(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V1, V2)) → U121(isNat(V1), V2)
ACTIVE(U11(tt, V1, V2)) → ISNAT(V1)
ACTIVE(U12(tt, V2)) → U131(isNat(V2))
ACTIVE(U12(tt, V2)) → ISNAT(V2)
ACTIVE(U21(tt, V1)) → U221(isNat(V1))
ACTIVE(U21(tt, V1)) → ISNAT(V1)
ACTIVE(U31(tt, V1, V2)) → U321(isNat(V1), V2)
ACTIVE(U31(tt, V1, V2)) → ISNAT(V1)
ACTIVE(U32(tt, V2)) → U331(isNat(V2))
ACTIVE(U32(tt, V2)) → ISNAT(V2)
ACTIVE(U51(tt, M, N)) → S(plus(N, M))
ACTIVE(U51(tt, M, N)) → PLUS(N, M)
ACTIVE(U71(tt, M, N)) → PLUS(x(N, M), N)
ACTIVE(U71(tt, M, N)) → X(N, M)
ACTIVE(isNat(plus(V1, V2))) → U111(and(isNatKind(V1), isNatKind(V2)), V1, V2)
ACTIVE(isNat(plus(V1, V2))) → AND(isNatKind(V1), isNatKind(V2))
ACTIVE(isNat(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNat(plus(V1, V2))) → ISNATKIND(V2)
ACTIVE(isNat(s(V1))) → U211(isNatKind(V1), V1)
ACTIVE(isNat(s(V1))) → ISNATKIND(V1)
ACTIVE(isNat(x(V1, V2))) → U311(and(isNatKind(V1), isNatKind(V2)), V1, V2)
ACTIVE(isNat(x(V1, V2))) → AND(isNatKind(V1), isNatKind(V2))
ACTIVE(isNat(x(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNat(x(V1, V2))) → ISNATKIND(V2)
ACTIVE(isNatKind(plus(V1, V2))) → AND(isNatKind(V1), isNatKind(V2))
ACTIVE(isNatKind(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatKind(plus(V1, V2))) → ISNATKIND(V2)
ACTIVE(isNatKind(s(V1))) → ISNATKIND(V1)
ACTIVE(isNatKind(x(V1, V2))) → AND(isNatKind(V1), isNatKind(V2))
ACTIVE(isNatKind(x(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatKind(x(V1, V2))) → ISNATKIND(V2)
ACTIVE(plus(N, 0)) → U411(and(isNat(N), isNatKind(N)), N)
ACTIVE(plus(N, 0)) → AND(isNat(N), isNatKind(N))
ACTIVE(plus(N, 0)) → ISNAT(N)
ACTIVE(plus(N, 0)) → ISNATKIND(N)
ACTIVE(plus(N, s(M))) → U511(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
ACTIVE(plus(N, s(M))) → AND(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
ACTIVE(plus(N, s(M))) → AND(isNat(M), isNatKind(M))
ACTIVE(plus(N, s(M))) → ISNAT(M)
ACTIVE(plus(N, s(M))) → ISNATKIND(M)
ACTIVE(plus(N, s(M))) → AND(isNat(N), isNatKind(N))
ACTIVE(plus(N, s(M))) → ISNAT(N)
ACTIVE(plus(N, s(M))) → ISNATKIND(N)
ACTIVE(x(N, 0)) → U611(and(isNat(N), isNatKind(N)))
ACTIVE(x(N, 0)) → AND(isNat(N), isNatKind(N))
ACTIVE(x(N, 0)) → ISNAT(N)
ACTIVE(x(N, 0)) → ISNATKIND(N)
ACTIVE(x(N, s(M))) → U711(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
ACTIVE(x(N, s(M))) → AND(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
ACTIVE(x(N, s(M))) → AND(isNat(M), isNatKind(M))
ACTIVE(x(N, s(M))) → ISNAT(M)
ACTIVE(x(N, s(M))) → ISNATKIND(M)
ACTIVE(x(N, s(M))) → AND(isNat(N), isNatKind(N))
ACTIVE(x(N, s(M))) → ISNAT(N)
ACTIVE(x(N, s(M))) → ISNATKIND(N)
ACTIVE(U11(X1, X2, X3)) → U111(active(X1), X2, X3)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U12(X1, X2)) → U121(active(X1), X2)
ACTIVE(U12(X1, X2)) → ACTIVE(X1)
ACTIVE(U13(X)) → U131(active(X))
ACTIVE(U13(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → U211(active(X1), X2)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → U221(active(X))
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2, X3)) → U311(active(X1), X2, X3)
ACTIVE(U31(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U32(X1, X2)) → U321(active(X1), X2)
ACTIVE(U32(X1, X2)) → ACTIVE(X1)
ACTIVE(U33(X)) → U331(active(X))
ACTIVE(U33(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → U411(active(X1), X2)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U51(X1, X2, X3)) → U511(active(X1), X2, X3)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → PLUS(active(X1), X2)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → PLUS(X1, active(X2))
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(U61(X)) → U611(active(X))
ACTIVE(U61(X)) → ACTIVE(X)
ACTIVE(U71(X1, X2, X3)) → U711(active(X1), X2, X3)
ACTIVE(U71(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → X(active(X1), X2)
ACTIVE(x(X1, X2)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → X(X1, active(X2))
ACTIVE(x(X1, X2)) → ACTIVE(X2)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U121(mark(X1), X2) → U121(X1, X2)
U131(mark(X)) → U131(X)
U211(mark(X1), X2) → U211(X1, X2)
U221(mark(X)) → U221(X)
U311(mark(X1), X2, X3) → U311(X1, X2, X3)
U321(mark(X1), X2) → U321(X1, X2)
U331(mark(X)) → U331(X)
U411(mark(X1), X2) → U411(X1, X2)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
S(mark(X)) → S(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
U611(mark(X)) → U611(X)
U711(mark(X1), X2, X3) → U711(X1, X2, X3)
X(mark(X1), X2) → X(X1, X2)
X(X1, mark(X2)) → X(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
PROPER(U11(X1, X2, X3)) → U111(proper(X1), proper(X2), proper(X3))
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2)) → U121(proper(X1), proper(X2))
PROPER(U12(X1, X2)) → PROPER(X1)
PROPER(U12(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → ISNAT(proper(X))
PROPER(isNat(X)) → PROPER(X)
PROPER(U13(X)) → U131(proper(X))
PROPER(U13(X)) → PROPER(X)
PROPER(U21(X1, X2)) → U211(proper(X1), proper(X2))
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X)) → U221(proper(X))
PROPER(U22(X)) → PROPER(X)
PROPER(U31(X1, X2, X3)) → U311(proper(X1), proper(X2), proper(X3))
PROPER(U31(X1, X2, X3)) → PROPER(X1)
PROPER(U31(X1, X2, X3)) → PROPER(X2)
PROPER(U31(X1, X2, X3)) → PROPER(X3)
PROPER(U32(X1, X2)) → U321(proper(X1), proper(X2))
PROPER(U32(X1, X2)) → PROPER(X1)
PROPER(U32(X1, X2)) → PROPER(X2)
PROPER(U33(X)) → U331(proper(X))
PROPER(U33(X)) → PROPER(X)
PROPER(U41(X1, X2)) → U411(proper(X1), proper(X2))
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → U511(proper(X1), proper(X2), proper(X3))
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(plus(X1, X2)) → PLUS(proper(X1), proper(X2))
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(U61(X)) → U611(proper(X))
PROPER(U61(X)) → PROPER(X)
PROPER(U71(X1, X2, X3)) → U711(proper(X1), proper(X2), proper(X3))
PROPER(U71(X1, X2, X3)) → PROPER(X1)
PROPER(U71(X1, X2, X3)) → PROPER(X2)
PROPER(U71(X1, X2, X3)) → PROPER(X3)
PROPER(x(X1, X2)) → X(proper(X1), proper(X2))
PROPER(x(X1, X2)) → PROPER(X1)
PROPER(x(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatKind(X)) → ISNATKIND(proper(X))
PROPER(isNatKind(X)) → PROPER(X)
U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U121(ok(X1), ok(X2)) → U121(X1, X2)
ISNAT(ok(X)) → ISNAT(X)
U131(ok(X)) → U131(X)
U211(ok(X1), ok(X2)) → U211(X1, X2)
U221(ok(X)) → U221(X)
U311(ok(X1), ok(X2), ok(X3)) → U311(X1, X2, X3)
U321(ok(X1), ok(X2)) → U321(X1, X2)
U331(ok(X)) → U331(X)
U411(ok(X1), ok(X2)) → U411(X1, X2)
U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
S(ok(X)) → S(X)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
U611(ok(X)) → U611(X)
U711(ok(X1), ok(X2), ok(X3)) → U711(X1, X2, X3)
X(ok(X1), ok(X2)) → X(X1, X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)
ISNATKIND(ok(X)) → ISNATKIND(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 21 SCCs with 93 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(ok(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(ok(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATKIND(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x3)
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  x2
isNat(x1)  =  isNat(x1)
U13(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  x1
U31(x1, x2, x3)  =  x3
U32(x1, x2)  =  U32(x2)
U33(x1)  =  U33(x1)
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  x2
isNatKind(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U111 > isNat1 > ok1
active1 > tt > isNat1 > ok1
active1 > tt > 0
active1 > tt > x2 > ok1
active1 > U321 > isNat1 > ok1
active1 > U331 > ok1
active1 > U513 > ok1
active1 > plus2 > isNat1 > ok1
active1 > U712 > x2 > ok1
proper1 > U111 > isNat1 > ok1
proper1 > tt > isNat1 > ok1
proper1 > tt > 0
proper1 > tt > x2 > ok1
proper1 > U321 > isNat1 > ok1
proper1 > U331 > ok1
proper1 > U513 > ok1
proper1 > plus2 > isNat1 > ok1
proper1 > U712 > x2 > ok1

Status:
ok1: [1]
active1: multiset
U111: [1]
tt: multiset
isNat1: multiset
U321: [1]
U331: [1]
U513: [3,2,1]
plus2: multiset
0: multiset
U712: [2,1]
x2: [2,1]
proper1: [1]
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(ok(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(ok(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x3)
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  x2
isNat(x1)  =  isNat(x1)
U13(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  x1
U31(x1, x2, x3)  =  x3
U32(x1, x2)  =  U32(x2)
U33(x1)  =  U33(x1)
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  x2
isNatKind(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U111 > isNat1 > ok1
active1 > tt > isNat1 > ok1
active1 > tt > 0
active1 > tt > x2 > ok1
active1 > U321 > isNat1 > ok1
active1 > U331 > ok1
active1 > U513 > ok1
active1 > plus2 > isNat1 > ok1
active1 > U712 > x2 > ok1
proper1 > U111 > isNat1 > ok1
proper1 > tt > isNat1 > ok1
proper1 > tt > 0
proper1 > tt > x2 > ok1
proper1 > U321 > isNat1 > ok1
proper1 > U331 > ok1
proper1 > U513 > ok1
proper1 > plus2 > isNat1 > ok1
proper1 > U712 > x2 > ok1

Status:
ok1: [1]
active1: multiset
U111: [1]
tt: multiset
isNat1: multiset
U321: [1]
U331: [1]
U513: [3,2,1]
plus2: multiset
0: multiset
U712: [2,1]
x2: [2,1]
proper1: [1]
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(ok(X1), ok(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x1)
tt  =  tt
U12(x1, x2)  =  U12(x1)
isNat(x1)  =  isNat
U13(x1)  =  x1
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x1)
U32(x1, x2)  =  x1
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > tt > isNat > U111 > mark1 > top
active1 > tt > isNat > U211 > mark1 > top
active1 > tt > isNat > U311 > mark1 > top
active1 > tt > isNat > and2 > mark1 > top
active1 > tt > isNat > isNatKind
active1 > tt > U221 > mark1 > top
active1 > tt > 0
active1 > tt > x2 > U311 > mark1 > top
active1 > tt > x2 > and2 > mark1 > top
active1 > tt > x2 > isNatKind
active1 > U121 > isNat > U111 > mark1 > top
active1 > U121 > isNat > U211 > mark1 > top
active1 > U121 > isNat > U311 > mark1 > top
active1 > U121 > isNat > and2 > mark1 > top
active1 > U121 > isNat > isNatKind
active1 > plus2 > isNat > U111 > mark1 > top
active1 > plus2 > isNat > U211 > mark1 > top
active1 > plus2 > isNat > U311 > mark1 > top
active1 > plus2 > isNat > and2 > mark1 > top
active1 > plus2 > isNat > isNatKind
active1 > plus2 > U412 > mark1 > top
active1 > plus2 > U513 > mark1 > top
active1 > U713 > x2 > U311 > mark1 > top
active1 > U713 > x2 > and2 > mark1 > top
active1 > U713 > x2 > isNatKind
proper1 > tt > isNat > U111 > mark1 > top
proper1 > tt > isNat > U211 > mark1 > top
proper1 > tt > isNat > U311 > mark1 > top
proper1 > tt > isNat > and2 > mark1 > top
proper1 > tt > isNat > isNatKind
proper1 > tt > U221 > mark1 > top
proper1 > tt > 0
proper1 > tt > x2 > U311 > mark1 > top
proper1 > tt > x2 > and2 > mark1 > top
proper1 > tt > x2 > isNatKind
proper1 > U121 > isNat > U111 > mark1 > top
proper1 > U121 > isNat > U211 > mark1 > top
proper1 > U121 > isNat > U311 > mark1 > top
proper1 > U121 > isNat > and2 > mark1 > top
proper1 > U121 > isNat > isNatKind
proper1 > plus2 > isNat > U111 > mark1 > top
proper1 > plus2 > isNat > U211 > mark1 > top
proper1 > plus2 > isNat > U311 > mark1 > top
proper1 > plus2 > isNat > and2 > mark1 > top
proper1 > plus2 > isNat > isNatKind
proper1 > plus2 > U412 > mark1 > top
proper1 > plus2 > U513 > mark1 > top
proper1 > U713 > x2 > U311 > mark1 > top
proper1 > U713 > x2 > and2 > mark1 > top
proper1 > U713 > x2 > isNatKind

Status:
mark1: multiset
active1: multiset
U111: [1]
tt: multiset
U121: multiset
isNat: []
U211: [1]
U221: [1]
U311: [1]
U412: [2,1]
U513: [1,2,3]
plus2: [1,2]
0: multiset
U713: multiset
x2: multiset
and2: multiset
isNatKind: multiset
proper1: [1]
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(ok(X1), ok(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(ok(X1), ok(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x2)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x3)
tt  =  tt
mark(x1)  =  mark
U12(x1, x2)  =  U12(x1)
isNat(x1)  =  isNat(x1)
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x2)
U22(x1)  =  x1
U31(x1, x2, x3)  =  U31(x1, x3)
U32(x1, x2)  =  x1
U33(x1)  =  x1
U41(x1, x2)  =  U41(x2)
U51(x1, x2, x3)  =  U51(x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x3)
x(x1, x2)  =  x(x1)
and(x1, x2)  =  x1
isNatKind(x1)  =  isNatKind(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
proper1 > U111 > active1 > U121 > ok1
proper1 > U111 > active1 > U121 > mark
proper1 > U111 > active1 > U131 > ok1
proper1 > U111 > active1 > U131 > mark
proper1 > U111 > active1 > U312 > ok1
proper1 > U111 > active1 > U312 > mark
proper1 > U111 > active1 > U711 > plus1 > ok1
proper1 > U111 > active1 > U711 > plus1 > mark
proper1 > U111 > active1 > x1 > ok1
proper1 > U111 > active1 > x1 > mark
proper1 > U111 > isNat1 > U312 > ok1
proper1 > U111 > isNat1 > U312 > mark
proper1 > tt > U121 > ok1
proper1 > tt > U121 > mark
proper1 > tt > U131 > ok1
proper1 > tt > U131 > mark
proper1 > tt > plus1 > ok1
proper1 > tt > plus1 > mark
proper1 > tt > 0 > isNat1 > U312 > ok1
proper1 > tt > 0 > isNat1 > U312 > mark
proper1 > tt > 0 > isNatKind1 > ok1
proper1 > tt > 0 > isNatKind1 > mark
proper1 > tt > x1 > ok1
proper1 > tt > x1 > mark
proper1 > U211 > active1 > U121 > ok1
proper1 > U211 > active1 > U121 > mark
proper1 > U211 > active1 > U131 > ok1
proper1 > U211 > active1 > U131 > mark
proper1 > U211 > active1 > U312 > ok1
proper1 > U211 > active1 > U312 > mark
proper1 > U211 > active1 > U711 > plus1 > ok1
proper1 > U211 > active1 > U711 > plus1 > mark
proper1 > U211 > active1 > x1 > ok1
proper1 > U211 > active1 > x1 > mark
proper1 > U211 > isNat1 > U312 > ok1
proper1 > U211 > isNat1 > U312 > mark
proper1 > U411 > active1 > U121 > ok1
proper1 > U411 > active1 > U121 > mark
proper1 > U411 > active1 > U131 > ok1
proper1 > U411 > active1 > U131 > mark
proper1 > U411 > active1 > U312 > ok1
proper1 > U411 > active1 > U312 > mark
proper1 > U411 > active1 > U711 > plus1 > ok1
proper1 > U411 > active1 > U711 > plus1 > mark
proper1 > U411 > active1 > x1 > ok1
proper1 > U411 > active1 > x1 > mark
proper1 > U511 > active1 > U121 > ok1
proper1 > U511 > active1 > U121 > mark
proper1 > U511 > active1 > U131 > ok1
proper1 > U511 > active1 > U131 > mark
proper1 > U511 > active1 > U312 > ok1
proper1 > U511 > active1 > U312 > mark
proper1 > U511 > active1 > U711 > plus1 > ok1
proper1 > U511 > active1 > U711 > plus1 > mark
proper1 > U511 > active1 > x1 > ok1
proper1 > U511 > active1 > x1 > mark

