(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(U41(tt, V2)) → U421(isNatIList(V2))
ACTIVE(U41(tt, V2)) → ISNATILIST(V2)
ACTIVE(U51(tt, V2)) → U521(isNatList(V2))
ACTIVE(U51(tt, V2)) → ISNATLIST(V2)
ACTIVE(U61(tt, L, N)) → U621(isNat(N), L)
ACTIVE(U61(tt, L, N)) → ISNAT(N)
ACTIVE(U62(tt, L)) → S(length(L))
ACTIVE(U62(tt, L)) → LENGTH(L)
ACTIVE(isNat(length(V1))) → U111(isNatList(V1))
ACTIVE(isNat(length(V1))) → ISNATLIST(V1)
ACTIVE(isNat(s(V1))) → U211(isNat(V1))
ACTIVE(isNat(s(V1))) → ISNAT(V1)
ACTIVE(isNatIList(V)) → U311(isNatList(V))
ACTIVE(isNatIList(V)) → ISNATLIST(V)
ACTIVE(isNatIList(cons(V1, V2))) → U411(isNat(V1), V2)
ACTIVE(isNatIList(cons(V1, V2))) → ISNAT(V1)
ACTIVE(isNatList(cons(V1, V2))) → U511(isNat(V1), V2)
ACTIVE(isNatList(cons(V1, V2))) → ISNAT(V1)
ACTIVE(length(cons(N, L))) → U611(isNatList(L), L, N)
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X)) → U111(active(X))
ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(U21(X)) → U211(active(X))
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X)) → U311(active(X))
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → U411(active(X1), X2)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → U421(active(X))
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → U511(active(X1), X2)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X)) → U521(active(X))
ACTIVE(U52(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2, X3)) → U611(active(X1), X2, X3)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U62(X1, X2)) → U621(active(X1), X2)
ACTIVE(U62(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → LENGTH(active(X))
ACTIVE(length(X)) → ACTIVE(X)
CONS(mark(X1), X2) → CONS(X1, X2)
U111(mark(X)) → U111(X)
U211(mark(X)) → U211(X)
U311(mark(X)) → U311(X)
U411(mark(X1), X2) → U411(X1, X2)
U421(mark(X)) → U421(X)
U511(mark(X1), X2) → U511(X1, X2)
U521(mark(X)) → U521(X)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)
U621(mark(X1), X2) → U621(X1, X2)
S(mark(X)) → S(X)
LENGTH(mark(X)) → LENGTH(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(U11(X)) → U111(proper(X))
PROPER(U11(X)) → PROPER(X)
PROPER(U21(X)) → U211(proper(X))
PROPER(U21(X)) → PROPER(X)
PROPER(U31(X)) → U311(proper(X))
PROPER(U31(X)) → PROPER(X)
PROPER(U41(X1, X2)) → U411(proper(X1), proper(X2))
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(U42(X)) → U421(proper(X))
PROPER(U42(X)) → PROPER(X)
PROPER(isNatIList(X)) → ISNATILIST(proper(X))
PROPER(isNatIList(X)) → PROPER(X)
PROPER(U51(X1, X2)) → U511(proper(X1), proper(X2))
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X)) → U521(proper(X))
PROPER(U52(X)) → PROPER(X)
PROPER(isNatList(X)) → ISNATLIST(proper(X))
PROPER(isNatList(X)) → PROPER(X)
PROPER(U61(X1, X2, X3)) → U611(proper(X1), proper(X2), proper(X3))
PROPER(U61(X1, X2, X3)) → PROPER(X1)
PROPER(U61(X1, X2, X3)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → PROPER(X3)
PROPER(U62(X1, X2)) → U621(proper(X1), proper(X2))
PROPER(U62(X1, X2)) → PROPER(X1)
PROPER(U62(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → ISNAT(proper(X))
PROPER(isNat(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(length(X)) → LENGTH(proper(X))
PROPER(length(X)) → PROPER(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
U111(ok(X)) → U111(X)
U211(ok(X)) → U211(X)
U311(ok(X)) → U311(X)
U411(ok(X1), ok(X2)) → U411(X1, X2)
U421(ok(X)) → U421(X)
ISNATILIST(ok(X)) → ISNATILIST(X)
U511(ok(X1), ok(X2)) → U511(X1, X2)
U521(ok(X)) → U521(X)
ISNATLIST(ok(X)) → ISNATLIST(X)
U611(ok(X1), ok(X2), ok(X3)) → U611(X1, X2, X3)
U621(ok(X1), ok(X2)) → U621(X1, X2)
ISNAT(ok(X)) → ISNAT(X)
S(ok(X)) → S(X)
LENGTH(ok(X)) → LENGTH(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 18 SCCs with 50 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(ok(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(ok(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  ISNAT(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1)  =  x1
tt  =  tt
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x2
U42(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  x2
U52(x1)  =  x1
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  x2
U62(x1, x2)  =  x2
isNat(x1)  =  x1
s(x1)  =  x1
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
ISNAT1 > [mark, 0, tt, top]
[ok1, active1, zeros, cons1, isNatIList1, nil, proper1] > [mark, 0, tt, top]

