(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(zeros) → MARK(cons(0, zeros))
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(U11(tt)) → MARK(tt)
ACTIVE(U21(tt)) → MARK(tt)
ACTIVE(U31(tt)) → MARK(tt)
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
ACTIVE(U41(tt, V2)) → U421(isNatIList(V2))
ACTIVE(U41(tt, V2)) → ISNATILIST(V2)
ACTIVE(U42(tt)) → MARK(tt)
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
ACTIVE(U51(tt, V2)) → U521(isNatList(V2))
ACTIVE(U51(tt, V2)) → ISNATLIST(V2)
ACTIVE(U52(tt)) → MARK(tt)
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
ACTIVE(U61(tt, L, N)) → U621(isNat(N), L)
ACTIVE(U61(tt, L, N)) → ISNAT(N)
ACTIVE(U62(tt, L)) → MARK(s(length(L)))
ACTIVE(U62(tt, L)) → S(length(L))
ACTIVE(U62(tt, L)) → LENGTH(L)
ACTIVE(isNat(0)) → MARK(tt)
ACTIVE(isNat(length(V1))) → MARK(U11(isNatList(V1)))
ACTIVE(isNat(length(V1))) → U111(isNatList(V1))
ACTIVE(isNat(length(V1))) → ISNATLIST(V1)
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
ACTIVE(isNat(s(V1))) → U211(isNat(V1))
ACTIVE(isNat(s(V1))) → ISNAT(V1)
ACTIVE(isNatIList(V)) → MARK(U31(isNatList(V)))
ACTIVE(isNatIList(V)) → U311(isNatList(V))
ACTIVE(isNatIList(V)) → ISNATLIST(V)
ACTIVE(isNatIList(zeros)) → MARK(tt)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
ACTIVE(isNatIList(cons(V1, V2))) → U411(isNat(V1), V2)
ACTIVE(isNatIList(cons(V1, V2))) → ISNAT(V1)
ACTIVE(isNatList(nil)) → MARK(tt)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
ACTIVE(isNatList(cons(V1, V2))) → U511(isNat(V1), V2)
ACTIVE(isNatList(cons(V1, V2))) → ISNAT(V1)
ACTIVE(length(nil)) → MARK(0)
ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
ACTIVE(length(cons(N, L))) → U611(isNatList(L), L, N)
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
MARK(zeros) → ACTIVE(zeros)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(0) → ACTIVE(0)
MARK(U11(X)) → ACTIVE(U11(mark(X)))
MARK(U11(X)) → U111(mark(X))
MARK(U11(X)) → MARK(X)
MARK(tt) → ACTIVE(tt)
MARK(U21(X)) → ACTIVE(U21(mark(X)))
MARK(U21(X)) → U211(mark(X))
MARK(U21(X)) → MARK(X)
MARK(U31(X)) → ACTIVE(U31(mark(X)))
MARK(U31(X)) → U311(mark(X))
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(U41(X1, X2)) → U411(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → ACTIVE(U42(mark(X)))
MARK(U42(X)) → U421(mark(X))
MARK(U42(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
MARK(U51(X1, X2)) → U511(mark(X1), X2)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → ACTIVE(U52(mark(X)))
MARK(U52(X)) → U521(mark(X))
MARK(U52(X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U61(X1, X2, X3)) → U611(mark(X1), X2, X3)
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
MARK(U62(X1, X2)) → U621(mark(X1), X2)
MARK(U62(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(nil) → ACTIVE(nil)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
U111(mark(X)) → U111(X)
U111(active(X)) → U111(X)
U211(mark(X)) → U211(X)
U211(active(X)) → U211(X)
U311(mark(X)) → U311(X)
U311(active(X)) → U311(X)
U411(mark(X1), X2) → U411(X1, X2)
U411(X1, mark(X2)) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
U411(X1, active(X2)) → U411(X1, X2)
U421(mark(X)) → U421(X)
U421(active(X)) → U421(X)
ISNATILIST(mark(X)) → ISNATILIST(X)
ISNATILIST(active(X)) → ISNATILIST(X)
U511(mark(X1), X2) → U511(X1, X2)
U511(X1, mark(X2)) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)
U521(mark(X)) → U521(X)
U521(active(X)) → U521(X)
ISNATLIST(mark(X)) → ISNATLIST(X)
ISNATLIST(active(X)) → ISNATLIST(X)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)
U621(mark(X1), X2) → U621(X1, X2)
U621(X1, mark(X2)) → U621(X1, X2)
U621(active(X1), X2) → U621(X1, X2)
U621(X1, active(X2)) → U621(X1, X2)
ISNAT(mark(X)) → ISNAT(X)
ISNAT(active(X)) → ISNAT(X)
S(mark(X)) → S(X)
S(active(X)) → S(X)
LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 16 SCCs with 45 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(active(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(active(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length(x1)
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > cons > U41 > U42 > tt > mark1 > length1 > active1 > 0
zeros > cons > U51 > U52 > tt > mark1 > length1 > active1 > 0
zeros > cons > U61 > U62 > s > mark1 > length1 > active1 > 0
isNatIList1 > U31 > tt > mark1 > length1 > active1 > 0
isNat > U11 > tt > mark1 > length1 > active1 > 0
isNat > U21 > tt > mark1 > length1 > active1 > 0
nil > tt > mark1 > length1 > active1 > 0