Status:
AND1: [1]
ok1: multiset
active1: [1]
U111: [1]
tt: multiset
mark: multiset
U121: [1]
isNat1: [1]
U131: [1]
U211: multiset
U312: multiset
U411: [1]
U511: multiset
plus1: [1]
0: multiset
U711: multiset
x1: multiset
isNatKind1: multiset
proper1: multiset
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(X1, mark(X2)) → X(X1, X2)
X(mark(X1), X2) → X(X1, X2)
X(ok(X1), ok(X2)) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(ok(X1), ok(X2)) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
X(x1, x2)  =  X(x1)
mark(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x2, x3)
tt  =  tt
U12(x1, x2)  =  U12(x1, x2)
isNat(x1)  =  isNat(x1)
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x2)
U22(x1)  =  x1
U31(x1, x2, x3)  =  x3
U32(x1, x2)  =  U32(x2)
U33(x1)  =  U33(x1)
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x2)
isNatKind(x1)  =  isNatKind(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U122 > ok1
active1 > U131 > ok1
active1 > U131 > tt
active1 > U211 > isNat1 > U112 > ok1
active1 > U211 > isNat1 > isNatKind1 > ok1
active1 > U211 > isNat1 > isNatKind1 > tt
active1 > U321 > ok1
active1 > U331 > ok1
active1 > U331 > tt
active1 > plus2 > isNat1 > U112 > ok1
active1 > plus2 > isNat1 > isNatKind1 > ok1
active1 > plus2 > isNat1 > isNatKind1 > tt
active1 > plus2 > U512 > ok1
active1 > plus2 > and1 > ok1
active1 > 0 > isNat1 > U112 > ok1
active1 > 0 > isNat1 > isNatKind1 > ok1
active1 > 0 > isNat1 > isNatKind1 > tt
active1 > x2 > isNat1 > U112 > ok1
active1 > x2 > isNat1 > isNatKind1 > ok1
active1 > x2 > isNat1 > isNatKind1 > tt
active1 > x2 > U713 > ok1
proper1 > U122 > ok1
proper1 > U131 > ok1
proper1 > U131 > tt
proper1 > U211 > isNat1 > U112 > ok1
proper1 > U211 > isNat1 > isNatKind1 > ok1
proper1 > U211 > isNat1 > isNatKind1 > tt
proper1 > U321 > ok1
proper1 > U331 > ok1
proper1 > U331 > tt
proper1 > plus2 > isNat1 > U112 > ok1
proper1 > plus2 > isNat1 > isNatKind1 > ok1
proper1 > plus2 > isNat1 > isNatKind1 > tt
proper1 > plus2 > U512 > ok1
proper1 > plus2 > and1 > ok1
proper1 > 0 > isNat1 > U112 > ok1
proper1 > 0 > isNat1 > isNatKind1 > ok1
proper1 > 0 > isNat1 > isNatKind1 > tt
proper1 > x2 > isNat1 > U112 > ok1
proper1 > x2 > isNat1 > isNatKind1 > ok1
proper1 > x2 > isNat1 > isNatKind1 > tt
proper1 > x2 > U713 > ok1

Status:
X1: multiset
ok1: multiset
active1: [1]
U112: [1,2]
tt: multiset
U122: multiset
isNat1: multiset
U131: [1]
U211: [1]
U321: [1]
U331: multiset
U512: [1,2]
plus2: [1,2]
0: multiset
U713: [3,2,1]
x2: multiset
and1: [1]
isNatKind1: [1]
proper1: [1]
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(X1, mark(X2)) → X(X1, X2)
X(mark(X1), X2) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(X1, mark(X2)) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
X(x1, x2)  =  X(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x1)
tt  =  tt
U12(x1, x2)  =  U12(x1)
isNat(x1)  =  isNat
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  x1
U32(x1, x2)  =  x1
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U121 > U131 > tt > isNat > U111 > mark1
active1 > U121 > U131 > tt > isNat > U111 > ok
active1 > U121 > U131 > tt > isNat > U211 > mark1
active1 > U121 > U131 > tt > isNat > U211 > ok
active1 > U121 > U131 > tt > isNat > and2 > mark1
active1 > U121 > U131 > tt > isNat > and2 > ok
active1 > U121 > U131 > tt > isNat > isNatKind > mark1
active1 > U121 > U131 > tt > isNat > isNatKind > ok
active1 > U121 > U131 > tt > U221 > mark1
active1 > U121 > U131 > tt > U221 > ok
active1 > U121 > U131 > tt > 0 > mark1
active1 > U121 > U131 > tt > 0 > ok
active1 > U121 > U131 > tt > x2 > mark1
active1 > U121 > U131 > tt > x2 > ok
active1 > plus2 > isNat > U111 > mark1
active1 > plus2 > isNat > U111 > ok
active1 > plus2 > isNat > U211 > mark1
active1 > plus2 > isNat > U211 > ok
active1 > plus2 > isNat > and2 > mark1
active1 > plus2 > isNat > and2 > ok
active1 > plus2 > isNat > isNatKind > mark1
active1 > plus2 > isNat > isNatKind > ok
active1 > plus2 > U412 > mark1
active1 > plus2 > U412 > ok
active1 > plus2 > U513 > mark1
active1 > plus2 > U513 > ok
active1 > U611 > 0 > mark1
active1 > U611 > 0 > ok
active1 > U713 > x2 > mark1
active1 > U713 > x2 > ok

Status:
X1: [1]
mark1: multiset
active1: [1]
U111: multiset
tt: multiset
U121: [1]
isNat: []
U131: [1]
U211: [1]
U221: [1]
U412: [1,2]
U513: [1,2,3]
plus2: [1,2]
U611: [1]
0: multiset
U713: [1,2,3]
x2: [1,2]
and2: [1,2]
isNatKind: multiset
ok: multiset
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

X(mark(X1), X2) → X(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


X(mark(X1), X2) → X(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
X(x1, x2)  =  X(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x1)
tt  =  tt
U12(x1, x2)  =  U12(x1)
isNat(x1)  =  isNat
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x1)
U32(x1, x2)  =  x1
U33(x1)  =  U33(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > tt > isNat > U111 > U121 > U131 > mark1 > X2
active1 > tt > isNat > U211 > mark1 > X2
active1 > tt > isNat > U311 > mark1 > X2
active1 > tt > isNat > and2 > mark1 > X2
active1 > tt > U221 > mark1 > X2
active1 > tt > s1 > mark1 > X2
active1 > tt > plus2 > U111 > U121 > U131 > mark1 > X2
active1 > tt > plus2 > U412 > mark1 > X2
active1 > tt > plus2 > and2 > mark1 > X2
active1 > U331 > mark1 > X2
active1 > U513 > s1 > mark1 > X2
active1 > U513 > plus2 > U111 > U121 > U131 > mark1 > X2
active1 > U513 > plus2 > U412 > mark1 > X2
active1 > U513 > plus2 > and2 > mark1 > X2
active1 > 0 > isNat > U111 > U121 > U131 > mark1 > X2
active1 > 0 > isNat > U211 > mark1 > X2
active1 > 0 > isNat > U311 > mark1 > X2
active1 > 0 > isNat > and2 > mark1 > X2
active1 > 0 > U412 > mark1 > X2
active1 > 0 > U611 > mark1 > X2
active1 > U713 > plus2 > U111 > U121 > U131 > mark1 > X2
active1 > U713 > plus2 > U412 > mark1 > X2
active1 > U713 > plus2 > and2 > mark1 > X2
active1 > x2 > isNat > U111 > U121 > U131 > mark1 > X2
active1 > x2 > isNat > U211 > mark1 > X2
active1 > x2 > isNat > U311 > mark1 > X2
active1 > x2 > isNat > and2 > mark1 > X2
active1 > x2 > U611 > mark1 > X2
active1 > isNatKind > and2 > mark1 > X2
proper1 > tt > isNat > U111 > U121 > U131 > mark1 > X2
proper1 > tt > isNat > U211 > mark1 > X2
proper1 > tt > isNat > U311 > mark1 > X2
proper1 > tt > isNat > and2 > mark1 > X2
proper1 > tt > U221 > mark1 > X2
proper1 > tt > s1 > mark1 > X2
proper1 > tt > plus2 > U111 > U121 > U131 > mark1 > X2
proper1 > tt > plus2 > U412 > mark1 > X2
proper1 > tt > plus2 > and2 > mark1 > X2
proper1 > U331 > mark1 > X2
proper1 > U513 > s1 > mark1 > X2
proper1 > U513 > plus2 > U111 > U121 > U131 > mark1 > X2
proper1 > U513 > plus2 > U412 > mark1 > X2
proper1 > U513 > plus2 > and2 > mark1 > X2
proper1 > 0 > isNat > U111 > U121 > U131 > mark1 > X2
proper1 > 0 > isNat > U211 > mark1 > X2
proper1 > 0 > isNat > U311 > mark1 > X2
proper1 > 0 > isNat > and2 > mark1 > X2
proper1 > 0 > U412 > mark1 > X2
proper1 > 0 > U611 > mark1 > X2
proper1 > U713 > plus2 > U111 > U121 > U131 > mark1 > X2
proper1 > U713 > plus2 > U412 > mark1 > X2
proper1 > U713 > plus2 > and2 > mark1 > X2
proper1 > x2 > isNat > U111 > U121 > U131 > mark1 > X2
proper1 > x2 > isNat > U211 > mark1 > X2
proper1 > x2 > isNat > U311 > mark1 > X2
proper1 > x2 > isNat > and2 > mark1 > X2
proper1 > x2 > U611 > mark1 > X2
proper1 > isNatKind > and2 > mark1 > X2
top > X2

Status:
X2: [1,2]
mark1: [1]
active1: [1]
U111: [1]
tt: multiset
U121: multiset
isNat: multiset
U131: multiset
U211: [1]
U221: multiset
U311: [1]
U331: multiset
U412: multiset
U513: [2,3,1]
s1: multiset
plus2: [2,1]
U611: multiset
0: multiset
U713: [2,3,1]
x2: [2,1]
and2: [2,1]
isNatKind: multiset
proper1: [1]
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(28) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(30) TRUE

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(ok(X1), ok(X2), ok(X3)) → U711(X1, X2, X3)
U711(mark(X1), X2, X3) → U711(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(mark(X1), X2, X3) → U711(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2, x3)  =  U711(x1, x3)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x1)
tt  =  tt
U12(x1, x2)  =  U12(x1)
isNat(x1)  =  isNat
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x1)
U32(x1, x2)  =  U32(x1)
U33(x1)  =  U33(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
U71^12 > mark1
active1 > U121 > isNat > U111 > mark1
active1 > U121 > isNat > U311 > mark1
active1 > U121 > isNat > isNatKind > mark1
active1 > U121 > U131 > mark1
active1 > U221 > tt > isNat > U111 > mark1
active1 > U221 > tt > isNat > U311 > mark1
active1 > U221 > tt > isNat > isNatKind > mark1
active1 > U221 > tt > U131 > mark1
active1 > U221 > tt > plus2 > U111 > mark1
active1 > U221 > tt > plus2 > U412 > mark1
active1 > U221 > tt > plus2 > U513 > mark1
active1 > U221 > tt > plus2 > isNatKind > mark1
active1 > U321 > isNat > U111 > mark1
active1 > U321 > isNat > U311 > mark1
active1 > U321 > isNat > isNatKind > mark1
active1 > U331 > tt > isNat > U111 > mark1
active1 > U331 > tt > isNat > U311 > mark1
active1 > U331 > tt > isNat > isNatKind > mark1
active1 > U331 > tt > U131 > mark1
active1 > U331 > tt > plus2 > U111 > mark1
active1 > U331 > tt > plus2 > U412 > mark1
active1 > U331 > tt > plus2 > U513 > mark1
active1 > U331 > tt > plus2 > isNatKind > mark1
active1 > s1 > U211 > isNat > U111 > mark1
active1 > s1 > U211 > isNat > U311 > mark1
active1 > s1 > U211 > isNat > isNatKind > mark1
active1 > s1 > U713 > plus2 > U111 > mark1
active1 > s1 > U713 > plus2 > U412 > mark1
active1 > s1 > U713 > plus2 > U513 > mark1
active1 > s1 > U713 > plus2 > isNatKind > mark1
active1 > s1 > U713 > x2 > isNat > U111 > mark1
active1 > s1 > U713 > x2 > isNat > U311 > mark1
active1 > s1 > U713 > x2 > isNat > isNatKind > mark1
active1 > s1 > and2 > mark1
active1 > 0 > tt > isNat > U111 > mark1
active1 > 0 > tt > isNat > U311 > mark1
active1 > 0 > tt > isNat > isNatKind > mark1
active1 > 0 > tt > U131 > mark1
active1 > 0 > tt > plus2 > U111 > mark1
active1 > 0 > tt > plus2 > U412 > mark1
active1 > 0 > tt > plus2 > U513 > mark1
active1 > 0 > tt > plus2 > isNatKind > mark1
active1 > 0 > U611 > mark1
active1 > 0 > and2 > mark1
proper1 > U121 > isNat > U111 > mark1
proper1 > U121 > isNat > U311 > mark1
proper1 > U121 > isNat > isNatKind > mark1
proper1 > U121 > U131 > mark1
proper1 > U221 > tt > isNat > U111 > mark1
proper1 > U221 > tt > isNat > U311 > mark1
proper1 > U221 > tt > isNat > isNatKind > mark1
proper1 > U221 > tt > U131 > mark1
proper1 > U221 > tt > plus2 > U111 > mark1
proper1 > U221 > tt > plus2 > U412 > mark1
proper1 > U221 > tt > plus2 > U513 > mark1
proper1 > U221 > tt > plus2 > isNatKind > mark1
proper1 > U321 > isNat > U111 > mark1
proper1 > U321 > isNat > U311 > mark1
proper1 > U321 > isNat > isNatKind > mark1
proper1 > U331 > tt > isNat > U111 > mark1
proper1 > U331 > tt > isNat > U311 > mark1
proper1 > U331 > tt > isNat > isNatKind > mark1
proper1 > U331 > tt > U131 > mark1
proper1 > U331 > tt > plus2 > U111 > mark1
proper1 > U331 > tt > plus2 > U412 > mark1
proper1 > U331 > tt > plus2 > U513 > mark1
proper1 > U331 > tt > plus2 > isNatKind > mark1
proper1 > s1 > U211 > isNat > U111 > mark1
proper1 > s1 > U211 > isNat > U311 > mark1
proper1 > s1 > U211 > isNat > isNatKind > mark1
proper1 > s1 > U713 > plus2 > U111 > mark1
proper1 > s1 > U713 > plus2 > U412 > mark1
proper1 > s1 > U713 > plus2 > U513 > mark1
proper1 > s1 > U713 > plus2 > isNatKind > mark1
proper1 > s1 > U713 > x2 > isNat > U111 > mark1
proper1 > s1 > U713 > x2 > isNat > U311 > mark1
proper1 > s1 > U713 > x2 > isNat > isNatKind > mark1
proper1 > s1 > and2 > mark1
proper1 > 0 > tt > isNat > U111 > mark1
proper1 > 0 > tt > isNat > U311 > mark1
proper1 > 0 > tt > isNat > isNatKind > mark1
proper1 > 0 > tt > U131 > mark1
proper1 > 0 > tt > plus2 > U111 > mark1
proper1 > 0 > tt > plus2 > U412 > mark1
proper1 > 0 > tt > plus2 > U513 > mark1
proper1 > 0 > tt > plus2 > isNatKind > mark1
proper1 > 0 > U611 > mark1
proper1 > 0 > and2 > mark1
top > mark1

Status:
U71^12: [1,2]
mark1: multiset
active1: [1]
U111: multiset
tt: multiset
U121: [1]
isNat: []
U131: [1]
U211: [1]
U221: multiset
U311: [1]
U321: [1]
U331: [1]
U412: [1,2]
U513: [1,3,2]
s1: multiset
plus2: [1,2]
U611: multiset
0: multiset
U713: [1,3,2]
x2: multiset
and2: [2,1]
isNatKind: []
proper1: [1]
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(ok(X1), ok(X2), ok(X3)) → U711(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(ok(X1), ok(X2), ok(X3)) → U711(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2, x3)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  U12(x1, x2)
isNat(x1)  =  isNat(x1)
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x2, x3)
U32(x1, x2)  =  U32(x1, x2)
U33(x1)  =  U33(x1)
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U122 > isNat1 > ok1
active1 > U122 > isNat1 > tt
active1 > U131 > ok1
active1 > U131 > tt
active1 > U212 > isNat1 > ok1
active1 > U212 > isNat1 > tt
active1 > U212 > U221 > ok1
active1 > U212 > U221 > tt
active1 > U322 > isNat1 > ok1
active1 > U322 > isNat1 > tt
active1 > U322 > U331 > ok1
active1 > U322 > U331 > tt
active1 > plus2 > U113 > isNat1 > ok1
active1 > plus2 > U113 > isNat1 > tt
active1 > plus2 > U513 > ok1
active1 > plus2 > and2 > ok1
active1 > plus2 > isNatKind1 > ok1
active1 > plus2 > isNatKind1 > tt
active1 > 0 > isNat1 > ok1
active1 > 0 > isNat1 > tt
active1 > 0 > and2 > ok1
active1 > 0 > isNatKind1 > ok1
active1 > 0 > isNatKind1 > tt
active1 > U713 > ok1
active1 > x2 > U312 > isNat1 > ok1
active1 > x2 > U312 > isNat1 > tt
active1 > x2 > and2 > ok1
active1 > x2 > isNatKind1 > ok1
active1 > x2 > isNatKind1 > tt
proper1 > U122 > isNat1 > ok1
proper1 > U122 > isNat1 > tt
proper1 > U131 > ok1
proper1 > U131 > tt
proper1 > U212 > isNat1 > ok1
proper1 > U212 > isNat1 > tt
proper1 > U212 > U221 > ok1
proper1 > U212 > U221 > tt
proper1 > U322 > isNat1 > ok1
proper1 > U322 > isNat1 > tt
proper1 > U322 > U331 > ok1
proper1 > U322 > U331 > tt
proper1 > plus2 > U113 > isNat1 > ok1
proper1 > plus2 > U113 > isNat1 > tt
proper1 > plus2 > U513 > ok1
proper1 > plus2 > and2 > ok1
proper1 > plus2 > isNatKind1 > ok1
proper1 > plus2 > isNatKind1 > tt
proper1 > U713 > ok1
proper1 > x2 > U312 > isNat1 > ok1
proper1 > x2 > U312 > isNat1 > tt
proper1 > x2 > and2 > ok1
proper1 > x2 > isNatKind1 > ok1
proper1 > x2 > isNatKind1 > tt

Status:
ok1: multiset
active1: [1]
U113: [2,3,1]
tt: multiset
U122: [1,2]
isNat1: multiset
U131: [1]
U212: [1,2]
U221: [1]
U312: [1,2]
U322: multiset
U331: [1]
U513: multiset
plus2: multiset
0: multiset
U713: multiset
x2: [2,1]
and2: multiset
isNatKind1: multiset
proper1: [1]
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(35) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(37) TRUE

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(ok(X)) → U611(X)
U611(mark(X)) → U611(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X)) → U611(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1)  =  U611(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  x1
tt  =  tt
U12(x1, x2)  =  x1
isNat(x1)  =  isNat
U13(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x1)
U32(x1, x2)  =  U32(x1)
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
U61^11 > isNat
active1 > U221 > mark1 > top > isNat
active1 > U221 > tt > isNat
active1 > U311 > mark1 > top > isNat
active1 > U321 > mark1 > top > isNat
active1 > U412 > mark1 > top > isNat
active1 > U513 > mark1 > top > isNat
active1 > plus2 > and2 > mark1 > top > isNat
active1 > plus2 > isNatKind > mark1 > top > isNat
active1 > plus2 > isNatKind > tt > isNat
active1 > U611 > mark1 > top > isNat
active1 > 0 > and2 > mark1 > top > isNat
active1 > 0 > isNatKind > mark1 > top > isNat
active1 > 0 > isNatKind > tt > isNat
active1 > x2 > U713 > mark1 > top > isNat
active1 > x2 > and2 > mark1 > top > isNat
active1 > x2 > isNatKind > mark1 > top > isNat
active1 > x2 > isNatKind > tt > isNat

Status:
U61^11: [1]
mark1: [1]
active1: [1]
tt: multiset
isNat: multiset
U221: multiset
U311: [1]
U321: [1]
U412: [2,1]
U513: multiset
plus2: [1,2]
U611: multiset
0: multiset
U713: [2,1,3]
x2: multiset
and2: [2,1]
isNatKind: []
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(ok(X)) → U611(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(ok(X)) → U611(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x3)
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  x2
isNat(x1)  =  isNat(x1)
U13(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  x1
U31(x1, x2, x3)  =  x3
U32(x1, x2)  =  U32(x2)
U33(x1)  =  U33(x1)
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  x2
isNatKind(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U111 > isNat1 > ok1
active1 > tt > isNat1 > ok1
active1 > tt > 0
active1 > tt > x2 > ok1
active1 > U321 > isNat1 > ok1
active1 > U331 > ok1
active1 > U513 > ok1
active1 > plus2 > isNat1 > ok1
active1 > U712 > x2 > ok1
proper1 > U111 > isNat1 > ok1
proper1 > tt > isNat1 > ok1
proper1 > tt > 0
proper1 > tt > x2 > ok1
proper1 > U321 > isNat1 > ok1
proper1 > U331 > ok1
proper1 > U513 > ok1
proper1 > plus2 > isNat1 > ok1
proper1 > U712 > x2 > ok1

Status:
ok1: [1]
active1: multiset
U111: [1]
tt: multiset
isNat1: multiset
U321: [1]
U331: [1]
U513: [3,2,1]
plus2: multiset
0: multiset
U712: [2,1]
x2: [2,1]
proper1: [1]
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(42) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(44) TRUE

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x2)
mark(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
tt  =  tt
U12(x1, x2)  =  x2
isNat(x1)  =  isNat(x1)
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x2)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x3)
U32(x1, x2)  =  U32(x2)
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  x2
isNatKind(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U113 > ok1 > top
active1 > isNat1 > ok1 > top
active1 > isNat1 > tt > 0
active1 > U131 > ok1 > top
active1 > U131 > tt > 0
active1 > U211 > ok1 > top
active1 > U221 > ok1 > top
active1 > U221 > tt > 0
active1 > U311 > ok1 > top
active1 > U321 > ok1 > top
active1 > U412 > ok1 > top
active1 > U513 > ok1 > top
active1 > s1 > ok1 > top
active1 > plus2 > ok1 > top
active1 > U611 > ok1 > top
active1 > U611 > 0
active1 > U712 > ok1 > top
active1 > x2 > ok1 > top
proper1 > U113 > ok1 > top
proper1 > isNat1 > ok1 > top
proper1 > isNat1 > tt > 0
proper1 > U131 > ok1 > top
proper1 > U131 > tt > 0
proper1 > U211 > ok1 > top
proper1 > U221 > ok1 > top
proper1 > U221 > tt > 0
proper1 > U311 > ok1 > top
proper1 > U321 > ok1 > top
proper1 > U412 > ok1 > top
proper1 > U513 > ok1 > top
proper1 > s1 > ok1 > top
proper1 > plus2 > ok1 > top
proper1 > U611 > ok1 > top
proper1 > U611 > 0
proper1 > U712 > ok1 > top
proper1 > x2 > ok1 > top

Status:
PLUS1: multiset
ok1: [1]
active1: [1]
U113: [2,1,3]
tt: multiset
isNat1: multiset
U131: [1]
U211: multiset
U221: multiset
U311: [1]
U321: [1]
U412: [1,2]
U513: [3,2,1]
s1: multiset
plus2: [1,2]
U611: [1]
0: multiset
U712: [2,1]
x2: multiset
proper1: [1]
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(mark(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x1)
tt  =  tt
U12(x1, x2)  =  U12(x1)
isNat(x1)  =  isNat
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x1)
U32(x1, x2)  =  U32(x1)
U33(x1)  =  U33(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
PLUS1 > top
active1 > U131 > tt > U121 > mark1 > top
active1 > U131 > tt > isNat > U111 > mark1 > top
active1 > U131 > tt > isNat > U211 > mark1 > top
active1 > U131 > tt > isNat > U311 > U321 > mark1 > top
active1 > U131 > tt > isNat > isNatKind > mark1 > top
active1 > U131 > tt > U331 > mark1 > top
active1 > U131 > tt > s1 > mark1 > top
active1 > U131 > tt > 0 > top
active1 > U221 > mark1 > top
active1 > U412 > mark1 > top
active1 > U513 > s1 > mark1 > top
active1 > U513 > plus2 > isNat > U111 > mark1 > top
active1 > U513 > plus2 > isNat > U211 > mark1 > top
active1 > U513 > plus2 > isNat > U311 > U321 > mark1 > top
active1 > U513 > plus2 > isNat > isNatKind > mark1 > top
active1 > U513 > plus2 > and2 > mark1 > top
active1 > x2 > isNat > U111 > mark1 > top
active1 > x2 > isNat > U211 > mark1 > top
active1 > x2 > isNat > U311 > U321 > mark1 > top
active1 > x2 > isNat > isNatKind > mark1 > top
active1 > x2 > U713 > mark1 > top
active1 > x2 > and2 > mark1 > top

Status:
PLUS1: multiset
mark1: multiset
active1: [1]
U111: [1]
tt: multiset
U121: multiset
isNat: []
U131: multiset
U211: multiset
U221: multiset
U311: [1]
U321: multiset
U331: [1]
U412: [2,1]
U513: multiset
s1: multiset
plus2: [2,1]
0: multiset
U713: [1,3,2]
x2: [1,2]
and2: [2,1]
isNatKind: []
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, mark(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x1)
tt  =  tt
U12(x1, x2)  =  x1
isNat(x1)  =  isNat
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x1)
U32(x1, x2)  =  U32(x1)
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
top > active1 > U111 > mark1
top > active1 > U111 > isNat
top > active1 > U211 > mark1
top > active1 > U211 > isNat
top > active1 > U221 > tt > U131 > mark1
top > active1 > U221 > tt > plus2 > mark1
top > active1 > U221 > tt > plus2 > isNat
top > active1 > U221 > tt > plus2 > isNatKind
top > active1 > U221 > tt > x2 > mark1
top > active1 > U221 > tt > x2 > isNat
top > active1 > U221 > tt > x2 > isNatKind
top > active1 > U311 > U321 > mark1
top > active1 > U311 > U321 > isNat
top > active1 > U412 > mark1
top > active1 > U513 > plus2 > mark1
top > active1 > U513 > plus2 > isNat
top > active1 > U513 > plus2 > isNatKind
top > active1 > 0 > isNat
top > active1 > 0 > and2 > mark1
top > active1 > 0 > isNatKind
top > active1 > U713 > plus2 > mark1
top > active1 > U713 > plus2 > isNat
top > active1 > U713 > plus2 > isNatKind
top > active1 > U713 > x2 > mark1
top > active1 > U713 > x2 > isNat
top > active1 > U713 > x2 > isNatKind

Status:
PLUS2: [2,1]
mark1: [1]
active1: multiset
U111: multiset
tt: multiset
isNat: multiset
U131: multiset
U211: [1]
U221: multiset
U311: multiset
U321: [1]
U412: multiset
U513: [2,3,1]
plus2: [2,1]
0: multiset
U713: [2,3,1]
x2: [2,1]
and2: multiset
isNatKind: multiset
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(51) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(53) TRUE

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  x1
tt  =  tt
U12(x1, x2)  =  x1
isNat(x1)  =  isNat
U13(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x1)
U32(x1, x2)  =  U32(x1)
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
S1 > isNat
active1 > U221 > mark1 > top > isNat
active1 > U221 > tt > isNat
active1 > U311 > mark1 > top > isNat
active1 > U321 > mark1 > top > isNat
active1 > U412 > mark1 > top > isNat
active1 > U513 > mark1 > top > isNat
active1 > plus2 > and2 > mark1 > top > isNat
active1 > plus2 > isNatKind > mark1 > top > isNat
active1 > plus2 > isNatKind > tt > isNat
active1 > U611 > mark1 > top > isNat
active1 > 0 > and2 > mark1 > top > isNat
active1 > 0 > isNatKind > mark1 > top > isNat
active1 > 0 > isNatKind > tt > isNat
active1 > x2 > U713 > mark1 > top > isNat
active1 > x2 > and2 > mark1 > top > isNat
active1 > x2 > isNatKind > mark1 > top > isNat
active1 > x2 > isNatKind > tt > isNat

Status:
S1: [1]
mark1: [1]
active1: [1]
tt: multiset
isNat: multiset
U221: multiset
U311: [1]
U321: [1]
U412: [2,1]
U513: multiset
plus2: [1,2]
U611: multiset
0: multiset
U713: [2,1,3]
x2: multiset
and2: [2,1]
isNatKind: []
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x3)
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  x2
isNat(x1)  =  isNat(x1)
U13(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  x1
U31(x1, x2, x3)  =  x3
U32(x1, x2)  =  U32(x2)
U33(x1)  =  U33(x1)
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  x2
isNatKind(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U111 > isNat1 > ok1
active1 > tt > isNat1 > ok1
active1 > tt > 0
active1 > tt > x2 > ok1
active1 > U321 > isNat1 > ok1
active1 > U331 > ok1
active1 > U513 > ok1
active1 > plus2 > isNat1 > ok1
active1 > U712 > x2 > ok1
proper1 > U111 > isNat1 > ok1
proper1 > tt > isNat1 > ok1
proper1 > tt > 0
proper1 > tt > x2 > ok1
proper1 > U321 > isNat1 > ok1
proper1 > U331 > ok1
proper1 > U513 > ok1
proper1 > plus2 > isNat1 > ok1
proper1 > U712 > x2 > ok1

Status:
ok1: [1]
active1: multiset
U111: [1]
tt: multiset
isNat1: multiset
U321: [1]
U331: [1]
U513: [3,2,1]
plus2: multiset
0: multiset
U712: [2,1]
x2: [2,1]
proper1: [1]
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(58) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(60) TRUE

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2, X3) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  U511(x1, x3)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x1)
tt  =  tt
U12(x1, x2)  =  U12(x1)
isNat(x1)  =  isNat
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x1)
U32(x1, x2)  =  U32(x1)
U33(x1)  =  U33(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
U51^12 > mark1
active1 > U121 > isNat > U111 > mark1
active1 > U121 > isNat > U311 > mark1
active1 > U121 > isNat > isNatKind > mark1
active1 > U121 > U131 > mark1
active1 > U221 > tt > isNat > U111 > mark1
active1 > U221 > tt > isNat > U311 > mark1
active1 > U221 > tt > isNat > isNatKind > mark1
active1 > U221 > tt > U131 > mark1
active1 > U221 > tt > plus2 > U111 > mark1
active1 > U221 > tt > plus2 > U412 > mark1
active1 > U221 > tt > plus2 > U513 > mark1
active1 > U221 > tt > plus2 > isNatKind > mark1
active1 > U321 > isNat > U111 > mark1
active1 > U321 > isNat > U311 > mark1
active1 > U321 > isNat > isNatKind > mark1
active1 > U331 > tt > isNat > U111 > mark1
active1 > U331 > tt > isNat > U311 > mark1
active1 > U331 > tt > isNat > isNatKind > mark1
active1 > U331 > tt > U131 > mark1
active1 > U331 > tt > plus2 > U111 > mark1
active1 > U331 > tt > plus2 > U412 > mark1
active1 > U331 > tt > plus2 > U513 > mark1
active1 > U331 > tt > plus2 > isNatKind > mark1
active1 > s1 > U211 > isNat > U111 > mark1
active1 > s1 > U211 > isNat > U311 > mark1
active1 > s1 > U211 > isNat > isNatKind > mark1
active1 > s1 > U713 > plus2 > U111 > mark1
active1 > s1 > U713 > plus2 > U412 > mark1
active1 > s1 > U713 > plus2 > U513 > mark1
active1 > s1 > U713 > plus2 > isNatKind > mark1
active1 > s1 > U713 > x2 > isNat > U111 > mark1
active1 > s1 > U713 > x2 > isNat > U311 > mark1
active1 > s1 > U713 > x2 > isNat > isNatKind > mark1
active1 > s1 > and2 > mark1
active1 > 0 > tt > isNat > U111 > mark1
active1 > 0 > tt > isNat > U311 > mark1
active1 > 0 > tt > isNat > isNatKind > mark1
active1 > 0 > tt > U131 > mark1
active1 > 0 > tt > plus2 > U111 > mark1
active1 > 0 > tt > plus2 > U412 > mark1
active1 > 0 > tt > plus2 > U513 > mark1
active1 > 0 > tt > plus2 > isNatKind > mark1
active1 > 0 > U611 > mark1
active1 > 0 > and2 > mark1
proper1 > U121 > isNat > U111 > mark1
proper1 > U121 > isNat > U311 > mark1
proper1 > U121 > isNat > isNatKind > mark1
proper1 > U121 > U131 > mark1
proper1 > U221 > tt > isNat > U111 > mark1
proper1 > U221 > tt > isNat > U311 > mark1
proper1 > U221 > tt > isNat > isNatKind > mark1
proper1 > U221 > tt > U131 > mark1
proper1 > U221 > tt > plus2 > U111 > mark1
proper1 > U221 > tt > plus2 > U412 > mark1
proper1 > U221 > tt > plus2 > U513 > mark1
proper1 > U221 > tt > plus2 > isNatKind > mark1
proper1 > U321 > isNat > U111 > mark1
proper1 > U321 > isNat > U311 > mark1
proper1 > U321 > isNat > isNatKind > mark1
proper1 > U331 > tt > isNat > U111 > mark1
proper1 > U331 > tt > isNat > U311 > mark1
proper1 > U331 > tt > isNat > isNatKind > mark1
proper1 > U331 > tt > U131 > mark1
proper1 > U331 > tt > plus2 > U111 > mark1
proper1 > U331 > tt > plus2 > U412 > mark1
proper1 > U331 > tt > plus2 > U513 > mark1
proper1 > U331 > tt > plus2 > isNatKind > mark1
proper1 > s1 > U211 > isNat > U111 > mark1
proper1 > s1 > U211 > isNat > U311 > mark1
proper1 > s1 > U211 > isNat > isNatKind > mark1
proper1 > s1 > U713 > plus2 > U111 > mark1
proper1 > s1 > U713 > plus2 > U412 > mark1
proper1 > s1 > U713 > plus2 > U513 > mark1
proper1 > s1 > U713 > plus2 > isNatKind > mark1
proper1 > s1 > U713 > x2 > isNat > U111 > mark1
proper1 > s1 > U713 > x2 > isNat > U311 > mark1
proper1 > s1 > U713 > x2 > isNat > isNatKind > mark1
proper1 > s1 > and2 > mark1
proper1 > 0 > tt > isNat > U111 > mark1
proper1 > 0 > tt > isNat > U311 > mark1
proper1 > 0 > tt > isNat > isNatKind > mark1
proper1 > 0 > tt > U131 > mark1
proper1 > 0 > tt > plus2 > U111 > mark1
proper1 > 0 > tt > plus2 > U412 > mark1
proper1 > 0 > tt > plus2 > U513 > mark1
proper1 > 0 > tt > plus2 > isNatKind > mark1
proper1 > 0 > U611 > mark1
proper1 > 0 > and2 > mark1
top > mark1

Status:
U51^12: [1,2]
mark1: multiset
active1: [1]
U111: multiset
tt: multiset
U121: [1]
isNat: []
U131: [1]
U211: [1]
U221: multiset
U311: [1]
U321: [1]
U331: [1]
U412: [1,2]
U513: [1,3,2]
s1: multiset
plus2: [1,2]
U611: multiset
0: multiset
U713: [1,3,2]
x2: multiset
and2: [2,1]
isNatKind: []
proper1: [1]
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  U12(x1, x2)
isNat(x1)  =  isNat(x1)
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x2, x3)
U32(x1, x2)  =  U32(x1, x2)
U33(x1)  =  U33(x1)
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U122 > isNat1 > ok1
active1 > U122 > isNat1 > tt
active1 > U131 > ok1
active1 > U131 > tt
active1 > U212 > isNat1 > ok1
active1 > U212 > isNat1 > tt
active1 > U212 > U221 > ok1
active1 > U212 > U221 > tt
active1 > U322 > isNat1 > ok1
active1 > U322 > isNat1 > tt
active1 > U322 > U331 > ok1
active1 > U322 > U331 > tt
active1 > plus2 > U113 > isNat1 > ok1
active1 > plus2 > U113 > isNat1 > tt
active1 > plus2 > U513 > ok1
active1 > plus2 > and2 > ok1
active1 > plus2 > isNatKind1 > ok1
active1 > plus2 > isNatKind1 > tt
active1 > 0 > isNat1 > ok1
active1 > 0 > isNat1 > tt
active1 > 0 > and2 > ok1
active1 > 0 > isNatKind1 > ok1
active1 > 0 > isNatKind1 > tt
active1 > U713 > ok1
active1 > x2 > U312 > isNat1 > ok1
active1 > x2 > U312 > isNat1 > tt
active1 > x2 > and2 > ok1
active1 > x2 > isNatKind1 > ok1
active1 > x2 > isNatKind1 > tt
proper1 > U122 > isNat1 > ok1
proper1 > U122 > isNat1 > tt
proper1 > U131 > ok1
proper1 > U131 > tt
proper1 > U212 > isNat1 > ok1
proper1 > U212 > isNat1 > tt
proper1 > U212 > U221 > ok1
proper1 > U212 > U221 > tt
proper1 > U322 > isNat1 > ok1
proper1 > U322 > isNat1 > tt
proper1 > U322 > U331 > ok1
proper1 > U322 > U331 > tt
proper1 > plus2 > U113 > isNat1 > ok1
proper1 > plus2 > U113 > isNat1 > tt
proper1 > plus2 > U513 > ok1
proper1 > plus2 > and2 > ok1
proper1 > plus2 > isNatKind1 > ok1
proper1 > plus2 > isNatKind1 > tt
proper1 > U713 > ok1
proper1 > x2 > U312 > isNat1 > ok1
proper1 > x2 > U312 > isNat1 > tt
proper1 > x2 > and2 > ok1
proper1 > x2 > isNatKind1 > ok1
proper1 > x2 > isNatKind1 > tt

Status:
ok1: multiset
active1: [1]
U113: [2,3,1]
tt: multiset
U122: [1,2]
isNat1: multiset
U131: [1]
U212: [1,2]
U221: [1]
U312: [1,2]
U322: multiset
U331: [1]
U513: multiset
plus2: multiset
0: multiset
U713: multiset
x2: [2,1]
and2: multiset
isNatKind1: multiset
proper1: [1]
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(65) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(67) TRUE

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X1), X2) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x1)
tt  =  tt
U12(x1, x2)  =  U12(x1)
isNat(x1)  =  isNat
U13(x1)  =  x1
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x1)
U32(x1, x2)  =  x1
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > tt > isNat > U111 > mark1 > top
active1 > tt > isNat > U211 > mark1 > top
active1 > tt > isNat > U311 > mark1 > top
active1 > tt > isNat > and2 > mark1 > top
active1 > tt > isNat > isNatKind
active1 > tt > U221 > mark1 > top
active1 > tt > 0
active1 > tt > x2 > U311 > mark1 > top
active1 > tt > x2 > and2 > mark1 > top
active1 > tt > x2 > isNatKind
active1 > U121 > isNat > U111 > mark1 > top
active1 > U121 > isNat > U211 > mark1 > top
active1 > U121 > isNat > U311 > mark1 > top
active1 > U121 > isNat > and2 > mark1 > top
active1 > U121 > isNat > isNatKind
active1 > plus2 > isNat > U111 > mark1 > top
active1 > plus2 > isNat > U211 > mark1 > top
active1 > plus2 > isNat > U311 > mark1 > top
active1 > plus2 > isNat > and2 > mark1 > top
active1 > plus2 > isNat > isNatKind
active1 > plus2 > U412 > mark1 > top
active1 > plus2 > U513 > mark1 > top
active1 > U713 > x2 > U311 > mark1 > top
active1 > U713 > x2 > and2 > mark1 > top
active1 > U713 > x2 > isNatKind
proper1 > tt > isNat > U111 > mark1 > top
proper1 > tt > isNat > U211 > mark1 > top
proper1 > tt > isNat > U311 > mark1 > top
proper1 > tt > isNat > and2 > mark1 > top
proper1 > tt > isNat > isNatKind
proper1 > tt > U221 > mark1 > top
proper1 > tt > 0
proper1 > tt > x2 > U311 > mark1 > top
proper1 > tt > x2 > and2 > mark1 > top
proper1 > tt > x2 > isNatKind
proper1 > U121 > isNat > U111 > mark1 > top
proper1 > U121 > isNat > U211 > mark1 > top
proper1 > U121 > isNat > U311 > mark1 > top
proper1 > U121 > isNat > and2 > mark1 > top
proper1 > U121 > isNat > isNatKind
proper1 > plus2 > isNat > U111 > mark1 > top
proper1 > plus2 > isNat > U211 > mark1 > top
proper1 > plus2 > isNat > U311 > mark1 > top
proper1 > plus2 > isNat > and2 > mark1 > top
proper1 > plus2 > isNat > isNatKind
proper1 > plus2 > U412 > mark1 > top
proper1 > plus2 > U513 > mark1 > top
proper1 > U713 > x2 > U311 > mark1 > top
proper1 > U713 > x2 > and2 > mark1 > top
proper1 > U713 > x2 > isNatKind

Status:
mark1: multiset
active1: multiset
U111: [1]
tt: multiset
U121: multiset
isNat: []
U211: [1]
U221: [1]
U311: [1]
U412: [2,1]
U513: [1,2,3]
plus2: [1,2]
0: multiset
U713: multiset
x2: multiset
and2: multiset
isNatKind: multiset
proper1: [1]
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(70) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2)) → U411(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(ok(X1), ok(X2)) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x2)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x3)
tt  =  tt
mark(x1)  =  mark
U12(x1, x2)  =  U12(x1)
isNat(x1)  =  isNat(x1)
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x2)
U22(x1)  =  x1
U31(x1, x2, x3)  =  U31(x1, x3)
U32(x1, x2)  =  x1
U33(x1)  =  x1
U41(x1, x2)  =  U41(x2)
U51(x1, x2, x3)  =  U51(x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x3)
x(x1, x2)  =  x(x1)
and(x1, x2)  =  x1
isNatKind(x1)  =  isNatKind(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
proper1 > U111 > active1 > U121 > ok1
proper1 > U111 > active1 > U121 > mark
proper1 > U111 > active1 > U131 > ok1
proper1 > U111 > active1 > U131 > mark
proper1 > U111 > active1 > U312 > ok1
proper1 > U111 > active1 > U312 > mark
proper1 > U111 > active1 > U711 > plus1 > ok1
proper1 > U111 > active1 > U711 > plus1 > mark
proper1 > U111 > active1 > x1 > ok1
proper1 > U111 > active1 > x1 > mark
proper1 > U111 > isNat1 > U312 > ok1
proper1 > U111 > isNat1 > U312 > mark
proper1 > tt > U121 > ok1
proper1 > tt > U121 > mark
proper1 > tt > U131 > ok1
proper1 > tt > U131 > mark
proper1 > tt > plus1 > ok1
proper1 > tt > plus1 > mark
proper1 > tt > 0 > isNat1 > U312 > ok1
proper1 > tt > 0 > isNat1 > U312 > mark
proper1 > tt > 0 > isNatKind1 > ok1
proper1 > tt > 0 > isNatKind1 > mark
proper1 > tt > x1 > ok1
proper1 > tt > x1 > mark
proper1 > U211 > active1 > U121 > ok1
proper1 > U211 > active1 > U121 > mark
proper1 > U211 > active1 > U131 > ok1
proper1 > U211 > active1 > U131 > mark
proper1 > U211 > active1 > U312 > ok1
proper1 > U211 > active1 > U312 > mark
proper1 > U211 > active1 > U711 > plus1 > ok1
proper1 > U211 > active1 > U711 > plus1 > mark
proper1 > U211 > active1 > x1 > ok1
proper1 > U211 > active1 > x1 > mark
proper1 > U211 > isNat1 > U312 > ok1
proper1 > U211 > isNat1 > U312 > mark
proper1 > U411 > active1 > U121 > ok1
proper1 > U411 > active1 > U121 > mark
proper1 > U411 > active1 > U131 > ok1
proper1 > U411 > active1 > U131 > mark
proper1 > U411 > active1 > U312 > ok1
proper1 > U411 > active1 > U312 > mark
proper1 > U411 > active1 > U711 > plus1 > ok1
proper1 > U411 > active1 > U711 > plus1 > mark
proper1 > U411 > active1 > x1 > ok1
proper1 > U411 > active1 > x1 > mark
proper1 > U511 > active1 > U121 > ok1
proper1 > U511 > active1 > U121 > mark
proper1 > U511 > active1 > U131 > ok1
proper1 > U511 > active1 > U131 > mark
proper1 > U511 > active1 > U312 > ok1
proper1 > U511 > active1 > U312 > mark
proper1 > U511 > active1 > U711 > plus1 > ok1
proper1 > U511 > active1 > U711 > plus1 > mark
proper1 > U511 > active1 > x1 > ok1
proper1 > U511 > active1 > x1 > mark

Status:
U41^11: [1]
ok1: multiset
active1: [1]
U111: [1]
tt: multiset
mark: multiset
U121: [1]
isNat1: [1]
U131: [1]
U211: multiset
U312: multiset
U411: [1]
U511: multiset
plus1: [1]
0: multiset
U711: multiset
x1: multiset
isNatKind1: multiset
proper1: multiset
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(72) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(74) TRUE

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U331(ok(X)) → U331(X)
U331(mark(X)) → U331(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(76) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U331(mark(X)) → U331(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U331(x1)  =  U331(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  x1
tt  =  tt
U12(x1, x2)  =  x1
isNat(x1)  =  isNat
U13(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x1)
U32(x1, x2)  =  U32(x1)
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
U33^11 > isNat
active1 > U221 > mark1 > top > isNat
active1 > U221 > tt > isNat
active1 > U311 > mark1 > top > isNat
active1 > U321 > mark1 > top > isNat
active1 > U412 > mark1 > top > isNat
active1 > U513 > mark1 > top > isNat
active1 > plus2 > and2 > mark1 > top > isNat
active1 > plus2 > isNatKind > mark1 > top > isNat
active1 > plus2 > isNatKind > tt > isNat
active1 > U611 > mark1 > top > isNat
active1 > 0 > and2 > mark1 > top > isNat
active1 > 0 > isNatKind > mark1 > top > isNat
active1 > 0 > isNatKind > tt > isNat
active1 > x2 > U713 > mark1 > top > isNat
active1 > x2 > and2 > mark1 > top > isNat
active1 > x2 > isNatKind > mark1 > top > isNat
active1 > x2 > isNatKind > tt > isNat

Status:
U33^11: [1]
mark1: [1]
active1: [1]
tt: multiset
isNat: multiset
U221: multiset
U311: [1]
U321: [1]
U412: [2,1]
U513: multiset
plus2: [1,2]
U611: multiset
0: multiset
U713: [2,1,3]
x2: multiset
and2: [2,1]
isNatKind: []
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(77) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U331(ok(X)) → U331(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U331(ok(X)) → U331(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U331(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x3)
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  x2
isNat(x1)  =  isNat(x1)
U13(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  x1
U31(x1, x2, x3)  =  x3
U32(x1, x2)  =  U32(x2)
U33(x1)  =  U33(x1)
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  x2
isNatKind(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U111 > isNat1 > ok1
active1 > tt > isNat1 > ok1
active1 > tt > 0
active1 > tt > x2 > ok1
active1 > U321 > isNat1 > ok1
active1 > U331 > ok1
active1 > U513 > ok1
active1 > plus2 > isNat1 > ok1
active1 > U712 > x2 > ok1
proper1 > U111 > isNat1 > ok1
proper1 > tt > isNat1 > ok1
proper1 > tt > 0
proper1 > tt > x2 > ok1
proper1 > U321 > isNat1 > ok1
proper1 > U331 > ok1
proper1 > U513 > ok1
proper1 > plus2 > isNat1 > ok1
proper1 > U712 > x2 > ok1

Status:
ok1: [1]
active1: multiset
U111: [1]
tt: multiset
isNat1: multiset
U321: [1]
U331: [1]
U513: [3,2,1]
plus2: multiset
0: multiset
U712: [2,1]
x2: [2,1]
proper1: [1]
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(79) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(81) TRUE

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(ok(X1), ok(X2)) → U321(X1, X2)
U321(mark(X1), X2) → U321(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(83) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(ok(X1), ok(X2)) → U321(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1, x2)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x2, x3)
tt  =  tt
U12(x1, x2)  =  U12(x1, x2)
isNat(x1)  =  x1
U13(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  x3
U32(x1, x2)  =  x2
U33(x1)  =  U33(x1)
U41(x1, x2)  =  U41(x2)
U51(x1, x2, x3)  =  U51(x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x2)
isNatKind(x1)  =  isNatKind(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U122 > ok1 > top
active1 > U221 > ok1 > top
active1 > U331 > ok1 > top
active1 > plus2 > U112 > ok1 > top
active1 > plus2 > U411 > ok1 > top
active1 > plus2 > U512 > ok1 > top
active1 > plus2 > and1 > ok1 > top
active1 > plus2 > isNatKind1 > ok1 > top
active1 > 0 > tt > ok1 > top
active1 > 0 > U411 > ok1 > top
active1 > 0 > and1 > ok1 > top
active1 > 0 > isNatKind1 > ok1 > top
active1 > x2 > U712 > ok1 > top
active1 > x2 > and1 > ok1 > top
active1 > x2 > isNatKind1 > ok1 > top
proper1 > tt > ok1 > top
proper1 > U122 > ok1 > top
proper1 > U221 > ok1 > top
proper1 > U331 > ok1 > top
proper1 > plus2 > U112 > ok1 > top
proper1 > plus2 > U411 > ok1 > top
proper1 > plus2 > U512 > ok1 > top
proper1 > plus2 > and1 > ok1 > top
proper1 > plus2 > isNatKind1 > ok1 > top
proper1 > x2 > U712 > ok1 > top
proper1 > x2 > and1 > ok1 > top
proper1 > x2 > isNatKind1 > ok1 > top

Status:
ok1: multiset
active1: [1]
U112: [2,1]
tt: multiset
U122: [2,1]
U221: [1]
U331: multiset
U411: [1]
U512: [1,2]
plus2: multiset
0: multiset
U712: [1,2]
x2: multiset
and1: multiset
isNatKind1: [1]
proper1: [1]
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(84) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(mark(X1), X2) → U321(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(85) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(mark(X1), X2) → U321(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1, x2)  =  U321(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  x1
tt  =  tt
U12(x1, x2)  =  U12(x1)
isNat(x1)  =  isNat
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1)
U22(x1)  =  x1
U31(x1, x2, x3)  =  U31(x1)
U32(x1, x2)  =  U32(x1)
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
U32^12 > mark1
active1 > U513 > plus2 > mark1
active1 > U513 > ok > mark1
active1 > 0 > tt > U121 > isNat > U211 > mark1
active1 > 0 > tt > U121 > isNat > U311 > U321 > mark1
active1 > 0 > tt > U121 > isNat > U311 > ok > mark1
active1 > 0 > tt > U121 > isNat > and2 > ok > mark1
active1 > 0 > tt > U121 > U131 > ok > mark1
active1 > 0 > tt > plus2 > mark1
active1 > 0 > tt > x2 > ok > mark1
active1 > 0 > U412 > mark1
active1 > 0 > isNatKind > and2 > ok > mark1
active1 > U713 > plus2 > mark1
active1 > U713 > x2 > ok > mark1
proper1 > U513 > plus2 > mark1
proper1 > U513 > ok > mark1
proper1 > 0 > tt > U121 > isNat > U211 > mark1
proper1 > 0 > tt > U121 > isNat > U311 > U321 > mark1
proper1 > 0 > tt > U121 > isNat > U311 > ok > mark1
proper1 > 0 > tt > U121 > isNat > and2 > ok > mark1
proper1 > 0 > tt > U121 > U131 > ok > mark1
proper1 > 0 > tt > plus2 > mark1
proper1 > 0 > tt > x2 > ok > mark1
proper1 > 0 > U412 > mark1
proper1 > 0 > isNatKind > and2 > ok > mark1
proper1 > U713 > plus2 > mark1
proper1 > U713 > x2 > ok > mark1
top > mark1

Status:
U32^12: [1,2]
mark1: multiset
active1: multiset
tt: multiset
U121: multiset
isNat: multiset
U131: multiset
U211: [1]
U311: multiset
U321: [1]
U412: [2,1]
U513: multiset
plus2: [1,2]
0: multiset
U713: [1,3,2]
x2: [2,1]
and2: multiset
isNatKind: multiset
proper1: multiset
ok: multiset
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(86) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(87) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(88) TRUE

(89) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X1), ok(X2), ok(X3)) → U311(X1, X2, X3)
U311(mark(X1), X2, X3) → U311(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(90) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(ok(X1), ok(X2), ok(X3)) → U311(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2, x3)  =  U311(x1, x2, x3)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  x3
tt  =  tt
U12(x1, x2)  =  x2
isNat(x1)  =  isNat(x1)
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x2, x3)
U32(x1, x2)  =  U32(x1, x2)
U33(x1)  =  x1
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  x2
isNatKind(x1)  =  isNatKind(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > tt > U131 > ok1 > U31^13
active1 > tt > U221 > ok1 > U31^13
active1 > tt > U322 > isNat1 > U212 > ok1 > U31^13
active1 > tt > U322 > isNat1 > U312 > ok1 > U31^13
active1 > tt > U322 > isNat1 > isNatKind1 > ok1 > U31^13
active1 > tt > plus2 > ok1 > U31^13
active1 > tt > x2 > U312 > ok1 > U31^13
active1 > tt > x2 > isNatKind1 > ok1 > U31^13
active1 > U512 > ok1 > U31^13
active1 > U611 > 0 > isNat1 > U212 > ok1 > U31^13
active1 > U611 > 0 > isNat1 > U312 > ok1 > U31^13
active1 > U611 > 0 > isNat1 > isNatKind1 > ok1 > U31^13
active1 > U712 > plus2 > ok1 > U31^13
active1 > U712 > x2 > U312 > ok1 > U31^13
active1 > U712 > x2 > isNatKind1 > ok1 > U31^13
proper1 > tt > U131 > ok1 > U31^13
proper1 > tt > U221 > ok1 > U31^13
proper1 > tt > U322 > isNat1 > U212 > ok1 > U31^13
proper1 > tt > U322 > isNat1 > U312 > ok1 > U31^13
proper1 > tt > U322 > isNat1 > isNatKind1 > ok1 > U31^13
proper1 > tt > plus2 > ok1 > U31^13
proper1 > tt > x2 > U312 > ok1 > U31^13
proper1 > tt > x2 > isNatKind1 > ok1 > U31^13
proper1 > U512 > ok1 > U31^13
proper1 > U611 > 0 > isNat1 > U212 > ok1 > U31^13
proper1 > U611 > 0 > isNat1 > U312 > ok1 > U31^13
proper1 > U611 > 0 > isNat1 > isNatKind1 > ok1 > U31^13
proper1 > U712 > plus2 > ok1 > U31^13
proper1 > U712 > x2 > U312 > ok1 > U31^13
proper1 > U712 > x2 > isNatKind1 > ok1 > U31^13
top > U31^13

Status:
U31^13: [2,3,1]
ok1: multiset
active1: [1]
tt: multiset
isNat1: multiset
U131: multiset
U212: [1,2]
U221: multiset
U312: [1,2]
U322: [1,2]
U512: [2,1]
plus2: [1,2]
U611: multiset
0: multiset
U712: [1,2]
x2: multiset
isNatKind1: multiset
proper1: multiset
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(91) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2, X3) → U311(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(92) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2, X3) → U311(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2, x3)  =  U311(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x1)
tt  =  tt
U12(x1, x2)  =  U12(x1)
isNat(x1)  =  isNat
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x1)
U32(x1, x2)  =  x1
U33(x1)  =  U33(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U121 > isNat > U111 > mark1
active1 > U121 > isNat > and2 > mark1
active1 > U121 > isNat > isNatKind > mark1
active1 > U121 > isNat > isNatKind > tt
active1 > U121 > U131 > mark1
active1 > U121 > U131 > tt
active1 > U211 > isNat > U111 > mark1
active1 > U211 > isNat > and2 > mark1
active1 > U211 > isNat > isNatKind > mark1
active1 > U211 > isNat > isNatKind > tt
active1 > U211 > U221 > mark1
active1 > U211 > U221 > tt
active1 > U311 > isNat > U111 > mark1
active1 > U311 > isNat > and2 > mark1
active1 > U311 > isNat > isNatKind > mark1
active1 > U311 > isNat > isNatKind > tt
active1 > U331 > mark1
active1 > U331 > tt
active1 > U412 > mark1
active1 > plus2 > U513 > s1 > isNat > U111 > mark1
active1 > plus2 > U513 > s1 > isNat > and2 > mark1
active1 > plus2 > U513 > s1 > isNat > isNatKind > mark1
active1 > plus2 > U513 > s1 > isNat > isNatKind > tt
active1 > 0 > isNat > U111 > mark1
active1 > 0 > isNat > and2 > mark1
active1 > 0 > isNat > isNatKind > mark1
active1 > 0 > isNat > isNatKind > tt
active1 > U713 > x2 > isNat > U111 > mark1
active1 > U713 > x2 > isNat > and2 > mark1
active1 > U713 > x2 > isNat > isNatKind > mark1
active1 > U713 > x2 > isNat > isNatKind > tt
proper1 > U121 > isNat > U111 > mark1
proper1 > U121 > isNat > and2 > mark1
proper1 > U121 > isNat > isNatKind > mark1
proper1 > U121 > isNat > isNatKind > tt
proper1 > U121 > U131 > mark1
proper1 > U121 > U131 > tt
proper1 > U211 > isNat > U111 > mark1
proper1 > U211 > isNat > and2 > mark1
proper1 > U211 > isNat > isNatKind > mark1
proper1 > U211 > isNat > isNatKind > tt
proper1 > U211 > U221 > mark1
proper1 > U211 > U221 > tt
proper1 > U311 > isNat > U111 > mark1
proper1 > U311 > isNat > and2 > mark1
proper1 > U311 > isNat > isNatKind > mark1
proper1 > U311 > isNat > isNatKind > tt
proper1 > U331 > mark1
proper1 > U331 > tt
proper1 > U412 > mark1
proper1 > plus2 > U513 > s1 > isNat > U111 > mark1
proper1 > plus2 > U513 > s1 > isNat > and2 > mark1
proper1 > plus2 > U513 > s1 > isNat > isNatKind > mark1
proper1 > plus2 > U513 > s1 > isNat > isNatKind > tt
proper1 > 0 > isNat > U111 > mark1
proper1 > 0 > isNat > and2 > mark1
proper1 > 0 > isNat > isNatKind > mark1
proper1 > 0 > isNat > isNatKind > tt
proper1 > U713 > x2 > isNat > U111 > mark1
proper1 > U713 > x2 > isNat > and2 > mark1
proper1 > U713 > x2 > isNat > isNatKind > mark1
proper1 > U713 > x2 > isNat > isNatKind > tt

Status:
U31^13: multiset
mark1: multiset
active1: multiset
U111: multiset
tt: multiset
U121: [1]
isNat: multiset
U131: multiset
U211: [1]
U221: multiset
U311: [1]
U331: [1]
U412: [2,1]
U513: [3,2,1]
s1: [1]
plus2: [1,2]
0: multiset
U713: multiset
x2: [2,1]
and2: multiset
isNatKind: multiset
proper1: [1]
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(93) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(94) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(95) TRUE

(96) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(ok(X)) → U221(X)
U221(mark(X)) → U221(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(97) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X)) → U221(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1)  =  U221(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  x1
tt  =  tt
U12(x1, x2)  =  x1
isNat(x1)  =  isNat
U13(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x1)
U32(x1, x2)  =  U32(x1)
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
U22^11 > isNat
active1 > U221 > mark1 > top > isNat
active1 > U221 > tt > isNat
active1 > U311 > mark1 > top > isNat
active1 > U321 > mark1 > top > isNat
active1 > U412 > mark1 > top > isNat
active1 > U513 > mark1 > top > isNat
active1 > plus2 > and2 > mark1 > top > isNat
active1 > plus2 > isNatKind > mark1 > top > isNat
active1 > plus2 > isNatKind > tt > isNat
active1 > U611 > mark1 > top > isNat
active1 > 0 > and2 > mark1 > top > isNat
active1 > 0 > isNatKind > mark1 > top > isNat
active1 > 0 > isNatKind > tt > isNat
active1 > x2 > U713 > mark1 > top > isNat
active1 > x2 > and2 > mark1 > top > isNat
active1 > x2 > isNatKind > mark1 > top > isNat
active1 > x2 > isNatKind > tt > isNat

Status:
U22^11: [1]
mark1: [1]
active1: [1]
tt: multiset
isNat: multiset
U221: multiset
U311: [1]
U321: [1]
U412: [2,1]
U513: multiset
plus2: [1,2]
U611: multiset
0: multiset
U713: [2,1,3]
x2: multiset
and2: [2,1]
isNatKind: []
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(98) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(ok(X)) → U221(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(99) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(ok(X)) → U221(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x3)
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  x2
isNat(x1)  =  isNat(x1)
U13(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  x1
U31(x1, x2, x3)  =  x3
U32(x1, x2)  =  U32(x2)
U33(x1)  =  U33(x1)
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  x2
isNatKind(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U111 > isNat1 > ok1
active1 > tt > isNat1 > ok1
active1 > tt > 0
active1 > tt > x2 > ok1
active1 > U321 > isNat1 > ok1
active1 > U331 > ok1
active1 > U513 > ok1
active1 > plus2 > isNat1 > ok1
active1 > U712 > x2 > ok1
proper1 > U111 > isNat1 > ok1
proper1 > tt > isNat1 > ok1
proper1 > tt > 0
proper1 > tt > x2 > ok1
proper1 > U321 > isNat1 > ok1
proper1 > U331 > ok1
proper1 > U513 > ok1
proper1 > plus2 > isNat1 > ok1
proper1 > U712 > x2 > ok1

Status:
ok1: [1]
active1: multiset
U111: [1]
tt: multiset
isNat1: multiset
U321: [1]
U331: [1]
U513: [3,2,1]
plus2: multiset
0: multiset
U712: [2,1]
x2: [2,1]
proper1: [1]
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(100) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(101) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(102) TRUE

(103) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(104) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(ok(X1), ok(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x2, x3)
tt  =  tt
U12(x1, x2)  =  U12(x1, x2)
isNat(x1)  =  x1
U13(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  x3
U32(x1, x2)  =  x2
U33(x1)  =  U33(x1)
U41(x1, x2)  =  U41(x2)
U51(x1, x2, x3)  =  U51(x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x2)
isNatKind(x1)  =  isNatKind(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U122 > ok1 > top
active1 > U221 > ok1 > top
active1 > U331 > ok1 > top
active1 > plus2 > U112 > ok1 > top
active1 > plus2 > U411 > ok1 > top
active1 > plus2 > U512 > ok1 > top
active1 > plus2 > and1 > ok1 > top
active1 > plus2 > isNatKind1 > ok1 > top
active1 > 0 > tt > ok1 > top
active1 > 0 > U411 > ok1 > top
active1 > 0 > and1 > ok1 > top
active1 > 0 > isNatKind1 > ok1 > top
active1 > x2 > U712 > ok1 > top
active1 > x2 > and1 > ok1 > top
active1 > x2 > isNatKind1 > ok1 > top
proper1 > tt > ok1 > top
proper1 > U122 > ok1 > top
proper1 > U221 > ok1 > top
proper1 > U331 > ok1 > top
proper1 > plus2 > U112 > ok1 > top
proper1 > plus2 > U411 > ok1 > top
proper1 > plus2 > U512 > ok1 > top
proper1 > plus2 > and1 > ok1 > top
proper1 > plus2 > isNatKind1 > ok1 > top
proper1 > x2 > U712 > ok1 > top
proper1 > x2 > and1 > ok1 > top
proper1 > x2 > isNatKind1 > ok1 > top

Status:
ok1: multiset
active1: [1]
U112: [2,1]
tt: multiset
U122: [2,1]
U221: [1]
U331: multiset
U411: [1]
U512: [1,2]
plus2: multiset
0: multiset
U712: [1,2]
x2: multiset
and1: multiset
isNatKind1: [1]
proper1: [1]
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(105) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(106) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  x1
tt  =  tt
U12(x1, x2)  =  U12(x1)
isNat(x1)  =  isNat
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1)
U22(x1)  =  x1
U31(x1, x2, x3)  =  U31(x1)
U32(x1, x2)  =  U32(x1)
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
U21^12 > mark1
active1 > U513 > plus2 > mark1
active1 > U513 > ok > mark1
active1 > 0 > tt > U121 > isNat > U211 > mark1
active1 > 0 > tt > U121 > isNat > U311 > U321 > mark1
active1 > 0 > tt > U121 > isNat > U311 > ok > mark1
active1 > 0 > tt > U121 > isNat > and2 > ok > mark1
active1 > 0 > tt > U121 > U131 > ok > mark1
active1 > 0 > tt > plus2 > mark1
active1 > 0 > tt > x2 > ok > mark1
active1 > 0 > U412 > mark1
active1 > 0 > isNatKind > and2 > ok > mark1
active1 > U713 > plus2 > mark1
active1 > U713 > x2 > ok > mark1
proper1 > U513 > plus2 > mark1
proper1 > U513 > ok > mark1
proper1 > 0 > tt > U121 > isNat > U211 > mark1
proper1 > 0 > tt > U121 > isNat > U311 > U321 > mark1
proper1 > 0 > tt > U121 > isNat > U311 > ok > mark1
proper1 > 0 > tt > U121 > isNat > and2 > ok > mark1
proper1 > 0 > tt > U121 > U131 > ok > mark1
proper1 > 0 > tt > plus2 > mark1
proper1 > 0 > tt > x2 > ok > mark1
proper1 > 0 > U412 > mark1
proper1 > 0 > isNatKind > and2 > ok > mark1
proper1 > U713 > plus2 > mark1
proper1 > U713 > x2 > ok > mark1
top > mark1

Status:
U21^12: [1,2]
mark1: multiset
active1: multiset
tt: multiset
U121: multiset
isNat: multiset
U131: multiset
U211: [1]
U311: multiset
U321: [1]
U412: [2,1]
U513: multiset
plus2: [1,2]
0: multiset
U713: [1,3,2]
x2: [2,1]
and2: multiset
isNatKind: multiset
proper1: multiset
ok: multiset
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(107) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(108) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(109) TRUE

(110) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(ok(X)) → U131(X)
U131(mark(X)) → U131(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(111) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(mark(X)) → U131(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1)  =  U131(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  x1
tt  =  tt
U12(x1, x2)  =  x1
isNat(x1)  =  isNat
U13(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x1)
U32(x1, x2)  =  U32(x1)
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
U13^11 > isNat
active1 > U221 > mark1 > top > isNat
active1 > U221 > tt > isNat
active1 > U311 > mark1 > top > isNat
active1 > U321 > mark1 > top > isNat
active1 > U412 > mark1 > top > isNat
active1 > U513 > mark1 > top > isNat
active1 > plus2 > and2 > mark1 > top > isNat
active1 > plus2 > isNatKind > mark1 > top > isNat
active1 > plus2 > isNatKind > tt > isNat
active1 > U611 > mark1 > top > isNat
active1 > 0 > and2 > mark1 > top > isNat
active1 > 0 > isNatKind > mark1 > top > isNat
active1 > 0 > isNatKind > tt > isNat
active1 > x2 > U713 > mark1 > top > isNat
active1 > x2 > and2 > mark1 > top > isNat
active1 > x2 > isNatKind > mark1 > top > isNat
active1 > x2 > isNatKind > tt > isNat

Status:
U13^11: [1]
mark1: [1]
active1: [1]
tt: multiset
isNat: multiset
U221: multiset
U311: [1]
U321: [1]
U412: [2,1]
U513: multiset
plus2: [1,2]
U611: multiset
0: multiset
U713: [2,1,3]
x2: multiset
and2: [2,1]
isNatKind: []
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(112) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(ok(X)) → U131(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(113) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(ok(X)) → U131(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x3)
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  x2
isNat(x1)  =  isNat(x1)
U13(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  x1
U31(x1, x2, x3)  =  x3
U32(x1, x2)  =  U32(x2)
U33(x1)  =  U33(x1)
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  x2
isNatKind(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U111 > isNat1 > ok1
active1 > tt > isNat1 > ok1
active1 > tt > 0
active1 > tt > x2 > ok1
active1 > U321 > isNat1 > ok1
active1 > U331 > ok1
active1 > U513 > ok1
active1 > plus2 > isNat1 > ok1
active1 > U712 > x2 > ok1
proper1 > U111 > isNat1 > ok1
proper1 > tt > isNat1 > ok1
proper1 > tt > 0
proper1 > tt > x2 > ok1
proper1 > U321 > isNat1 > ok1
proper1 > U331 > ok1
proper1 > U513 > ok1
proper1 > plus2 > isNat1 > ok1
proper1 > U712 > x2 > ok1

Status:
ok1: [1]
active1: multiset
U111: [1]
tt: multiset
isNat1: multiset
U321: [1]
U331: [1]
U513: [3,2,1]
plus2: multiset
0: multiset
U712: [2,1]
x2: [2,1]
proper1: [1]
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(114) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(115) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(116) TRUE

(117) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(ok(X1), ok(X2)) → U121(X1, X2)
U121(mark(X1), X2) → U121(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(118) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(ok(X1), ok(X2)) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2)  =  x2
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
tt  =  tt
U12(x1, x2)  =  U12(x1, x2)
isNat(x1)  =  isNat(x1)
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x1, x2, x3)
U32(x1, x2)  =  U32(x1, x2)
U33(x1)  =  U33(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U122 > ok1 > top
active1 > U122 > mark1
active1 > isNat1 > U113 > ok1 > top
active1 > isNat1 > U113 > mark1
active1 > isNat1 > U212 > ok1 > top
active1 > isNat1 > U212 > mark1
active1 > isNat1 > U313 > ok1 > top
active1 > isNat1 > U313 > mark1
active1 > isNat1 > and2 > ok1 > top
active1 > isNat1 > and2 > mark1
active1 > isNat1 > isNatKind1 > ok1 > top
active1 > isNat1 > isNatKind1 > tt > mark1
active1 > isNat1 > isNatKind1 > tt > 0
active1 > U131 > ok1 > top
active1 > U131 > tt > mark1
active1 > U131 > tt > 0
active1 > U221 > ok1 > top
active1 > U221 > tt > mark1
active1 > U221 > tt > 0
active1 > U322 > ok1 > top
active1 > U322 > mark1
active1 > U331 > ok1 > top
active1 > U331 > tt > mark1
active1 > U331 > tt > 0
active1 > U412 > ok1 > top
active1 > U412 > mark1
active1 > U513 > s1 > isNatKind1 > ok1 > top
active1 > U513 > s1 > isNatKind1 > tt > mark1
active1 > U513 > s1 > isNatKind1 > tt > 0
active1 > U513 > plus2 > isNatKind1 > ok1 > top
active1 > U513 > plus2 > isNatKind1 > tt > mark1
active1 > U513 > plus2 > isNatKind1 > tt > 0
active1 > U713 > plus2 > isNatKind1 > ok1 > top
active1 > U713 > plus2 > isNatKind1 > tt > mark1
active1 > U713 > plus2 > isNatKind1 > tt > 0
active1 > U713 > x2 > ok1 > top
active1 > U713 > x2 > mark1
proper1 > U122 > ok1 > top
proper1 > U122 > mark1
proper1 > isNat1 > U113 > ok1 > top
proper1 > isNat1 > U113 > mark1
proper1 > isNat1 > U212 > ok1 > top
proper1 > isNat1 > U212 > mark1
proper1 > isNat1 > U313 > ok1 > top
proper1 > isNat1 > U313 > mark1
proper1 > isNat1 > and2 > ok1 > top
proper1 > isNat1 > and2 > mark1
proper1 > isNat1 > isNatKind1 > ok1 > top
proper1 > isNat1 > isNatKind1 > tt > mark1
proper1 > isNat1 > isNatKind1 > tt > 0
proper1 > U131 > ok1 > top
proper1 > U131 > tt > mark1
proper1 > U131 > tt > 0
proper1 > U221 > ok1 > top
proper1 > U221 > tt > mark1
proper1 > U221 > tt > 0
proper1 > U322 > ok1 > top
proper1 > U322 > mark1
proper1 > U331 > ok1 > top
proper1 > U331 > tt > mark1
proper1 > U331 > tt > 0
proper1 > U412 > ok1 > top
proper1 > U412 > mark1
proper1 > U513 > s1 > isNatKind1 > ok1 > top
proper1 > U513 > s1 > isNatKind1 > tt > mark1
proper1 > U513 > s1 > isNatKind1 > tt > 0
proper1 > U513 > plus2 > isNatKind1 > ok1 > top
proper1 > U513 > plus2 > isNatKind1 > tt > mark1
proper1 > U513 > plus2 > isNatKind1 > tt > 0
proper1 > U713 > plus2 > isNatKind1 > ok1 > top
proper1 > U713 > plus2 > isNatKind1 > tt > mark1
proper1 > U713 > plus2 > isNatKind1 > tt > 0
proper1 > U713 > x2 > ok1 > top
proper1 > U713 > x2 > mark1

Status:
ok1: multiset
mark1: multiset
active1: [1]
U113: [1,2,3]
tt: multiset
U122: multiset
isNat1: [1]
U131: [1]
U212: [2,1]
U221: [1]
U313: [2,3,1]
U322: [2,1]
U331: [1]
U412: [2,1]
U513: multiset
s1: multiset
plus2: multiset
0: multiset
U713: [1,3,2]
x2: [2,1]
and2: [2,1]
isNatKind1: multiset
proper1: [1]
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(119) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X1), X2) → U121(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X1), X2) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2)  =  U121(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x1)
tt  =  tt
U12(x1, x2)  =  U12(x1)
isNat(x1)  =  isNat
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x1)
U32(x1, x2)  =  x1
U33(x1)  =  U33(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > tt > isNat > U111 > U121 > U131 > mark1 > U12^12
active1 > tt > isNat > U211 > mark1 > U12^12
active1 > tt > isNat > U311 > mark1 > U12^12
active1 > tt > isNat > and2 > mark1 > U12^12
active1 > tt > U221 > mark1 > U12^12
active1 > tt > s1 > mark1 > U12^12
active1 > tt > plus2 > U111 > U121 > U131 > mark1 > U12^12
active1 > tt > plus2 > U412 > mark1 > U12^12
active1 > tt > plus2 > and2 > mark1 > U12^12
active1 > U331 > mark1 > U12^12
active1 > U513 > s1 > mark1 > U12^12
active1 > U513 > plus2 > U111 > U121 > U131 > mark1 > U12^12
active1 > U513 > plus2 > U412 > mark1 > U12^12
active1 > U513 > plus2 > and2 > mark1 > U12^12
active1 > 0 > isNat > U111 > U121 > U131 > mark1 > U12^12
active1 > 0 > isNat > U211 > mark1 > U12^12
active1 > 0 > isNat > U311 > mark1 > U12^12
active1 > 0 > isNat > and2 > mark1 > U12^12
active1 > 0 > U412 > mark1 > U12^12
active1 > 0 > U611 > mark1 > U12^12
active1 > U713 > plus2 > U111 > U121 > U131 > mark1 > U12^12
active1 > U713 > plus2 > U412 > mark1 > U12^12
active1 > U713 > plus2 > and2 > mark1 > U12^12
active1 > x2 > isNat > U111 > U121 > U131 > mark1 > U12^12
active1 > x2 > isNat > U211 > mark1 > U12^12
active1 > x2 > isNat > U311 > mark1 > U12^12
active1 > x2 > isNat > and2 > mark1 > U12^12
active1 > x2 > U611 > mark1 > U12^12
active1 > isNatKind > and2 > mark1 > U12^12
proper1 > tt > isNat > U111 > U121 > U131 > mark1 > U12^12
proper1 > tt > isNat > U211 > mark1 > U12^12
proper1 > tt > isNat > U311 > mark1 > U12^12
proper1 > tt > isNat > and2 > mark1 > U12^12
proper1 > tt > U221 > mark1 > U12^12
proper1 > tt > s1 > mark1 > U12^12
proper1 > tt > plus2 > U111 > U121 > U131 > mark1 > U12^12
proper1 > tt > plus2 > U412 > mark1 > U12^12
proper1 > tt > plus2 > and2 > mark1 > U12^12
proper1 > U331 > mark1 > U12^12
proper1 > U513 > s1 > mark1 > U12^12
proper1 > U513 > plus2 > U111 > U121 > U131 > mark1 > U12^12
proper1 > U513 > plus2 > U412 > mark1 > U12^12
proper1 > U513 > plus2 > and2 > mark1 > U12^12
proper1 > 0 > isNat > U111 > U121 > U131 > mark1 > U12^12
proper1 > 0 > isNat > U211 > mark1 > U12^12
proper1 > 0 > isNat > U311 > mark1 > U12^12
proper1 > 0 > isNat > and2 > mark1 > U12^12
proper1 > 0 > U412 > mark1 > U12^12
proper1 > 0 > U611 > mark1 > U12^12
proper1 > U713 > plus2 > U111 > U121 > U131 > mark1 > U12^12
proper1 > U713 > plus2 > U412 > mark1 > U12^12
proper1 > U713 > plus2 > and2 > mark1 > U12^12
proper1 > x2 > isNat > U111 > U121 > U131 > mark1 > U12^12
proper1 > x2 > isNat > U211 > mark1 > U12^12
proper1 > x2 > isNat > U311 > mark1 > U12^12
proper1 > x2 > isNat > and2 > mark1 > U12^12
proper1 > x2 > U611 > mark1 > U12^12
proper1 > isNatKind > and2 > mark1 > U12^12
top > U12^12

Status:
U12^12: [1,2]
mark1: [1]
active1: [1]
U111: [1]
tt: multiset
U121: multiset
isNat: multiset
U131: multiset
U211: [1]
U221: multiset
U311: [1]
U331: multiset
U412: multiset
U513: [2,3,1]
s1: multiset
plus2: [2,1]
U611: multiset
0: multiset
U713: [2,3,1]
x2: [2,1]
and2: [2,1]
isNatKind: multiset
proper1: [1]
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(121) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(122) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(123) TRUE

(124) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(125) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x1, x2, x3)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  x3
tt  =  tt
U12(x1, x2)  =  x2
isNat(x1)  =  isNat(x1)
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x2, x3)
U32(x1, x2)  =  U32(x1, x2)
U33(x1)  =  x1
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61(x1)
0  =  0
U71(x1, x2, x3)  =  U71(x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  x2
isNatKind(x1)  =  isNatKind(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > tt > U131 > ok1 > U11^13
active1 > tt > U221 > ok1 > U11^13
active1 > tt > U322 > isNat1 > U212 > ok1 > U11^13
active1 > tt > U322 > isNat1 > U312 > ok1 > U11^13
active1 > tt > U322 > isNat1 > isNatKind1 > ok1 > U11^13
active1 > tt > plus2 > ok1 > U11^13
active1 > tt > x2 > U312 > ok1 > U11^13
active1 > tt > x2 > isNatKind1 > ok1 > U11^13
active1 > U512 > ok1 > U11^13
active1 > U611 > 0 > isNat1 > U212 > ok1 > U11^13
active1 > U611 > 0 > isNat1 > U312 > ok1 > U11^13
active1 > U611 > 0 > isNat1 > isNatKind1 > ok1 > U11^13
active1 > U712 > plus2 > ok1 > U11^13
active1 > U712 > x2 > U312 > ok1 > U11^13
active1 > U712 > x2 > isNatKind1 > ok1 > U11^13
proper1 > tt > U131 > ok1 > U11^13
proper1 > tt > U221 > ok1 > U11^13
proper1 > tt > U322 > isNat1 > U212 > ok1 > U11^13
proper1 > tt > U322 > isNat1 > U312 > ok1 > U11^13
proper1 > tt > U322 > isNat1 > isNatKind1 > ok1 > U11^13
proper1 > tt > plus2 > ok1 > U11^13
proper1 > tt > x2 > U312 > ok1 > U11^13
proper1 > tt > x2 > isNatKind1 > ok1 > U11^13
proper1 > U512 > ok1 > U11^13
proper1 > U611 > 0 > isNat1 > U212 > ok1 > U11^13
proper1 > U611 > 0 > isNat1 > U312 > ok1 > U11^13
proper1 > U611 > 0 > isNat1 > isNatKind1 > ok1 > U11^13
proper1 > U712 > plus2 > ok1 > U11^13
proper1 > U712 > x2 > U312 > ok1 > U11^13
proper1 > U712 > x2 > isNatKind1 > ok1 > U11^13
top > U11^13

Status:
U11^13: [2,3,1]
ok1: multiset
active1: [1]
tt: multiset
isNat1: multiset
U131: multiset
U212: [1,2]
U221: multiset
U312: [1,2]
U322: [1,2]
U512: [2,1]
plus2: [1,2]
U611: multiset
0: multiset
U712: [1,2]
x2: multiset
isNatKind1: multiset
proper1: multiset
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(126) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(127) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x1)
tt  =  tt
U12(x1, x2)  =  U12(x1)
isNat(x1)  =  isNat
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x1)
U32(x1, x2)  =  x1
U33(x1)  =  U33(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U121 > isNat > U111 > mark1
active1 > U121 > isNat > and2 > mark1
active1 > U121 > isNat > isNatKind > mark1
active1 > U121 > isNat > isNatKind > tt
active1 > U121 > U131 > mark1
active1 > U121 > U131 > tt
active1 > U211 > isNat > U111 > mark1
active1 > U211 > isNat > and2 > mark1
active1 > U211 > isNat > isNatKind > mark1
active1 > U211 > isNat > isNatKind > tt
active1 > U211 > U221 > mark1
active1 > U211 > U221 > tt
active1 > U311 > isNat > U111 > mark1
active1 > U311 > isNat > and2 > mark1
active1 > U311 > isNat > isNatKind > mark1
active1 > U311 > isNat > isNatKind > tt
active1 > U331 > mark1
active1 > U331 > tt
active1 > U412 > mark1
active1 > plus2 > U513 > s1 > isNat > U111 > mark1
active1 > plus2 > U513 > s1 > isNat > and2 > mark1
active1 > plus2 > U513 > s1 > isNat > isNatKind > mark1
active1 > plus2 > U513 > s1 > isNat > isNatKind > tt
active1 > 0 > isNat > U111 > mark1
active1 > 0 > isNat > and2 > mark1
active1 > 0 > isNat > isNatKind > mark1
active1 > 0 > isNat > isNatKind > tt
active1 > U713 > x2 > isNat > U111 > mark1
active1 > U713 > x2 > isNat > and2 > mark1
active1 > U713 > x2 > isNat > isNatKind > mark1
active1 > U713 > x2 > isNat > isNatKind > tt
proper1 > U121 > isNat > U111 > mark1
proper1 > U121 > isNat > and2 > mark1
proper1 > U121 > isNat > isNatKind > mark1
proper1 > U121 > isNat > isNatKind > tt
proper1 > U121 > U131 > mark1
proper1 > U121 > U131 > tt
proper1 > U211 > isNat > U111 > mark1
proper1 > U211 > isNat > and2 > mark1
proper1 > U211 > isNat > isNatKind > mark1
proper1 > U211 > isNat > isNatKind > tt
proper1 > U211 > U221 > mark1
proper1 > U211 > U221 > tt
proper1 > U311 > isNat > U111 > mark1
proper1 > U311 > isNat > and2 > mark1
proper1 > U311 > isNat > isNatKind > mark1
proper1 > U311 > isNat > isNatKind > tt
proper1 > U331 > mark1
proper1 > U331 > tt
proper1 > U412 > mark1
proper1 > plus2 > U513 > s1 > isNat > U111 > mark1
proper1 > plus2 > U513 > s1 > isNat > and2 > mark1
proper1 > plus2 > U513 > s1 > isNat > isNatKind > mark1
proper1 > plus2 > U513 > s1 > isNat > isNatKind > tt
proper1 > 0 > isNat > U111 > mark1
proper1 > 0 > isNat > and2 > mark1
proper1 > 0 > isNat > isNatKind > mark1
proper1 > 0 > isNat > isNatKind > tt
proper1 > U713 > x2 > isNat > U111 > mark1
proper1 > U713 > x2 > isNat > and2 > mark1
proper1 > U713 > x2 > isNat > isNatKind > mark1
proper1 > U713 > x2 > isNat > isNatKind > tt

Status:
U11^13: multiset
mark1: multiset
active1: multiset
U111: multiset
tt: multiset
U121: [1]
isNat: multiset
U131: multiset
U211: [1]
U221: multiset
U311: [1]
U331: [1]
U412: [2,1]
U513: [3,2,1]
s1: [1]
plus2: [1,2]
0: multiset
U713: multiset
x2: [2,1]
and2: multiset
isNatKind: multiset
proper1: [1]
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(128) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(129) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(130) TRUE

(131) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2)) → PROPER(X1)
PROPER(U12(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → PROPER(X)
PROPER(U13(X)) → PROPER(X)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X)) → PROPER(X)
PROPER(U31(X1, X2, X3)) → PROPER(X1)
PROPER(U31(X1, X2, X3)) → PROPER(X2)
PROPER(U31(X1, X2, X3)) → PROPER(X3)
PROPER(U32(X1, X2)) → PROPER(X1)
PROPER(U32(X1, X2)) → PROPER(X2)
PROPER(U33(X)) → PROPER(X)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → PROPER(X)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(U61(X)) → PROPER(X)
PROPER(U71(X1, X2, X3)) → PROPER(X1)
PROPER(U71(X1, X2, X3)) → PROPER(X2)
PROPER(U71(X1, X2, X3)) → PROPER(X3)
PROPER(x(X1, X2)) → PROPER(X1)
PROPER(x(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatKind(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(132) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2)) → PROPER(X1)
PROPER(U12(X1, X2)) → PROPER(X2)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2, X3)) → PROPER(X1)
PROPER(U31(X1, X2, X3)) → PROPER(X2)
PROPER(U31(X1, X2, X3)) → PROPER(X3)
PROPER(U32(X1, X2)) → PROPER(X1)
PROPER(U32(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2, X3)) → PROPER(X1)
PROPER(U71(X1, X2, X3)) → PROPER(X2)
PROPER(U71(X1, X2, X3)) → PROPER(X3)
PROPER(x(X1, X2)) → PROPER(X1)
PROPER(x(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
U12(x1, x2)  =  U12(x1, x2)
isNat(x1)  =  x1
U13(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  x1
U31(x1, x2, x3)  =  U31(x1, x2, x3)
U32(x1, x2)  =  U32(x1, x2)
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  x1
active(x1)  =  active(x1)
tt  =  tt
mark(x1)  =  mark(x1)
0  =  0
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > U122 > PROPER1 > mark1
active1 > U122 > ok > mark1
active1 > U212 > PROPER1 > mark1
active1 > U212 > ok > mark1
active1 > U412 > PROPER1 > mark1
active1 > U412 > ok > mark1
active1 > U513 > plus2 > U113 > PROPER1 > mark1
active1 > U513 > plus2 > U113 > ok > mark1
active1 > U513 > plus2 > and2 > PROPER1 > mark1
active1 > U513 > plus2 > and2 > ok > mark1
active1 > U713 > plus2 > U113 > PROPER1 > mark1
active1 > U713 > plus2 > U113 > ok > mark1
active1 > U713 > plus2 > and2 > PROPER1 > mark1
active1 > U713 > plus2 > and2 > ok > mark1
active1 > x2 > U313 > PROPER1 > mark1
active1 > x2 > U313 > U322 > ok > mark1
active1 > x2 > and2 > PROPER1 > mark1
active1 > x2 > and2 > ok > mark1
active1 > tt > U322 > ok > mark1
active1 > tt > plus2 > U113 > PROPER1 > mark1
active1 > tt > plus2 > U113 > ok > mark1
active1 > tt > plus2 > and2 > PROPER1 > mark1
active1 > tt > plus2 > and2 > ok > mark1
active1 > tt > 0 > mark1
proper1 > U122 > PROPER1 > mark1
proper1 > U122 > ok > mark1
proper1 > U212 > PROPER1 > mark1
proper1 > U212 > ok > mark1
proper1 > U412 > PROPER1 > mark1
proper1 > U412 > ok > mark1
proper1 > U513 > plus2 > U113 > PROPER1 > mark1
proper1 > U513 > plus2 > U113 > ok > mark1
proper1 > U513 > plus2 > and2 > PROPER1 > mark1
proper1 > U513 > plus2 > and2 > ok > mark1
proper1 > U713 > plus2 > U113 > PROPER1 > mark1
proper1 > U713 > plus2 > U113 > ok > mark1
proper1 > U713 > plus2 > and2 > PROPER1 > mark1
proper1 > U713 > plus2 > and2 > ok > mark1
proper1 > x2 > U313 > PROPER1 > mark1
proper1 > x2 > U313 > U322 > ok > mark1
proper1 > x2 > and2 > PROPER1 > mark1
proper1 > x2 > and2 > ok > mark1
proper1 > tt > U322 > ok > mark1
proper1 > tt > plus2 > U113 > PROPER1 > mark1
proper1 > tt > plus2 > U113 > ok > mark1
proper1 > tt > plus2 > and2 > PROPER1 > mark1
proper1 > tt > plus2 > and2 > ok > mark1
proper1 > tt > 0 > mark1
top > mark1

Status:
PROPER1: [1]
U113: [3,2,1]
U122: [1,2]
U212: [1,2]
U313: [1,2,3]
U322: multiset
U412: [2,1]
U513: multiset
plus2: multiset
U713: multiset
x2: multiset
and2: [2,1]
active1: [1]
tt: multiset
mark1: multiset
0: multiset
proper1: [1]
ok: multiset
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(133) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isNat(X)) → PROPER(X)
PROPER(U13(X)) → PROPER(X)
PROPER(U22(X)) → PROPER(X)
PROPER(U33(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(U61(X)) → PROPER(X)
PROPER(isNatKind(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(134) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U33(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
isNat(x1)  =  x1
U13(x1)  =  x1
U22(x1)  =  x1
U33(x1)  =  U33(x1)
s(x1)  =  x1
U61(x1)  =  x1
isNatKind(x1)  =  x1
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x1)
tt  =  tt
mark(x1)  =  mark
U12(x1, x2)  =  x1
U21(x1, x2)  =  U21
U31(x1, x2, x3)  =  U31
U32(x1, x2)  =  x1
U41(x1, x2)  =  U41
U51(x1, x2, x3)  =  U51
plus(x1, x2)  =  plus(x1, x2)
0  =  0
U71(x1, x2, x3)  =  U71
x(x1, x2)  =  x
and(x1, x2)  =  and
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
top > proper1 > U21 > active1 > U111 > mark > U331
top > proper1 > U21 > active1 > U111 > ok
top > proper1 > U21 > active1 > tt > plus2 > U51 > mark > U331
top > proper1 > U21 > active1 > tt > plus2 > U51 > ok
top > proper1 > U21 > active1 > 0 > mark > U331
top > proper1 > U21 > active1 > 0 > ok
top > proper1 > U21 > active1 > U71 > plus2 > U51 > mark > U331
top > proper1 > U21 > active1 > U71 > plus2 > U51 > ok
top > proper1 > U31 > active1 > U111 > mark > U331
top > proper1 > U31 > active1 > U111 > ok
top > proper1 > U31 > active1 > tt > plus2 > U51 > mark > U331
top > proper1 > U31 > active1 > tt > plus2 > U51 > ok
top > proper1 > U31 > active1 > 0 > mark > U331
top > proper1 > U31 > active1 > 0 > ok
top > proper1 > U31 > active1 > U71 > plus2 > U51 > mark > U331
top > proper1 > U31 > active1 > U71 > plus2 > U51 > ok
top > proper1 > U41 > active1 > U111 > mark > U331
top > proper1 > U41 > active1 > U111 > ok
top > proper1 > U41 > active1 > tt > plus2 > U51 > mark > U331
top > proper1 > U41 > active1 > tt > plus2 > U51 > ok
top > proper1 > U41 > active1 > 0 > mark > U331
top > proper1 > U41 > active1 > 0 > ok
top > proper1 > U41 > active1 > U71 > plus2 > U51 > mark > U331
top > proper1 > U41 > active1 > U71 > plus2 > U51 > ok
top > proper1 > x > active1 > U111 > mark > U331
top > proper1 > x > active1 > U111 > ok
top > proper1 > x > active1 > tt > plus2 > U51 > mark > U331
top > proper1 > x > active1 > tt > plus2 > U51 > ok
top > proper1 > x > active1 > 0 > mark > U331
top > proper1 > x > active1 > 0 > ok
top > proper1 > x > active1 > U71 > plus2 > U51 > mark > U331
top > proper1 > x > active1 > U71 > plus2 > U51 > ok
top > proper1 > x > and > mark > U331
top > proper1 > x > and > ok

Status:
PROPER1: [1]
U331: multiset
active1: [1]
U111: multiset
tt: multiset
mark: multiset
U21: []
U31: multiset
U41: multiset
U51: multiset
plus2: multiset
0: multiset
U71: multiset
x: multiset
and: multiset
proper1: [1]
ok: multiset
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(135) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isNat(X)) → PROPER(X)
PROPER(U13(X)) → PROPER(X)
PROPER(U22(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(U61(X)) → PROPER(X)
PROPER(isNatKind(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(136) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isNatKind(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
isNat(x1)  =  x1
U13(x1)  =  x1
U22(x1)  =  x1
s(x1)  =  x1
U61(x1)  =  x1
isNatKind(x1)  =  isNatKind(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11
tt  =  tt
mark(x1)  =  mark
U12(x1, x2)  =  U12(x2)
U21(x1, x2)  =  U21
U31(x1, x2, x3)  =  U31
U32(x1, x2)  =  x2
U33(x1)  =  U33(x1)
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  x1
plus(x1, x2)  =  plus
0  =  0
U71(x1, x2, x3)  =  x1
x(x1, x2)  =  x2
and(x1, x2)  =  x1
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
U21 > active1 > U11 > proper1 > U121 > ok > isNatKind1 > mark
U21 > active1 > U11 > proper1 > U121 > ok > U331 > mark
U21 > active1 > tt > U121 > ok > isNatKind1 > mark
U21 > active1 > tt > U121 > ok > U331 > mark
U21 > active1 > tt > 0 > ok > isNatKind1 > mark
U21 > active1 > tt > 0 > ok > U331 > mark
U21 > active1 > plus > proper1 > U121 > ok > isNatKind1 > mark
U21 > active1 > plus > proper1 > U121 > ok > U331 > mark
U31 > active1 > U11 > proper1 > U121 > ok > isNatKind1 > mark
U31 > active1 > U11 > proper1 > U121 > ok > U331 > mark
U31 > active1 > tt > U121 > ok > isNatKind1 > mark
U31 > active1 > tt > U121 > ok > U331 > mark
U31 > active1 > tt > 0 > ok > isNatKind1 > mark
U31 > active1 > tt > 0 > ok > U331 > mark
U31 > active1 > plus > proper1 > U121 > ok > isNatKind1 > mark
U31 > active1 > plus > proper1 > U121 > ok > U331 > mark
top > active1 > U11 > proper1 > U121 > ok > isNatKind1 > mark
top > active1 > U11 > proper1 > U121 > ok > U331 > mark
top > active1 > tt > U121 > ok > isNatKind1 > mark
top > active1 > tt > U121 > ok > U331 > mark
top > active1 > tt > 0 > ok > isNatKind1 > mark
top > active1 > tt > 0 > ok > U331 > mark
top > active1 > plus > proper1 > U121 > ok > isNatKind1 > mark
top > active1 > plus > proper1 > U121 > ok > U331 > mark

Status:
isNatKind1: [1]
active1: [1]
U11: multiset
tt: multiset
mark: []
U121: multiset
U21: multiset
U31: multiset
U331: multiset
plus: multiset
0: multiset
proper1: [1]
ok: multiset
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(137) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isNat(X)) → PROPER(X)
PROPER(U13(X)) → PROPER(X)
PROPER(U22(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(U61(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(138) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U61(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
isNat(x1)  =  x1
U13(x1)  =  x1
U22(x1)  =  x1
s(x1)  =  x1
U61(x1)  =  U61(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  U12(x2)
U21(x1, x2)  =  x2
U31(x1, x2, x3)  =  U31
U32(x1, x2)  =  U32
U33(x1)  =  U33
U41(x1, x2)  =  U41(x2)
U51(x1, x2, x3)  =  U51(x2, x3)
plus(x1, x2)  =  plus(x1, x2)
0  =  0
U71(x1, x2, x3)  =  U71(x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  x2
isNatKind(x1)  =  isNatKind
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
top > active1 > U611 > PROPER1 > ok
top > active1 > U611 > 0 > isNatKind > tt > ok
top > active1 > U113 > ok
top > active1 > U121 > ok
top > active1 > U31 > U32 > U33 > tt > ok
top > active1 > U411 > ok
top > active1 > U512 > plus2 > isNatKind > tt > ok
top > active1 > U712 > plus2 > isNatKind > tt > ok
top > active1 > U712 > x2 > isNatKind > tt > ok

Status:
PROPER1: multiset
U611: [1]
active1: [1]
U113: [1,2,3]
tt: multiset
U121: multiset
U31: []
U32: []
U33: multiset
U411: multiset
U512: [2,1]
plus2: [1,2]
0: multiset
U712: multiset
x2: multiset
isNatKind: multiset
ok: multiset
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(139) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isNat(X)) → PROPER(X)
PROPER(U13(X)) → PROPER(X)
PROPER(U22(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(140) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U13(X)) → PROPER(X)
PROPER(U22(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
isNat(x1)  =  x1
U13(x1)  =  U13(x1)
U22(x1)  =  U22(x1)
s(x1)  =  x1
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  x3
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  x2
U21(x1, x2)  =  U21(x2)
U31(x1, x2, x3)  =  U31
U32(x1, x2)  =  U32
U33(x1)  =  U33
U41(x1, x2)  =  U41(x2)
U51(x1, x2, x3)  =  U51(x2, x3)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61
0  =  0
U71(x1, x2, x3)  =  U71(x3)
x(x1, x2)  =  x1
and(x1, x2)  =  x2
isNatKind(x1)  =  isNatKind
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
PROPER1 > U61
active1 > U131 > U61
active1 > tt > U221 > U61
active1 > tt > U32 > U33 > U61
active1 > tt > 0 > U411 > U61
active1 > tt > 0 > isNatKind > U61
active1 > U211 > U61
active1 > U31 > U61
active1 > plus2 > U411 > U61
active1 > plus2 > U512 > U61
active1 > plus2 > isNatKind > U61
active1 > U711 > U61
top > U61

Status:
PROPER1: [1]
U131: [1]
U221: multiset
active1: multiset
tt: multiset
U211: multiset
U31: multiset
U32: multiset
U33: multiset
U411: multiset
U512: multiset
plus2: [2,1]
U61: multiset
0: multiset
U711: multiset
isNatKind: []
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(141) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isNat(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(142) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isNat(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
isNat(x1)  =  isNat(x1)
s(x1)  =  x1
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11
tt  =  tt
mark(x1)  =  mark
U12(x1, x2)  =  U12
U13(x1)  =  U13
U21(x1, x2)  =  U21(x2)
U22(x1)  =  U22
U31(x1, x2, x3)  =  U31(x3)
U32(x1, x2)  =  U32
U33(x1)  =  U33
U41(x1, x2)  =  x2
U51(x1, x2, x3)  =  U51(x1)
plus(x1, x2)  =  x1
U61(x1)  =  U61
0  =  0
U71(x1, x2, x3)  =  x3
x(x1, x2)  =  x1
and(x1, x2)  =  x2
isNatKind(x1)  =  isNatKind
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
top > proper1 > isNat1 > PROPER1 > mark
top > proper1 > isNat1 > U11 > U12 > active1 > tt > U13 > mark
top > proper1 > isNat1 > U11 > U12 > active1 > tt > U32 > U33 > mark
top > proper1 > isNat1 > U11 > U12 > active1 > tt > 0 > mark
top > proper1 > isNat1 > U11 > U12 > active1 > U22 > mark
top > proper1 > isNat1 > U11 > U12 > active1 > U511 > mark
top > proper1 > isNat1 > U11 > U12 > active1 > U61 > 0 > mark
top > proper1 > isNat1 > U11 > U12 > active1 > isNatKind > mark
top > proper1 > isNat1 > U311 > U32 > U33 > mark
top > proper1 > U211 > active1 > tt > U13 > mark
top > proper1 > U211 > active1 > tt > U32 > U33 > mark
top > proper1 > U211 > active1 > tt > 0 > mark
top > proper1 > U211 > active1 > U22 > mark
top > proper1 > U211 > active1 > U511 > mark
top > proper1 > U211 > active1 > U61 > 0 > mark
top > proper1 > U211 > active1 > isNatKind > mark

Status:
PROPER1: multiset
isNat1: multiset
active1: multiset
U11: []
tt: multiset
mark: multiset
U12: []
U13: []
U211: multiset
U22: multiset
U311: [1]
U32: multiset
U33: multiset
U511: [1]
U61: multiset
0: multiset
isNatKind: multiset
proper1: multiset
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(143) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(144) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
s(x1)  =  s(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  x1
isNat(x1)  =  isNat
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31
U32(x1, x2)  =  x1
U33(x1)  =  U33(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
PROPER1 > U31
active1 > U11 > proper1 > s1 > isNat > U31
active1 > U11 > proper1 > s1 > and2 > U31
active1 > U11 > proper1 > s1 > isNatKind1 > U31
active1 > U11 > proper1 > U131 > U31
active1 > U11 > proper1 > U21 > isNat > U31
active1 > U11 > proper1 > U21 > U221 > U31
active1 > U11 > proper1 > U331 > U31
active1 > U11 > proper1 > U412 > U31
active1 > U11 > proper1 > U513 > plus2 > U31
active1 > U11 > proper1 > U713 > plus2 > U31
active1 > U11 > proper1 > U713 > x2 > isNat > U31
active1 > U11 > proper1 > U713 > x2 > and2 > U31
active1 > U11 > proper1 > U713 > x2 > isNatKind1 > U31
active1 > U61 > proper1 > s1 > isNat > U31
active1 > U61 > proper1 > s1 > and2 > U31
active1 > U61 > proper1 > s1 > isNatKind1 > U31
active1 > U61 > proper1 > U131 > U31
active1 > U61 > proper1 > U21 > isNat > U31
active1 > U61 > proper1 > U21 > U221 > U31
active1 > U61 > proper1 > U331 > U31
active1 > U61 > proper1 > U412 > U31
active1 > U61 > proper1 > U513 > plus2 > U31
active1 > U61 > proper1 > U713 > plus2 > U31
active1 > U61 > proper1 > U713 > x2 > isNat > U31
active1 > U61 > proper1 > U713 > x2 > and2 > U31
active1 > U61 > proper1 > U713 > x2 > isNatKind1 > U31
active1 > 0 > tt > s1 > isNat > U31
active1 > 0 > tt > s1 > and2 > U31
active1 > 0 > tt > s1 > isNatKind1 > U31
active1 > 0 > tt > U131 > U31
active1 > 0 > tt > U221 > U31
active1 > 0 > tt > U331 > U31
active1 > 0 > tt > plus2 > U31
active1 > 0 > tt > x2 > isNat > U31
active1 > 0 > tt > x2 > and2 > U31
active1 > 0 > tt > x2 > isNatKind1 > U31
active1 > 0 > U412 > U31
top > proper1 > s1 > isNat > U31
top > proper1 > s1 > and2 > U31
top > proper1 > s1 > isNatKind1 > U31
top > proper1 > U131 > U31
top > proper1 > U21 > isNat > U31
top > proper1 > U21 > U221 > U31
top > proper1 > U331 > U31
top > proper1 > U412 > U31
top > proper1 > U513 > plus2 > U31
top > proper1 > U713 > plus2 > U31
top > proper1 > U713 > x2 > isNat > U31
top > proper1 > U713 > x2 > and2 > U31
top > proper1 > U713 > x2 > isNatKind1 > U31

Status:
PROPER1: multiset
s1: multiset
active1: [1]
U11: []
tt: multiset
isNat: multiset
U131: [1]
U21: []
U221: multiset
U31: multiset
U331: multiset
U412: multiset
U513: [2,3,1]
plus2: multiset
U61: []
0: multiset
U713: multiset
x2: multiset
and2: [2,1]
isNatKind1: multiset
proper1: [1]
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(145) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(146) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(147) TRUE

(148) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U12(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U13(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U32(X1, X2)) → ACTIVE(X1)
ACTIVE(U33(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(U61(X)) → ACTIVE(X)
ACTIVE(U71(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → ACTIVE(X2)
ACTIVE(and(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(149) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(x(X1, X2)) → ACTIVE(X1)
ACTIVE(x(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U12(x1, x2)  =  x1
U11(x1, x2, x3)  =  U11(x1)
U13(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  x1
U31(x1, x2, x3)  =  x1
U32(x1, x2)  =  x1
U33(x1)  =  x1
U41(x1, x2)  =  x1
U51(x1, x2, x3)  =  x1
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  x1
U71(x1, x2, x3)  =  x1
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  x1
active(x1)  =  active(x1)
tt  =  tt
mark(x1)  =  mark
isNat(x1)  =  x1
0  =  0
isNatKind(x1)  =  x1
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
ACTIVE1 > mark
top > active1 > U111 > mark
top > active1 > plus2 > mark
top > active1 > x2 > mark
top > active1 > 0 > tt > mark
top > proper1 > U111 > mark
top > proper1 > plus2 > mark
top > proper1 > x2 > mark
top > proper1 > 0 > tt > mark

Status:
ACTIVE1: [1]
U111: [1]
plus2: [2,1]
x2: multiset
active1: [1]
tt: multiset
mark: multiset
0: multiset
proper1: [1]
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(150) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U12(X1, X2)) → ACTIVE(X1)
ACTIVE(U13(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U32(X1, X2)) → ACTIVE(X1)
ACTIVE(U33(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U61(X)) → ACTIVE(X)
ACTIVE(U71(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(151) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U41(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U12(x1, x2)  =  x1
U13(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  x1
U31(x1, x2, x3)  =  x1
U32(x1, x2)  =  x1
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  x1
s(x1)  =  x1
U61(x1)  =  x1
U71(x1, x2, x3)  =  x1
and(x1, x2)  =  x1
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11
tt  =  tt
mark(x1)  =  mark
isNat(x1)  =  isNat
plus(x1, x2)  =  plus(x1, x2)
0  =  0
x(x1, x2)  =  x(x1, x2)
isNatKind(x1)  =  isNatKind
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
active1 > plus2 > ok
active1 > 0 > U412 > mark
active1 > 0 > U412 > ok
active1 > 0 > isNat > U11 > mark
active1 > 0 > isNat > U11 > ok
active1 > 0 > isNat > tt > ok
active1 > 0 > isNatKind > tt > ok
active1 > 0 > isNatKind > mark
active1 > x2 > isNat > U11 > mark
active1 > x2 > isNat > U11 > ok
active1 > x2 > isNat > tt > ok

Status:
ACTIVE1: multiset
U412: multiset
active1: [1]
U11: []
tt: multiset
mark: []
isNat: multiset
plus2: multiset
0: multiset
x2: multiset
isNatKind: multiset
ok: multiset
top: []

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(152) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U12(X1, X2)) → ACTIVE(X1)
ACTIVE(U13(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U32(X1, X2)) → ACTIVE(X1)
ACTIVE(U33(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U61(X)) → ACTIVE(X)
ACTIVE(U71(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(153) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U12(X1, X2)) → ACTIVE(X1)
ACTIVE(U13(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U32(X1, X2)) → ACTIVE(X1)
ACTIVE(U33(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U61(X)) → ACTIVE(X)
ACTIVE(U71(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U12(x1, x2)  =  U12(x1, x2)
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31(x1, x2)
U32(x1, x2)  =  U32(x1)
U33(x1)  =  U33(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
s(x1)  =  x1
U61(x1)  =  U61(x1)
U71(x1, x2, x3)  =  U71(x1, x2)
and(x1, x2)  =  and(x1)
active(x1)  =  x1
U11(x1, x2, x3)  =  U11
tt  =  tt
mark(x1)  =  mark
isNat(x1)  =  isNat
U41(x1, x2)  =  U41(x1)
plus(x1, x2)  =  plus(x1, x2)
0  =  0
x(x1, x2)  =  x1
isNatKind(x1)  =  x1
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
ACTIVE1 > mark
proper1 > U122 > U131 > tt > mark
proper1 > U122 > U131 > ok > mark
proper1 > U122 > isNat > U312 > U321 > ok > mark
proper1 > U122 > isNat > and1 > ok > mark
proper1 > U122 > isNat > U11 > ok > mark
proper1 > U122 > isNat > tt > mark
proper1 > U211 > U221 > tt > mark
proper1 > U211 > U221 > ok > mark
proper1 > U211 > isNat > U312 > U321 > ok > mark
proper1 > U211 > isNat > and1 > ok > mark
proper1 > U211 > isNat > U11 > ok > mark
proper1 > U211 > isNat > tt > mark
proper1 > U331 > tt > mark
proper1 > U331 > ok > mark
proper1 > U513 > plus2 > and1 > ok > mark
proper1 > U513 > plus2 > U411 > ok > mark
proper1 > U712 > mark
proper1 > 0 > U611 > ok > mark
proper1 > 0 > and1 > ok > mark
proper1 > 0 > tt > mark
proper1 > 0 > U411 > ok > mark
top > mark

Status:
ACTIVE1: [1]
U122: [2,1]
U131: multiset
U211: multiset
U221: multiset
U312: multiset
U321: multiset
U331: multiset
U513: [3,2,1]
U611: multiset
U712: [1,2]
and1: multiset
U11: multiset
tt: multiset
mark: multiset
isNat: multiset
U411: multiset
plus2: multiset
0: multiset
proper1: [1]
ok: multiset
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(154) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(155) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
s(x1)  =  s(x1)
active(x1)  =  active(x1)
U11(x1, x2, x3)  =  U11
tt  =  tt
mark(x1)  =  x1
U12(x1, x2)  =  x1
isNat(x1)  =  isNat
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21
U22(x1)  =  U22(x1)
U31(x1, x2, x3)  =  U31
U32(x1, x2)  =  x1
U33(x1)  =  U33(x1)
U41(x1, x2)  =  U41(x1, x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
plus(x1, x2)  =  plus(x1, x2)
U61(x1)  =  U61
0  =  0
U71(x1, x2, x3)  =  U71(x1, x2, x3)
x(x1, x2)  =  x(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Precedence:
ACTIVE1 > U31
active1 > U11 > proper1 > s1 > isNat > U31
active1 > U11 > proper1 > s1 > and2 > U31
active1 > U11 > proper1 > s1 > isNatKind1 > U31
active1 > U11 > proper1 > U131 > U31
active1 > U11 > proper1 > U21 > isNat > U31
active1 > U11 > proper1 > U21 > U221 > U31
active1 > U11 > proper1 > U331 > U31
active1 > U11 > proper1 > U412 > U31
active1 > U11 > proper1 > U513 > plus2 > U31
active1 > U11 > proper1 > U713 > plus2 > U31
active1 > U11 > proper1 > U713 > x2 > isNat > U31
active1 > U11 > proper1 > U713 > x2 > and2 > U31
active1 > U11 > proper1 > U713 > x2 > isNatKind1 > U31
active1 > U61 > proper1 > s1 > isNat > U31
active1 > U61 > proper1 > s1 > and2 > U31
active1 > U61 > proper1 > s1 > isNatKind1 > U31
active1 > U61 > proper1 > U131 > U31
active1 > U61 > proper1 > U21 > isNat > U31
active1 > U61 > proper1 > U21 > U221 > U31
active1 > U61 > proper1 > U331 > U31
active1 > U61 > proper1 > U412 > U31
active1 > U61 > proper1 > U513 > plus2 > U31
active1 > U61 > proper1 > U713 > plus2 > U31
active1 > U61 > proper1 > U713 > x2 > isNat > U31
active1 > U61 > proper1 > U713 > x2 > and2 > U31
active1 > U61 > proper1 > U713 > x2 > isNatKind1 > U31
active1 > 0 > tt > s1 > isNat > U31
active1 > 0 > tt > s1 > and2 > U31
active1 > 0 > tt > s1 > isNatKind1 > U31
active1 > 0 > tt > U131 > U31
active1 > 0 > tt > U221 > U31
active1 > 0 > tt > U331 > U31
active1 > 0 > tt > plus2 > U31
active1 > 0 > tt > x2 > isNat > U31
active1 > 0 > tt > x2 > and2 > U31
active1 > 0 > tt > x2 > isNatKind1 > U31
active1 > 0 > U412 > U31
top > proper1 > s1 > isNat > U31
top > proper1 > s1 > and2 > U31
top > proper1 > s1 > isNatKind1 > U31
top > proper1 > U131 > U31
top > proper1 > U21 > isNat > U31
top > proper1 > U21 > U221 > U31
top > proper1 > U331 > U31
top > proper1 > U412 > U31
top > proper1 > U513 > plus2 > U31
top > proper1 > U713 > plus2 > U31
top > proper1 > U713 > x2 > isNat > U31
top > proper1 > U713 > x2 > and2 > U31
top > proper1 > U713 > x2 > isNatKind1 > U31

Status:
ACTIVE1: multiset
s1: multiset
active1: [1]
U11: []
tt: multiset
isNat: multiset
U131: [1]
U21: []
U221: multiset
U31: multiset
U331: multiset
U412: multiset
U513: [2,3,1]
plus2: multiset
U61: []
0: multiset
U713: multiset
x2: multiset
and2: [2,1]
isNatKind1: multiset
proper1: [1]
top: multiset

The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(156) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(157) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(158) TRUE

(159) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V1, V2)) → mark(U32(isNat(V1), V2))
active(U32(tt, V2)) → mark(U33(isNat(V2)))
active(U33(tt)) → mark(tt)
active(U41(tt, N)) → mark(N)
active(U51(tt, M, N)) → mark(s(plus(N, M)))
active(U61(tt)) → mark(0)
active(U71(tt, M, N)) → mark(plus(x(N, M), N))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNat(x(V1, V2))) → mark(U31(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatKind(x(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(plus(N, 0)) → mark(U41(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(x(N, 0)) → mark(U61(and(isNat(N), isNatKind(N))))
active(x(N, s(M))) → mark(U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2, X3)) → U31(active(X1), X2, X3)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U33(X)) → U33(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(U61(X)) → U61(active(X))
active(U71(X1, X2, X3)) → U71(active(X1), X2, X3)
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2, X3) → mark(U31(X1, X2, X3))
U32(mark(X1), X2) → mark(U32(X1, X2))
U33(mark(X)) → mark(U33(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U61(mark(X)) → mark(U61(X))
U71(mark(X1), X2, X3) → mark(U71(X1, X2, X3))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2, X3)) → U31(proper(X1), proper(X2), proper(X3))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U33(X)) → U33(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(U61(X)) → U61(proper(X))
proper(0) → ok(0)
proper(U71(X1, X2, X3)) → U71(proper(X1), proper(X2), proper(X3))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2), ok(X3)) → ok(U31(X1, X2, X3))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U33(ok(X)) → ok(U33(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
U61(ok(X)) → ok(U61(X))
U71(ok(X1), ok(X2), ok(X3)) → ok(U71(X1, X2, X3))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.