(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(length(cons(N, L))) → S(length(L))
ACTIVE(length(cons(N, L))) → LENGTH(L)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(length(X)) → LENGTH(active(X))
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
CONS(mark(X1), X2) → CONS(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
LENGTH(mark(X)) → LENGTH(X)
S(mark(X)) → S(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(length(X)) → LENGTH(proper(X))
PROPER(length(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)
LENGTH(ok(X)) → LENGTH(X)
S(ok(X)) → S(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 13 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  x2
0  =  0
and(x1, x2)  =  and(x1, x2)
tt  =  tt
length(x1)  =  length(x1)
nil  =  nil
s(x1)  =  s(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
proper1 > zeros
proper1 > and2 > [ok1, 0, s1]
proper1 > tt > [ok1, 0, s1]
proper1 > length1 > [ok1, 0, s1]
proper1 > nil
top > active1 > zeros
top > active1 > and2 > [ok1, 0, s1]
top > active1 > length1 > [ok1, 0, s1]


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
and(x1, x2)  =  and(x1, x2)
tt  =  tt
length(x1)  =  x1
nil  =  nil
s(x1)  =  s(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
[proper1, top] > active1 > zeros
[proper1, top] > active1 > cons2 > [mark1, s1]
[proper1, top] > active1 > 0
[proper1, top] > active1 > and2 > [mark1, s1]
[proper1, top] > tt > [mark1, s1]
[proper1, top] > nil > [mark1, s1]


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(ok(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(ok(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  LENGTH(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  x2
0  =  0
and(x1, x2)  =  and(x1, x2)
tt  =  tt
length(x1)  =  length(x1)
nil  =  nil
s(x1)  =  s(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
proper1 > zeros
proper1 > and2 > [ok1, 0, s1]
proper1 > tt > [ok1, 0, s1]
proper1 > length1 > [ok1, 0, s1]
proper1 > nil
top > active1 > zeros
top > active1 > and2 > [ok1, 0, s1]
top > active1 > length1 > [ok1, 0, s1]


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(mark(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
and(x1, x2)  =  and(x1, x2)
tt  =  tt
length(x1)  =  x1
nil  =  nil
s(x1)  =  s(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
[proper1, top] > active1 > zeros
[proper1, top] > active1 > cons2 > [mark1, s1]
[proper1, top] > active1 > 0
[proper1, top] > active1 > and2 > [mark1, s1]
[proper1, top] > tt > [mark1, s1]
[proper1, top] > nil > [mark1, s1]


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(ok(X1), ok(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1, x2)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
and(x1, x2)  =  and(x1, x2)
tt  =  tt
length(x1)  =  x1
nil  =  nil
s(x1)  =  s(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
[active1, 0] > zeros > cons2 > mark1 > AND2
[active1, 0] > and2 > mark1 > AND2
[active1, 0] > s1 > mark1 > AND2
top > proper1 > cons2 > mark1 > AND2
top > proper1 > and2 > mark1 > AND2
top > proper1 > tt > AND2
top > proper1 > nil > mark1 > AND2
top > proper1 > s1 > mark1 > AND2


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(ok(X1), ok(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(ok(X1), ok(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x1
0  =  0
and(x1, x2)  =  x1
tt  =  tt
length(x1)  =  x1
nil  =  nil
s(x1)  =  x1
proper(x1)  =  proper
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
proper > zeros > [AND1, ok1, tt] > active1 > [mark, nil]
proper > zeros > [AND1, ok1, tt] > active1 > 0
proper > zeros > [AND1, ok1, tt] > top


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1, x2)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
and(x1, x2)  =  and(x1, x2)
tt  =  tt
length(x1)  =  x1
nil  =  nil
s(x1)  =  s(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
[active1, 0] > zeros > cons2 > mark1 > CONS2
[active1, 0] > and2 > mark1 > CONS2
[active1, 0] > s1 > mark1 > CONS2
top > proper1 > cons2 > mark1 > CONS2
top > proper1 > and2 > mark1 > CONS2
top > proper1 > tt > CONS2
top > proper1 > nil > mark1 > CONS2
top > proper1 > s1 > mark1 > CONS2


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x1
0  =  0
and(x1, x2)  =  x1
tt  =  tt
length(x1)  =  x1
nil  =  nil
s(x1)  =  x1
proper(x1)  =  proper
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
proper > zeros > [CONS1, ok1, tt] > active1 > [mark, nil]
proper > zeros > [CONS1, ok1, tt] > active1 > 0
proper > zeros > [CONS1, ok1, tt] > top


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(30) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(32) TRUE

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(length(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
cons(x1, x2)  =  cons(x1, x2)
and(x1, x2)  =  and(x1, x2)
length(x1)  =  x1
s(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  x1
0  =  0
tt  =  tt
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
[and2, active1] > PROPER1
[and2, active1] > [cons2, zeros] > 0
nil > 0


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(length(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(length(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
length(x1)  =  length(x1)
s(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x1
0  =  0
and(x1, x2)  =  x2
tt  =  tt
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
[0, proper1, top] > [PROPER1, length1, active1] > [zeros, mark, nil]
[0, proper1, top] > tt > [zeros, mark, nil]


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
s(x1)  =  s(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
0  =  0
and(x1, x2)  =  and(x1, x2)
tt  =  tt
length(x1)  =  length
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
top > active1 > [s1, cons2] > length > 0
top > active1 > zeros
top > active1 > and2
top > [nil, proper1] > [s1, cons2] > length > 0
top > [nil, proper1] > zeros
top > [nil, proper1] > and2


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(39) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(41) TRUE

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
and(x1, x2)  =  and(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
length(x1)  =  x1
s(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  x1
0  =  0
tt  =  tt
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
[and2, active1] > ACTIVE1
[and2, active1] > cons2
[and2, active1] > 0
zeros > cons2
zeros > 0


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(length(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
length(x1)  =  length(x1)
s(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x1
0  =  0
and(x1, x2)  =  x2
tt  =  tt
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
[0, proper1, top] > [ACTIVE1, length1, active1] > [zeros, mark, nil]
[0, proper1, top] > tt > [zeros, mark, nil]


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
s(x1)  =  s(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
0  =  0
and(x1, x2)  =  and(x1, x2)
tt  =  tt
length(x1)  =  length
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive Path Order [RPO].
Precedence:
top > active1 > [s1, cons2] > length > 0
top > active1 > zeros
top > active1 > and2
top > [nil, proper1] > [s1, cons2] > length > 0
top > [nil, proper1] > zeros
top > [nil, proper1] > and2


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(48) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(50) TRUE

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(cons(X1, X2)) → cons(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(length(X)) → length(active(X))
active(s(X)) → s(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
length(mark(X)) → mark(length(X))
s(mark(X)) → mark(s(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(s(X)) → s(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
length(ok(X)) → ok(length(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.