Status:
ISNAT1: multiset
ok1: multiset
active1: multiset
zeros: multiset
mark: multiset
cons1: multiset
0: multiset
tt: multiset
isNatIList1: multiset
nil: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATLIST(ok(X)) → ISNATLIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATLIST(ok(X)) → ISNATLIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATLIST(x1)  =  ISNATLIST(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1)  =  x1
tt  =  tt
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x2
U42(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  x2
U52(x1)  =  x1
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  x2
U62(x1, x2)  =  x2
isNat(x1)  =  x1
s(x1)  =  x1
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
ISNATLIST1 > [mark, 0, tt, top]
[ok1, active1, zeros, cons1, isNatIList1, nil, proper1] > [mark, 0, tt, top]

Status:
ISNATLIST1: multiset
ok1: multiset
active1: multiset
zeros: multiset
mark: multiset
cons1: multiset
0: multiset
tt: multiset
isNatIList1: multiset
nil: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(ok(X)) → ISNATILIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATILIST(ok(X)) → ISNATILIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATILIST(x1)  =  ISNATILIST(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1)  =  x1
tt  =  tt
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x2
U42(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  x2
U52(x1)  =  x1
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  x2
U62(x1, x2)  =  x2
isNat(x1)  =  x1
s(x1)  =  x1
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
ISNATILIST1 > [mark, 0, tt, top]
[ok1, active1, zeros, cons1, isNatIList1, nil, proper1] > [mark, 0, tt, top]

Status:
ISNATILIST1: multiset
ok1: multiset
active1: multiset
zeros: multiset
mark: multiset
cons1: multiset
0: multiset
tt: multiset
isNatIList1: multiset
nil: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(ok(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(mark(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  LENGTH(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1)  =  U11(x1)
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2)  =  U62(x1, x2)
isNat(x1)  =  isNat
s(x1)  =  s(x1)
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [active1, cons2, isNatIList, U613, nil, proper1] > [U622, s1] > [LENGTH1, mark1, 0, U111, tt, U211, U311, U411, U421, U511, U521, isNatList, isNat, top]

Status:
LENGTH1: [1]
mark1: [1]
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U111: [1]
tt: multiset
U211: [1]
U311: [1]
U411: [1]
U421: [1]
isNatIList: []
U511: [1]
U521: [1]
isNatList: multiset
U613: [2,1,3]
U622: multiset
isNat: multiset
s1: [1]
nil: multiset
proper1: [1]
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(ok(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(ok(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  LENGTH(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1)  =  x1
tt  =  tt
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x2
U42(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  x2
U52(x1)  =  x1
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  x2
U62(x1, x2)  =  x2
isNat(x1)  =  x1
s(x1)  =  x1
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
LENGTH1 > [mark, 0, tt, top]
[ok1, active1, zeros, cons1, isNatIList1, nil, proper1] > [mark, 0, tt, top]