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length(x1)
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > cons > U41 > U42 > tt > mark1 > length1 > active1 > 0
zeros > cons > U51 > U52 > tt > mark1 > length1 > active1 > 0
zeros > cons > U61 > U62 > s > mark1 > length1 > active1 > 0
isNatIList1 > U31 > tt > mark1 > length1 > active1 > 0
isNat > U11 > tt > mark1 > length1 > active1 > 0
isNat > U21 > tt > mark1 > length1 > active1 > 0
nil > tt > mark1 > length1 > active1 > 0

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length(x1)
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > cons > U41 > U42 > tt > mark1 > length1 > active1 > 0
zeros > cons > U51 > U52 > tt > mark1 > length1 > active1 > 0
zeros > cons > U61 > U62 > s > mark1 > length1 > active1 > 0
isNatIList1 > U31 > tt > mark1 > length1 > active1 > 0
isNat > U11 > tt > mark1 > length1 > active1 > 0
isNat > U21 > tt > mark1 > length1 > active1 > 0
nil > tt > mark1 > length1 > active1 > 0

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(X1, mark(X2)) → U621(X1, X2)
U621(mark(X1), X2) → U621(X1, X2)
U621(active(X1), X2) → U621(X1, X2)
U621(X1, active(X2)) → U621(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(X1, mark(X2)) → U621(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2)  =  U621(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > mark1 > cons
isNatIList > U31 > tt > U62 > mark1 > cons
isNatIList > U31 > tt > U62 > s
isNatIList > U41 > U42 > tt > U62 > mark1 > cons
isNatIList > U41 > U42 > tt > U62 > s
isNatIList > isNatList1 > U51 > U52 > tt > U62 > mark1 > cons
isNatIList > isNatList1 > U51 > U52 > tt > U62 > s
isNatIList > isNat > U11 > tt > U62 > mark1 > cons
isNatIList > isNat > U11 > tt > U62 > s
isNatIList > isNat > U21 > tt > U62 > mark1 > cons
isNatIList > isNat > U21 > tt > U62 > s
length > 0 > mark1 > cons
length > U11 > tt > U62 > mark1 > cons
length > U11 > tt > U62 > s
length > U61 > U62 > mark1 > cons
length > U61 > U62 > s

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(mark(X1), X2) → U621(X1, X2)
U621(active(X1), X2) → U621(X1, X2)
U621(X1, active(X2)) → U621(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(mark(X1), X2) → U621(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2)  =  U621(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  x1
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > cons > U61 > U62 > s > mark1 > U62^12
zeros > cons > U61 > U62 > s > mark1 > 0
zeros > tt > U62 > s > mark1 > U62^12
zeros > tt > U62 > s > mark1 > 0
isNatIList > U31 > tt > U62 > s > mark1 > U62^12
isNatIList > U31 > tt > U62 > s > mark1 > 0
isNatIList > U41 > U42 > tt > U62 > s > mark1 > U62^12
isNatIList > U41 > U42 > tt > U62 > s > mark1 > 0
isNatIList > isNat > U11 > tt > U62 > s > mark1 > U62^12
isNatIList > isNat > U11 > tt > U62 > s > mark1 > 0
isNatIList > isNat > U21 > tt > U62 > s > mark1 > U62^12
isNatIList > isNat > U21 > tt > U62 > s > mark1 > 0
isNatIList > isNat > isNatList1 > U51 > U52 > tt > U62 > s > mark1 > U62^12
isNatIList > isNat > isNatList1 > U51 > U52 > tt > U62 > s > mark1 > 0
nil > mark1 > U62^12
nil > mark1 > 0

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(active(X1), X2) → U621(X1, X2)
U621(X1, active(X2)) → U621(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(active(X1), X2) → U621(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2)  =  U621(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark(x1)
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62(x1)
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > cons > U51 > U52 > tt > mark1 > s > active1 > U62^11
zeros > cons > U51 > U52 > tt > mark1 > s > active1 > isNatList1
zeros > cons > U51 > U52 > tt > mark1 > s > active1 > U621
zeros > 0 > tt > mark1 > s > active1 > U62^11
zeros > 0 > tt > mark1 > s > active1 > isNatList1
zeros > 0 > tt > mark1 > s > active1 > U621
isNatIList > U31 > tt > mark1 > s > active1 > U62^11
isNatIList > U31 > tt > mark1 > s > active1 > isNatList1
isNatIList > U31 > tt > mark1 > s > active1 > U621
isNatIList > U41 > U42 > tt > mark1 > s > active1 > U62^11
isNatIList > U41 > U42 > tt > mark1 > s > active1 > isNatList1
isNatIList > U41 > U42 > tt > mark1 > s > active1 > U621
isNatIList > isNat > U11 > tt > mark1 > s > active1 > U62^11
isNatIList > isNat > U11 > tt > mark1 > s > active1 > isNatList1
isNatIList > isNat > U11 > tt > mark1 > s > active1 > U621
isNatIList > isNat > U21 > tt > mark1 > s > active1 > U62^11
isNatIList > isNat > U21 > tt > mark1 > s > active1 > isNatList1
isNatIList > isNat > U21 > tt > mark1 > s > active1 > U621
length > 0 > tt > mark1 > s > active1 > U62^11
length > 0 > tt > mark1 > s > active1 > isNatList1
length > 0 > tt > mark1 > s > active1 > U621
length > U61 > isNat > U11 > tt > mark1 > s > active1 > U62^11
length > U61 > isNat > U11 > tt > mark1 > s > active1 > isNatList1
length > U61 > isNat > U11 > tt > mark1 > s > active1 > U621
length > U61 > isNat > U21 > tt > mark1 > s > active1 > U62^11
length > U61 > isNat > U21 > tt > mark1 > s > active1 > isNatList1
length > U61 > isNat > U21 > tt > mark1 > s > active1 > U621
nil > 0 > tt > mark1 > s > active1 > U62^11
nil > 0 > tt > mark1 > s > active1 > isNatList1
nil > 0 > tt > mark1 > s > active1 > U621

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(X1, active(X2)) → U621(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(X1, active(X2)) → U621(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2)  =  U621(x1, x2)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark(x1)
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > mark1 > cons1 > active1
zeros > mark1 > nil > active1
zeros > mark1 > nil > 0
zeros > tt > active1
isNatIList1 > U31 > mark1 > cons1 > active1
isNatIList1 > U31 > mark1 > nil > active1
isNatIList1 > U31 > mark1 > nil > 0
isNatIList1 > U31 > tt > active1
isNatIList1 > U41 > U42 > mark1 > cons1 > active1
isNatIList1 > U41 > U42 > mark1 > nil > active1
isNatIList1 > U41 > U42 > mark1 > nil > 0
isNatIList1 > U41 > U42 > tt > active1
isNatIList1 > isNat > U11 > mark1 > cons1 > active1
isNatIList1 > isNat > U11 > mark1 > nil > active1
isNatIList1 > isNat > U11 > mark1 > nil > 0
isNatIList1 > isNat > U11 > tt > active1
isNatIList1 > isNat > U21 > mark1 > cons1 > active1
isNatIList1 > isNat > U21 > mark1 > nil > active1
isNatIList1 > isNat > U21 > mark1 > nil > 0
isNatIList1 > isNat > U21 > tt > active1
isNatList > U51 > U52 > mark1 > cons1 > active1
isNatList > U51 > U52 > mark1 > nil > active1
isNatList > U51 > U52 > mark1 > nil > 0
isNatList > U51 > U52 > tt > active1
isNatList > isNat > U11 > mark1 > cons1 > active1
isNatList > isNat > U11 > mark1 > nil > active1
isNatList > isNat > U11 > mark1 > nil > 0
isNatList > isNat > U11 > tt > active1
isNatList > isNat > U21 > mark1 > cons1 > active1
isNatList > isNat > U21 > mark1 > nil > active1
isNatList > isNat > U21 > mark1 > nil > 0
isNatList > isNat > U21 > tt > active1
length > U11 > mark1 > cons1 > active1
length > U11 > mark1 > nil > active1
length > U11 > mark1 > nil > 0
length > U11 > tt > active1
length > U61 > U62 > mark1 > cons1 > active1
length > U61 > U62 > mark1 > nil > active1
length > U61 > U62 > mark1 > nil > 0
length > U61 > U62 > s > active1

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(28) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(30) TRUE

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, X2, mark(X3)) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611(x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1
zeros  =  zeros
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
U61^11 > cons1
zeros > mark1 > 0 > cons1
zeros > mark1 > s > cons1
zeros > mark1 > nil > cons1
isNatIList > U31 > tt > length > U61 > U62 > mark1 > 0 > cons1
isNatIList > U31 > tt > length > U61 > U62 > mark1 > s > cons1
isNatIList > U31 > tt > length > U61 > U62 > mark1 > nil > cons1
isNatIList > U41 > U42 > tt > length > U61 > U62 > mark1 > 0 > cons1
isNatIList > U41 > U42 > tt > length > U61 > U62 > mark1 > s > cons1
isNatIList > U41 > U42 > tt > length > U61 > U62 > mark1 > nil > cons1
isNatIList > isNat > U11 > tt > length > U61 > U62 > mark1 > 0 > cons1
isNatIList > isNat > U11 > tt > length > U61 > U62 > mark1 > s > cons1
isNatIList > isNat > U11 > tt > length > U61 > U62 > mark1 > nil > cons1
isNatIList > isNat > U21 > tt > length > U61 > U62 > mark1 > 0 > cons1
isNatIList > isNat > U21 > tt > length > U61 > U62 > mark1 > s > cons1
isNatIList > isNat > U21 > tt > length > U61 > U62 > mark1 > nil > cons1
isNatList > U51 > U52 > tt > length > U61 > U62 > mark1 > 0 > cons1
isNatList > U51 > U52 > tt > length > U61 > U62 > mark1 > s > cons1
isNatList > U51 > U52 > tt > length > U61 > U62 > mark1 > nil > cons1
isNatList > isNat > U11 > tt > length > U61 > U62 > mark1 > 0 > cons1
isNatList > isNat > U11 > tt > length > U61 > U62 > mark1 > s > cons1
isNatList > isNat > U11 > tt > length > U61 > U62 > mark1 > nil > cons1
isNatList > isNat > U21 > tt > length > U61 > U62 > mark1 > 0 > cons1
isNatList > isNat > U21 > tt > length > U61 > U62 > mark1 > s > cons1
isNatList > isNat > U21 > tt > length > U61 > U62 > mark1 > nil > cons1

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U611(active(X1), X2, X3) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  x1
s(x1)  =  s
length(x1)  =  length
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > mark1 > cons > active1
zeros > mark1 > nil > active1
zeros > tt > active1
isNatIList > U31 > mark1 > cons > active1
isNatIList > U31 > mark1 > nil > active1
isNatIList > U31 > tt > active1
isNatIList > U41 > U42 > mark1 > cons > active1
isNatIList > U41 > U42 > mark1 > nil > active1
isNatIList > U41 > U42 > tt > active1
isNatList > U51 > U52 > mark1 > cons > active1
isNatList > U51 > U52 > mark1 > nil > active1
isNatList > U51 > U52 > tt > active1
length > 0 > mark1 > cons > active1
length > 0 > mark1 > nil > active1
length > 0 > tt > active1
length > U11 > mark1 > cons > active1
length > U11 > mark1 > nil > active1
length > U11 > tt > active1
length > U61 > U62 > s > U21 > mark1 > cons > active1
length > U61 > U62 > s > U21 > mark1 > nil > active1
length > U61 > U62 > s > U21 > tt > active1

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2), X3) → U611(X1, X2, X3)
U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, mark(X2), X3) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1
zeros  =  zeros
cons(x1, x2)  =  x1
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  x1
s(x1)  =  s
length(x1)  =  length
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > 0 > tt > mark1 > nil
isNatIList1 > U31 > tt > mark1 > nil
isNatIList1 > U41 > U42 > tt > mark1 > nil
isNatIList1 > isNatList1 > U51 > U52 > tt > mark1 > nil
length > 0 > tt > mark1 > nil
length > U11 > tt > mark1 > nil
length > U61 > U62 > s > U21 > tt > mark1 > nil

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, active(X2), X3) → U611(X1, X2, X3)
U611(X1, X2, active(X3)) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, X2, active(X3)) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611(x1, x3)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark(x1)
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat(x1)
s(x1)  =  s
length(x1)  =  length
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > tt > mark1 > cons1 > active1
zeros > tt > mark1 > 0 > active1
isNatIList > U31 > tt > mark1 > cons1 > active1
isNatIList > U31 > tt > mark1 > 0 > active1
isNatIList > U41 > U42 > tt > mark1 > cons1 > active1
isNatIList > U41 > U42 > tt > mark1 > 0 > active1
isNatIList > isNat1 > U21 > tt > mark1 > cons1 > active1
isNatIList > isNat1 > U21 > tt > mark1 > 0 > active1
isNatList > U51 > U52 > tt > mark1 > cons1 > active1
isNatList > U51 > U52 > tt > mark1 > 0 > active1
isNatList > isNat1 > U21 > tt > mark1 > cons1 > active1
isNatList > isNat1 > U21 > tt > mark1 > 0 > active1
length > U11 > tt > mark1 > cons1 > active1
length > U11 > tt > mark1 > 0 > active1
length > U61 > U62 > s > mark1 > cons1 > active1
length > U61 > U62 > s > mark1 > 0 > active1
nil > 0 > active1

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, active(X2), X3) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, active(X2), X3) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611(x1, x2, x3)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark(x1)
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61(x1)
U62(x1, x2)  =  U62
isNat(x1)  =  isNat(x1)
s(x1)  =  s
length(x1)  =  length
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
U61^13 > s
zeros > cons > U41 > U42 > tt > U62 > mark1 > U611 > s
zeros > cons > U41 > U42 > tt > U62 > mark1 > nil > active1 > s
zeros > cons > U51 > U52 > tt > U62 > mark1 > U611 > s
zeros > cons > U51 > U52 > tt > U62 > mark1 > nil > active1 > s
zeros > cons > isNat1 > U21 > tt > U62 > mark1 > U611 > s
zeros > cons > isNat1 > U21 > tt > U62 > mark1 > nil > active1 > s
zeros > 0 > mark1 > U611 > s
zeros > 0 > mark1 > nil > active1 > s
isNatIList > U31 > tt > U62 > mark1 > U611 > s
isNatIList > U31 > tt > U62 > mark1 > nil > active1 > s
isNatIList > U41 > U42 > tt > U62 > mark1 > U611 > s
isNatIList > U41 > U42 > tt > U62 > mark1 > nil > active1 > s
isNatIList > isNat1 > U21 > tt > U62 > mark1 > U611 > s
isNatIList > isNat1 > U21 > tt > U62 > mark1 > nil > active1 > s
length > 0 > mark1 > U611 > s
length > 0 > mark1 > nil > active1 > s
length > U11 > tt > U62 > mark1 > U611 > s
length > U11 > tt > U62 > mark1 > nil > active1 > s
length > isNatList > U51 > U52 > tt > U62 > mark1 > U611 > s
length > isNatList > U51 > U52 > tt > U62 > mark1 > nil > active1 > s
length > isNatList > isNat1 > U21 > tt > U62 > mark1 > U611 > s
length > isNatList > isNat1 > U21 > tt > U62 > mark1 > nil > active1 > s

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(41) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(43) TRUE

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATLIST(active(X)) → ISNATLIST(X)
ISNATLIST(mark(X)) → ISNATLIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATLIST(active(X)) → ISNATLIST(X)
ISNATLIST(mark(X)) → ISNATLIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATLIST(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length(x1)
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > cons > U41 > U42 > tt > mark1 > length1 > active1 > 0
zeros > cons > U51 > U52 > tt > mark1 > length1 > active1 > 0
zeros > cons > U61 > U62 > s > mark1 > length1 > active1 > 0
isNatIList1 > U31 > tt > mark1 > length1 > active1 > 0
isNat > U11 > tt > mark1 > length1 > active1 > 0
isNat > U21 > tt > mark1 > length1 > active1 > 0
nil > tt > mark1 > length1 > active1 > 0

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(46) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(48) TRUE

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(active(X)) → U521(X)
U521(mark(X)) → U521(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(active(X)) → U521(X)
U521(mark(X)) → U521(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length(x1)
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > cons > U41 > U42 > tt > mark1 > length1 > active1 > 0
zeros > cons > U51 > U52 > tt > mark1 > length1 > active1 > 0
zeros > cons > U61 > U62 > s > mark1 > length1 > active1 > 0
isNatIList1 > U31 > tt > mark1 > length1 > active1 > 0
isNat > U11 > tt > mark1 > length1 > active1 > 0
isNat > U21 > tt > mark1 > length1 > active1 > 0
nil > tt > mark1 > length1 > active1 > 0

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(51) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(53) TRUE

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2)) → U511(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2) → U511(X1, X2)
U511(active(X1), X2) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length(x1)
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > cons > U61 > U62 > mark1 > s
zeros > cons > U61 > U62 > mark1 > length1 > active1
zeros > 0 > mark1 > s
zeros > 0 > mark1 > length1 > active1
zeros > tt > mark1 > s
zeros > tt > mark1 > length1 > active1
isNatIList > U31 > tt > mark1 > s
isNatIList > U31 > tt > mark1 > length1 > active1
isNatIList > U41 > U42 > tt > mark1 > s
isNatIList > U41 > U42 > tt > mark1 > length1 > active1
isNatIList > isNat > U11 > tt > mark1 > s
isNatIList > isNat > U11 > tt > mark1 > length1 > active1
isNatIList > isNat > U21 > tt > mark1 > s
isNatIList > isNat > U21 > tt > mark1 > length1 > active1
isNatList1 > U51 > U52 > tt > mark1 > s
isNatList1 > U51 > U52 > tt > mark1 > length1 > active1
isNatList1 > isNat > U11 > tt > mark1 > s
isNatList1 > isNat > U11 > tt > mark1 > length1 > active1
isNatList1 > isNat > U21 > tt > mark1 > s
isNatList1 > isNat > U21 > tt > mark1 > length1 > active1
nil > 0 > mark1 > s
nil > 0 > mark1 > length1 > active1
nil > tt > mark1 > s
nil > tt > mark1 > length1 > active1

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2)) → U511(X1, X2)
U511(X1, active(X2)) → U511(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(X1, mark(X2)) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  x1
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  x1
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > cons > U41 > U42 > tt > U62 > mark1 > s
zeros > cons > isNatList > U51 > U52 > tt > U62 > mark1 > s
zeros > 0 > tt > U62 > mark1 > s
isNatIList > U31 > tt > U62 > mark1 > s
isNatIList > U41 > U42 > tt > U62 > mark1 > s
isNatIList > isNatList > U51 > U52 > tt > U62 > mark1 > s
isNat > U11 > tt > U62 > mark1 > s
isNat > U21 > tt > U62 > mark1 > s
isNat > isNatList > U51 > U52 > tt > U62 > mark1 > s
nil > 0 > tt > U62 > mark1 > s

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, active(X2)) → U511(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(X1, active(X2)) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x2)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark(x1)
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > mark1 > nil > active1
zeros > cons > active1
isNatIList > U31 > tt > mark1 > nil > active1
isNatIList > U41 > U42 > tt > mark1 > nil > active1
isNatList > U51 > U52 > tt > mark1 > nil > active1
isNat > U11 > tt > mark1 > nil > active1
isNat > U21 > tt > mark1 > nil > active1
length > 0 > mark1 > nil > active1
length > U61 > U62 > s > mark1 > nil > active1

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(60) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(62) TRUE

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(active(X)) → ISNATILIST(X)
ISNATILIST(mark(X)) → ISNATILIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATILIST(active(X)) → ISNATILIST(X)
ISNATILIST(mark(X)) → ISNATILIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATILIST(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length(x1)
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > cons > U41 > U42 > tt > mark1 > length1 > active1 > 0
zeros > cons > U51 > U52 > tt > mark1 > length1 > active1 > 0
zeros > cons > U61 > U62 > s > mark1 > length1 > active1 > 0
isNatIList1 > U31 > tt > mark1 > length1 > active1 > 0
isNat > U11 > tt > mark1 > length1 > active1 > 0
isNat > U21 > tt > mark1 > length1 > active1 > 0
nil > tt > mark1 > length1 > active1 > 0

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(65) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(67) TRUE

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(active(X)) → U421(X)
U421(mark(X)) → U421(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U421(active(X)) → U421(X)
U421(mark(X)) → U421(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U421(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length(x1)
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > cons > U41 > U42 > tt > mark1 > length1 > active1 > 0
zeros > cons > U51 > U52 > tt > mark1 > length1 > active1 > 0
zeros > cons > U61 > U62 > s > mark1 > length1 > active1 > 0
isNatIList1 > U31 > tt > mark1 > length1 > active1 > 0
isNat > U11 > tt > mark1 > length1 > active1 > 0
isNat > U21 > tt > mark1 > length1 > active1 > 0
nil > tt > mark1 > length1 > active1 > 0

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(70) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(72) TRUE

(73) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(X1, mark(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
U411(X1, active(X2)) → U411(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(74) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(X1, mark(X2)) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > mark1 > cons
isNatIList > U31 > tt > U62 > mark1 > cons
isNatIList > U31 > tt > U62 > s
isNatIList > U41 > U42 > tt > U62 > mark1 > cons
isNatIList > U41 > U42 > tt > U62 > s
isNatIList > isNatList1 > U51 > U52 > tt > U62 > mark1 > cons
isNatIList > isNatList1 > U51 > U52 > tt > U62 > s
isNatIList > isNat > U11 > tt > U62 > mark1 > cons
isNatIList > isNat > U11 > tt > U62 > s
isNatIList > isNat > U21 > tt > U62 > mark1 > cons
isNatIList > isNat > U21 > tt > U62 > s
length > 0 > mark1 > cons
length > U11 > tt > U62 > mark1 > cons
length > U11 > tt > U62 > s
length > U61 > U62 > mark1 > cons
length > U61 > U62 > s

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X1), X2) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
U411(X1, active(X2)) → U411(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(76) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X1), X2) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
U411(X1, active(X2)) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat(x1)
s(x1)  =  s
length(x1)  =  length
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
U41^12 > active1
zeros > mark1 > 0 > active1
zeros > mark1 > tt > active1
zeros > mark1 > nil > active1
zeros > cons > active1
isNatIList > U31 > mark1 > 0 > active1
isNatIList > U31 > mark1 > tt > active1
isNatIList > U31 > mark1 > nil > active1
isNatIList > U41 > U42 > mark1 > 0 > active1
isNatIList > U41 > U42 > mark1 > tt > active1
isNatIList > U41 > U42 > mark1 > nil > active1
isNatIList > isNat1 > U11 > mark1 > 0 > active1
isNatIList > isNat1 > U11 > mark1 > tt > active1
isNatIList > isNat1 > U11 > mark1 > nil > active1
isNatIList > isNat1 > U21 > mark1 > 0 > active1
isNatIList > isNat1 > U21 > mark1 > tt > active1
isNatIList > isNat1 > U21 > mark1 > nil > active1
length > isNatList1 > U51 > U52 > mark1 > 0 > active1
length > isNatList1 > U51 > U52 > mark1 > tt > active1
length > isNatList1 > U51 > U52 > mark1 > nil > active1
length > isNatList1 > isNat1 > U11 > mark1 > 0 > active1
length > isNatList1 > isNat1 > U11 > mark1 > tt > active1
length > isNatList1 > isNat1 > U11 > mark1 > nil > active1
length > isNatList1 > isNat1 > U21 > mark1 > 0 > active1
length > isNatList1 > isNat1 > U21 > mark1 > tt > active1
length > isNatList1 > isNat1 > U21 > mark1 > nil > active1
length > U61 > U62 > s > mark1 > 0 > active1
length > U61 > U62 > s > mark1 > tt > active1
length > U61 > U62 > s > mark1 > nil > active1
length > U61 > isNat1 > U11 > mark1 > 0 > active1
length > U61 > isNat1 > U11 > mark1 > tt > active1
length > U61 > isNat1 > U11 > mark1 > nil > active1
length > U61 > isNat1 > U21 > mark1 > 0 > active1
length > U61 > isNat1 > U21 > mark1 > tt > active1
length > U61 > isNat1 > U21 > mark1 > nil > active1

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(77) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(79) TRUE

(80) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(active(X)) → U311(X)
U311(mark(X)) → U311(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(81) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(active(X)) → U311(X)
U311(mark(X)) → U311(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length(x1)
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > cons > U41 > U42 > tt > mark1 > length1 > active1 > 0
zeros > cons > U51 > U52 > tt > mark1 > length1 > active1 > 0
zeros > cons > U61 > U62 > s > mark1 > length1 > active1 > 0
isNatIList1 > U31 > tt > mark1 > length1 > active1 > 0
isNat > U11 > tt > mark1 > length1 > active1 > 0
isNat > U21 > tt > mark1 > length1 > active1 > 0
nil > tt > mark1 > length1 > active1 > 0

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(82) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(83) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(84) TRUE

(85) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(active(X)) → U211(X)
U211(mark(X)) → U211(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(86) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(active(X)) → U211(X)
U211(mark(X)) → U211(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length(x1)
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > cons > U41 > U42 > tt > mark1 > length1 > active1 > 0
zeros > cons > U51 > U52 > tt > mark1 > length1 > active1 > 0
zeros > cons > U61 > U62 > s > mark1 > length1 > active1 > 0
isNatIList1 > U31 > tt > mark1 > length1 > active1 > 0
isNat > U11 > tt > mark1 > length1 > active1 > 0
isNat > U21 > tt > mark1 > length1 > active1 > 0
nil > tt > mark1 > length1 > active1 > 0

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(87) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(88) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(89) TRUE

(90) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(active(X)) → U111(X)
U111(mark(X)) → U111(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(91) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(active(X)) → U111(X)
U111(mark(X)) → U111(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  mark(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length(x1)
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > cons > U41 > U42 > tt > mark1 > length1 > active1 > 0
zeros > cons > U51 > U52 > tt > mark1 > length1 > active1 > 0
zeros > cons > U61 > U62 > s > mark1 > length1 > active1 > 0
isNatIList1 > U31 > tt > mark1 > length1 > active1 > 0
isNat > U11 > tt > mark1 > length1 > active1 > 0
isNat > U21 > tt > mark1 > length1 > active1 > 0
nil > tt > mark1 > length1 > active1 > 0

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(92) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(93) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(94) TRUE

(95) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(96) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat
s(x1)  =  s
length(x1)  =  length
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > mark1 > active1 > 0
zeros > mark1 > tt
zeros > cons > active1 > 0
isNatIList > U31 > mark1 > active1 > 0
isNatIList > U31 > mark1 > tt
isNatIList > U41 > U42 > mark1 > active1 > 0
isNatIList > U41 > U42 > mark1 > tt
isNatList > U51 > U52 > mark1 > active1 > 0
isNatList > U51 > U52 > mark1 > tt
isNat > U11 > mark1 > active1 > 0
isNat > U11 > mark1 > tt
isNat > U21 > mark1 > active1 > 0
isNat > U21 > mark1 > tt
length > U11 > mark1 > active1 > 0
length > U11 > mark1 > tt
length > U61 > U62 > mark1 > active1 > 0
length > U61 > U62 > mark1 > tt
length > U61 > U62 > s > active1 > 0
nil > mark1 > active1 > 0
nil > mark1 > tt

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(97) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, mark(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  x1
zeros  =  zeros
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  isNat(x1)
s(x1)  =  s
length(x1)  =  length(x1)
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > cons > U41 > U42 > tt > mark1 > length1 > s
zeros > cons > U51 > U52 > tt > mark1 > length1 > s
zeros > cons > U61 > U62 > mark1 > length1 > s
zeros > 0 > mark1 > length1 > s
isNatIList > U31 > tt > mark1 > length1 > s
isNatIList > U41 > U42 > tt > mark1 > length1 > s
isNat1 > U11 > tt > mark1 > length1 > s
isNat1 > U21 > tt > mark1 > length1 > s
isNat1 > isNatList > U51 > U52 > tt > mark1 > length1 > s
nil > 0 > mark1 > length1 > s
nil > tt > mark1 > length1 > s

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(99) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(100) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, active(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1, x2)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark(x1)
cons(x1, x2)  =  cons
0  =  0
U11(x1)  =  U11
tt  =  tt
U21(x1)  =  U21
U31(x1)  =  U31
U41(x1, x2)  =  U41
U42(x1)  =  U42
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51
U52(x1)  =  U52
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62
isNat(x1)  =  x1
s(x1)  =  s
length(x1)  =  length
nil  =  nil

Lexicographic Path Order [LPO].
Precedence:
zeros > cons > U41 > U42 > mark1 > active1 > CONS2
zeros > cons > U41 > U42 > mark1 > tt > CONS2
zeros > cons > U41 > U42 > mark1 > nil > CONS2
zeros > cons > U41 > isNatIList1 > U31 > mark1 > active1 > CONS2
zeros > cons > U41 > isNatIList1 > U31 > mark1 > tt > CONS2
zeros > cons > U41 > isNatIList1 > U31 > mark1 > nil > CONS2
zeros > cons > U51 > U52 > mark1 > active1 > CONS2
zeros > cons > U51 > U52 > mark1 > tt > CONS2
zeros > cons > U51 > U52 > mark1 > nil > CONS2
length > 0 > mark1 > active1 > CONS2
length > 0 > mark1 > tt > CONS2
length > 0 > mark1 > nil > CONS2
length > U11 > mark1 > active1 > CONS2
length > U11 > mark1 > tt > CONS2
length > U11 > mark1 > nil > CONS2
length > isNatList > U51 > U52 > mark1 > active1 > CONS2
length > isNatList > U51 > U52 > mark1 > tt > CONS2
length > isNatList > U51 > U52 > mark1 > nil > CONS2
length > U61 > U62 > s > U21 > mark1 > active1 > CONS2
length > U61 > U62 > s > U21 > mark1 > tt > CONS2
length > U61 > U62 > s > U21 > mark1 > nil > CONS2

The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

(101) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(102) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(103) TRUE

(104) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(U41(tt, V2)) → MARK(U42(isNatIList(V2)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U11(X)) → ACTIVE(U11(mark(X)))
ACTIVE(U51(tt, V2)) → MARK(U52(isNatList(V2)))
MARK(U11(X)) → MARK(X)
MARK(U21(X)) → ACTIVE(U21(mark(X)))
ACTIVE(U61(tt, L, N)) → MARK(U62(isNat(N), L))
MARK(U21(X)) → MARK(X)
MARK(U31(X)) → ACTIVE(U31(mark(X)))
ACTIVE(U62(tt, L)) → MARK(s(length(L)))
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
ACTIVE(isNat(length(V1))) → MARK(U11(isNatList(V1)))
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → ACTIVE(U42(mark(X)))
ACTIVE(isNat(s(V1))) → MARK(U21(isNat(V1)))
MARK(U42(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(V)) → MARK(U31(isNatList(V)))
MARK(U51(X1, X2)) → ACTIVE(U51(mark(X1), X2))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(isNat(V1), V2))
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → ACTIVE(U52(mark(X)))
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(isNat(V1), V2))
MARK(U52(X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(length(cons(N, L))) → MARK(U61(isNatList(L), L, N))
MARK(U61(X1, X2, X3)) → ACTIVE(U61(mark(X1), X2, X3))
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2)) → ACTIVE(U62(mark(X1), X2))
MARK(U62(X1, X2)) → MARK(X1)
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → MARK(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X)) → active(U11(mark(X)))
mark(tt) → active(tt)
mark(U21(X)) → active(U21(mark(X)))
mark(U31(X)) → active(U31(mark(X)))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(U42(X)) → active(U42(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2)) → active(U51(mark(X1), X2))
mark(U52(X)) → active(U52(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U61(X1, X2, X3)) → active(U61(mark(X1), X2, X3))
mark(U62(X1, X2)) → active(U62(mark(X1), X2))
mark(isNat(X)) → active(isNat(X))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X)) → U11(X)
U11(active(X)) → U11(X)
U21(mark(X)) → U21(X)
U21(active(X)) → U21(X)
U31(mark(X)) → U31(X)
U31(active(X)) → U31(X)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U42(mark(X)) → U42(X)
U42(active(X)) → U42(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2) → U51(X1, X2)
U51(X1, mark(X2)) → U51(X1, X2)
U51(active(X1), X2) → U51(X1, X2)
U51(X1, active(X2)) → U51(X1, X2)
U52(mark(X)) → U52(X)
U52(active(X)) → U52(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U61(mark(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, mark(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, mark(X3)) → U61(X1, X2, X3)
U61(active(X1), X2, X3) → U61(X1, X2, X3)
U61(X1, active(X2), X3) → U61(X1, X2, X3)
U61(X1, X2, active(X3)) → U61(X1, X2, X3)
U62(mark(X1), X2) → U62(X1, X2)
U62(X1, mark(X2)) → U62(X1, X2)
U62(active(X1), X2) → U62(X1, X2)
U62(X1, active(X2)) → U62(X1, X2)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.