(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
zeros → n__zeros
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AND(tt, X) → ACTIVATE(X)
LENGTH(cons(N, L)) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__zeros) → ZEROS
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
zeros → n__zeros
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(N, L)) → LENGTH(activate(L))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
zeros → n__zeros
activate(n__zeros) → zeros
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.