNatKind(x1)  =  a__isNatKind(x1)
isNatKind(x1)  =  isNatKind(x1)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  x2
isNat(x1)  =  x1
U11(x1, x2, x3)  =  x3
U12(x1, x2)  =  x2
U13(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  x1
U31(x1, x2, x3)  =  U31(x1, x3)
U32(x1, x2)  =  U32(x2)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U61(x1)  =  U61(x1)
U71(x1, x2, x3)  =  U71(x1, x2, x3)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[aU713, ax2, x2, U713] > [aU312, U312] > [MARK1, U331, aU321, aU331, U321]
[aU713, ax2, x2, U713] > [aU611, 0, U611] > tt > [aU513, aplus2, plus2, U513] > [aU412, U412] > [MARK1, U331, aU321, aU331, U321]
[aU713, ax2, x2, U713] > [aU611, 0, U611] > tt > [aU513, aplus2, plus2, U513] > s1 > [MARK1, U331, aU321, aU331, U321]
[aU713, ax2, x2, U713] > [aU611, 0, U611] > tt > [aU513, aplus2, plus2, U513] > [aisNatKind1, isNatKind1] > [MARK1, U331, aU321, aU331, U321]

Status:
MARK1: [1]
U331: [1]
tt: []
aU312: [1,2]
aU321: [1]
aU331: [1]
aU412: [2,1]
aU513: [3,2,1]
s1: [1]
aplus2: [1,2]
aU611: [1]
0: []
aU713: [2,3,1]
ax2: [2,1]
plus2: [1,2]
aisNatKind1: [1]
isNatKind1: [1]
x2: [2,1]
U312: [1,2]
U321: [1]
U412: [2,1]
U513: [3,2,1]
U611: [1]
U713: [2,3,1]


The following usable rules [FROCOS05] were oriented:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE