(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, L, N) → a__U62(a__isNat(N), L)
a__U62(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2)) → a__U62(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2) → U62(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U41(tt, V2) → A__U42(a__isNatIList(V2))
A__U41(tt, V2) → A__ISNATILIST(V2)
A__U51(tt, V2) → A__U52(a__isNatList(V2))
A__U51(tt, V2) → A__ISNATLIST(V2)
A__U61(tt, L, N) → A__U62(a__isNat(N), L)
A__U61(tt, L, N) → A__ISNAT(N)
A__U62(tt, L) → A__LENGTH(mark(L))
A__U62(tt, L) → MARK(L)
A__ISNAT(length(V1)) → A__U11(a__isNatList(V1))
A__ISNAT(length(V1)) → A__ISNATLIST(V1)
A__ISNAT(s(V1)) → A__U21(a__isNat(V1))
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__ISNATILIST(V) → A__U31(a__isNatList(V))
A__ISNATILIST(V) → A__ISNATLIST(V)
A__ISNATILIST(cons(V1, V2)) → A__U41(a__isNat(V1), V2)
A__ISNATILIST(cons(V1, V2)) → A__ISNAT(V1)
A__ISNATLIST(cons(V1, V2)) → A__U51(a__isNat(V1), V2)
A__ISNATLIST(cons(V1, V2)) → A__ISNAT(V1)
A__LENGTH(cons(N, L)) → A__U61(a__isNatList(L), L, N)
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
MARK(zeros) → A__ZEROS
MARK(U11(X)) → A__U11(mark(X))
MARK(U11(X)) → MARK(X)
MARK(U21(X)) → A__U21(mark(X))
MARK(U21(X)) → MARK(X)
MARK(U31(X)) → A__U31(mark(X))
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → A__U41(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → A__U42(mark(X))
MARK(U42(X)) → MARK(X)
MARK(isNatIList(X)) → A__ISNATILIST(X)
MARK(U51(X1, X2)) → A__U51(mark(X1), X2)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → A__U52(mark(X))
MARK(U52(X)) → MARK(X)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(U61(X1, X2, X3)) → A__U61(mark(X1), X2, X3)
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2)) → A__U62(mark(X1), X2)
MARK(U62(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, L, N) → a__U62(a__isNat(N), L)
a__U62(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2)) → a__U62(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2) → U62(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 20 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U51(tt, V2) → A__ISNATLIST(V2)
A__ISNATLIST(cons(V1, V2)) → A__U51(a__isNat(V1), V2)
A__ISNATLIST(cons(V1, V2)) → A__ISNAT(V1)
A__ISNAT(length(V1)) → A__ISNATLIST(V1)
A__ISNAT(s(V1)) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, L, N) → a__U62(a__isNat(N), L)
a__U62(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2)) → a__U62(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2) → U62(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNATLIST(cons(V1, V2)) → A__U51(a__isNat(V1), V2)
A__ISNATLIST(cons(V1, V2)) → A__ISNAT(V1)
A__ISNAT(length(V1)) → A__ISNATLIST(V1)
A__ISNAT(s(V1)) → A__ISNAT(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U51(x1, x2)  =  x2
tt  =  tt
A__ISNATLIST(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
a__isNat(x1)  =  a__isNat
A__ISNAT(x1)  =  A__ISNAT(x1)
length(x1)  =  x1
s(x1)  =  s(x1)
isNat(x1)  =  isNat(x1)
a__isNatList(x1)  =  a__isNatList
a__U51(x1, x2)  =  a__U51
isNatList(x1)  =  isNatList(x1)
a__U52(x1)  =  a__U52
U52(x1)  =  U52(x1)
U51(x1, x2)  =  U51(x1, x2)
nil  =  nil
0  =  0
a__U21(x1)  =  a__U21
a__U11(x1)  =  a__U11
U21(x1)  =  U21(x1)
U11(x1)  =  U11(x1)

Lexicographic path order with status [LPO].
Precedence:
cons2 > AISNAT1 > isNatList1
cons2 > aU51 > aU52 > U521 > isNatList1
cons2 > aU51 > U512 > isNatList1
aisNat > isNat1 > isNatList1
s1 > AISNAT1 > isNatList1
nil > isNatList1
0 > isNatList1
aU21 > tt > aisNatList > aU51 > aU52 > U521 > isNatList1
aU21 > tt > aisNatList > aU51 > U512 > isNatList1
aU21 > U211 > isNatList1
aU11 > tt > aisNatList > aU51 > aU52 > U521 > isNatList1
aU11 > tt > aisNatList > aU51 > U512 > isNatList1
aU11 > U111 > isNatList1

Status:
AISNAT1: [1]
aU11: []
aisNat: []
aisNatList: []
0: []
U512: [1,2]
cons2: [1,2]
aU52: []
tt: []
isNatList1: [1]
U521: [1]
aU51: []
s1: [1]
U111: [1]
isNat1: [1]
nil: []
aU21: []
U211: [1]

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U51(tt, V2) → A__ISNATLIST(V2)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, L, N) → a__U62(a__isNat(N), L)
a__U62(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2)) → a__U62(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2) → U62(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U41(tt, V2) → A__ISNATILIST(V2)
A__ISNATILIST(cons(V1, V2)) → A__U41(a__isNat(V1), V2)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, L, N) → a__U62(a__isNat(N), L)
a__U62(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2)) → a__U62(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2) → U62(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U41(tt, V2) → A__ISNATILIST(V2)
A__ISNATILIST(cons(V1, V2)) → A__U41(a__isNat(V1), V2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U41(x1, x2)  =  A__U41(x2)
tt  =  tt
A__ISNATILIST(x1)  =  A__ISNATILIST(x1)
cons(x1, x2)  =  cons(x2)
a__isNat(x1)  =  a__isNat
isNat(x1)  =  x1
a__isNatList(x1)  =  a__isNatList
a__U51(x1, x2)  =  a__U51
isNatList(x1)  =  x1
a__U52(x1)  =  a__U52(x1)
U52(x1)  =  x1
U51(x1, x2)  =  U51
nil  =  nil
0  =  0
s(x1)  =  s
a__U21(x1)  =  a__U21(x1)
length(x1)  =  x1
a__U11(x1)  =  a__U11(x1)
U21(x1)  =  U21(x1)
U11(x1)  =  U11

Lexicographic path order with status [LPO].
Precedence:
cons1 > AU411 > AISNATILIST1 > aisNat > aU211 > tt
cons1 > aU51 > aU521 > tt
cons1 > aU51 > U51
aisNatList > aisNat > aU211 > tt
nil > tt
0 > tt
s > aisNat > aU211 > tt
aU111 > tt

Status:
U51: []
aU521: [1]
cons1: [1]
U11: []
s: []
aisNat: []
aisNatList: []
0: []
aU211: [1]
AISNATILIST1: [1]
tt: []
aU111: [1]
AU411: [1]
aU51: []
nil: []
U211: [1]

The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, L, N) → a__U62(a__isNat(N), L)
a__U62(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2)) → a__U62(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2) → U62(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X)) → MARK(X)
MARK(U21(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U61(X1, X2, X3)) → A__U61(mark(X1), X2, X3)
A__U61(tt, L, N) → A__U62(a__isNat(N), L)
A__U62(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U61(a__isNatList(L), L, N)
A__U62(tt, L) → MARK(L)
MARK(U61(X1, X2, X3)) → MARK(X1)
MARK(U62(X1, X2)) → A__U62(mark(X1), X2)
MARK(U62(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, L, N) → a__U62(a__isNat(N), L)
a__U62(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U61(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2, X3)) → a__U61(mark(X1), X2, X3)
mark(U62(X1, X2)) → a__U62(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2, X3) → U61(X1, X2, X3)
a__U62(X1, X2) → U62(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.