Status:
LENGTH1: multiset
ok1: multiset
active1: multiset
zeros: multiset
mark: multiset
cons1: multiset
0: multiset
tt: multiset
isNatIList1: multiset
nil: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(24) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(26) TRUE

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1)  =  U11(x1)
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2)  =  U62(x1, x2)
isNat(x1)  =  isNat
s(x1)  =  s(x1)
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [active1, cons2, isNatIList, U613, nil, proper1] > [U622, s1] > [S1, mark1, 0, U111, tt, U211, U311, U411, U421, U511, U521, isNatList, isNat, top]

Status:
S1: [1]
mark1: [1]
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U111: [1]
tt: multiset
U211: [1]
U311: [1]
U411: [1]
U421: [1]
isNatIList: []
U511: [1]
U521: [1]
isNatList: multiset
U613: [2,1,3]
U622: multiset
isNat: multiset
s1: [1]
nil: multiset
proper1: [1]
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1)  =  x1
tt  =  tt
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x2
U42(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  x2
U52(x1)  =  x1
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  x2
U62(x1, x2)  =  x2
isNat(x1)  =  x1
s(x1)  =  x1
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
S1 > [mark, 0, tt, top]
[ok1, active1, zeros, cons1, isNatIList1, nil, proper1] > [mark, 0, tt, top]

Status:
S1: multiset
ok1: multiset
active1: multiset
zeros: multiset
mark: multiset
cons1: multiset
0: multiset
tt: multiset
isNatIList1: multiset
nil: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(31) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(33) TRUE

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(ok(X1), ok(X2)) → U621(X1, X2)
U621(mark(X1), X2) → U621(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(ok(X1), ok(X2)) → U621(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2)  =  U621(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1)  =  U11(x1)
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  U61(x2)
U62(x1, x2)  =  U62(x1)
isNat(x1)  =  isNat(x1)
s(x1)  =  s(x1)
length(x1)  =  length(x1)
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [active1, cons2, isNatIList1, length1, nil, proper1] > [U62^11, ok1, mark, 0, U111, tt, U211, U311, U411, U421, U511, U521, isNatList1, U611, U621, isNat1, s1, top]

Status:
U62^11: multiset
ok1: multiset
mark: multiset
active1: [1]
zeros: multiset
cons2: [2,1]
0: multiset
U111: multiset
tt: multiset
U211: multiset
U311: multiset
U411: multiset
U421: multiset
isNatIList1: [1]
U511: multiset
U521: multiset
isNatList1: multiset
U611: multiset
U621: multiset
isNat1: multiset
s1: multiset
length1: [1]
nil: multiset
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(mark(X1), X2) → U621(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(mark(X1), X2) → U621(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2)  =  U621(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1)  =  U11(x1)
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2)  =  U62(x1, x2)
isNat(x1)  =  isNat
s(x1)  =  s(x1)
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [active1, cons2, isNatIList, nil, proper1] > [U613, U622, s1] > [U62^11, mark1, 0, U111, tt, U211, U311, U411, U421, U511, U521, isNatList, isNat, ok, top]

Status:
U62^11: multiset
mark1: [1]
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U111: [1]
tt: multiset
U211: [1]
U311: [1]
U411: [1]
U421: [1]
isNatIList: []
U511: [1]
U521: [1]
isNatList: multiset
U613: multiset
U622: multiset
isNat: multiset
s1: [1]
nil: multiset
proper1: [1]
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(38) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(40) TRUE

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(ok(X1), ok(X2), ok(X3)) → U611(X1, X2, X3)
U611(mark(X1), X2, X3) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(ok(X1), ok(X2), ok(X3)) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611(x3)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1)  =  U11(x1)
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  x2
U42(x1)  =  U42(x1)
isNatIList(x1)  =  x1
U51(x1, x2)  =  x2
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  x2
U62(x1, x2)  =  U62(x2)
isNat(x1)  =  isNat(x1)
s(x1)  =  s(x1)
length(x1)  =  length(x1)
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [active1, cons2, length1, nil, proper1] > [U61^11, ok1, 0, U111, tt, U211, U311, U421, U521, isNatList1, U621, isNat1, s1, top]

Status:
U61^11: multiset
ok1: multiset
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U111: multiset
tt: multiset
U211: multiset
U311: multiset
U421: multiset
U521: multiset
isNatList1: multiset
U621: multiset
isNat1: multiset
s1: multiset
length1: [1]
nil: multiset
proper1: [1]
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2, X3) → U611(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X1), X2, X3) → U611(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611(x1, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1)  =  U11(x1)
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2)  =  U62(x1, x2)
isNat(x1)  =  isNat
s(x1)  =  s(x1)
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [active1, cons2, isNatIList, U613, nil, proper1] > [U622, s1] > [U61^12, mark1, 0, U111, tt, U211, U311, U411, U421, U511, U521, isNatList, isNat, ok, top]

Status:
U61^12: [2,1]
mark1: [1]
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U111: [1]
tt: multiset
U211: [1]
U311: [1]
U411: [1]
U421: [1]
isNatIList: []
U511: [1]
U521: [1]
isNatList: multiset
U613: [2,3,1]
U622: multiset
isNat: multiset
s1: [1]
nil: multiset
proper1: [1]
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(45) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(47) TRUE

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(ok(X)) → U521(X)
U521(mark(X)) → U521(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(mark(X)) → U521(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1)  =  U521(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1)  =  U11(x1)
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2)  =  U62(x1, x2)
isNat(x1)  =  isNat
s(x1)  =  s(x1)
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [active1, cons2, isNatIList, U613, nil, proper1] > [U622, s1] > [U52^11, mark1, 0, U111, tt, U211, U311, U411, U421, U511, U521, isNatList, isNat, top]

Status:
U52^11: [1]
mark1: [1]
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U111: [1]
tt: multiset
U211: [1]
U311: [1]
U411: [1]
U421: [1]
isNatIList: []
U511: [1]
U521: [1]
isNatList: multiset
U613: [2,1,3]
U622: multiset
isNat: multiset
s1: [1]
nil: multiset
proper1: [1]
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(ok(X)) → U521(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(ok(X)) → U521(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1)  =  U521(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1)  =  x1
tt  =  tt
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x2
U42(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  x2
U52(x1)  =  x1
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  x2
U62(x1, x2)  =  x2
isNat(x1)  =  x1
s(x1)  =  x1
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
U52^11 > [mark, 0, tt, top]
[ok1, active1, zeros, cons1, isNatIList1, nil, proper1] > [mark, 0, tt, top]

Status:
U52^11: multiset
ok1: multiset
active1: multiset
zeros: multiset
mark: multiset
cons1: multiset
0: multiset
tt: multiset
isNatIList1: multiset
nil: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(52) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(54) TRUE

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2)) → U511(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(ok(X1), ok(X2)) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1)  =  U11(x1)
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  U61(x2)
U62(x1, x2)  =  U62(x1)
isNat(x1)  =  isNat(x1)
s(x1)  =  s(x1)
length(x1)  =  length(x1)
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [active1, cons2, isNatIList1, length1, nil, proper1] > [U51^11, ok1, mark, 0, U111, tt, U211, U311, U411, U421, U511, U521, isNatList1, U611, U621, isNat1, s1, top]

Status:
U51^11: multiset
ok1: multiset
mark: multiset
active1: [1]
zeros: multiset
cons2: [2,1]
0: multiset
U111: multiset
tt: multiset
U211: multiset
U311: multiset
U411: multiset
U421: multiset
isNatIList1: [1]
U511: multiset
U521: multiset
isNatList1: multiset
U611: multiset
U621: multiset
isNat1: multiset
s1: multiset
length1: [1]
nil: multiset
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(mark(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1)  =  U11(x1)
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2)  =  U62(x1, x2)
isNat(x1)  =  isNat
s(x1)  =  s(x1)
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [active1, cons2, isNatIList, nil, proper1] > [U613, U622, s1] > [U51^11, mark1, 0, U111, tt, U211, U311, U411, U421, U511, U521, isNatList, isNat, ok, top]

Status:
U51^11: multiset
mark1: [1]
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U111: [1]
tt: multiset
U211: [1]
U311: [1]
U411: [1]
U421: [1]
isNatIList: []
U511: [1]
U521: [1]
isNatList: multiset
U613: multiset
U622: multiset
isNat: multiset
s1: [1]
nil: multiset
proper1: [1]
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(59) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(61) TRUE

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(ok(X)) → U421(X)
U421(mark(X)) → U421(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U421(mark(X)) → U421(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U421(x1)  =  U421(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1)  =  U11(x1)
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2)  =  U62(x1, x2)
isNat(x1)  =  isNat
s(x1)  =  s(x1)
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [active1, cons2, isNatIList, U613, nil, proper1] > [U622, s1] > [U42^11, mark1, 0, U111, tt, U211, U311, U411, U421, U511, U521, isNatList, isNat, top]

Status:
U42^11: [1]
mark1: [1]
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U111: [1]
tt: multiset
U211: [1]
U311: [1]
U411: [1]
U421: [1]
isNatIList: []
U511: [1]
U521: [1]
isNatList: multiset
U613: [2,1,3]
U622: multiset
isNat: multiset
s1: [1]
nil: multiset
proper1: [1]
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(ok(X)) → U421(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U421(ok(X)) → U421(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U421(x1)  =  U421(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1)  =  x1
tt  =  tt
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x2
U42(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  x2
U52(x1)  =  x1
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  x2
U62(x1, x2)  =  x2
isNat(x1)  =  x1
s(x1)  =  x1
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
U42^11 > [mark, 0, tt, top]
[ok1, active1, zeros, cons1, isNatIList1, nil, proper1] > [mark, 0, tt, top]

Status:
U42^11: multiset
ok1: multiset
active1: multiset
zeros: multiset
mark: multiset
cons1: multiset
0: multiset
tt: multiset
isNatIList1: multiset
nil: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(66) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(68) TRUE

(69) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(ok(X1), ok(X2)) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1)  =  U11(x1)
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  U61(x2)
U62(x1, x2)  =  U62(x1)
isNat(x1)  =  isNat(x1)
s(x1)  =  s(x1)
length(x1)  =  length(x1)
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [active1, cons2, isNatIList1, length1, nil, proper1] > [U41^11, ok1, mark, 0, U111, tt, U211, U311, U411, U421, U511, U521, isNatList1, U611, U621, isNat1, s1, top]

Status:
U41^11: multiset
ok1: multiset
mark: multiset
active1: [1]
zeros: multiset
cons2: [2,1]
0: multiset
U111: multiset
tt: multiset
U211: multiset
U311: multiset
U411: multiset
U421: multiset
isNatIList1: [1]
U511: multiset
U521: multiset
isNatList1: multiset
U611: multiset
U621: multiset
isNat1: multiset
s1: multiset
length1: [1]
nil: multiset
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(71) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(72) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X1), X2) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1)  =  U11(x1)
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2)  =  U62(x1, x2)
isNat(x1)  =  isNat
s(x1)  =  s(x1)
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [active1, cons2, isNatIList, nil, proper1] > [U613, U622, s1] > [U41^11, mark1, 0, U111, tt, U211, U311, U411, U421, U511, U521, isNatList, isNat, ok, top]

Status:
U41^11: multiset
mark1: [1]
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U111: [1]
tt: multiset
U211: [1]
U311: [1]
U411: [1]
U421: [1]
isNatIList: []
U511: [1]
U521: [1]
isNatList: multiset
U613: multiset
U622: multiset
isNat: multiset
s1: [1]
nil: multiset
proper1: [1]
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(73) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(74) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(75) TRUE

(76) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X)) → U311(X)
U311(mark(X)) → U311(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(77) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X)) → U311(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1)  =  U311(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1)  =  U11(x1)
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2)  =  U62(x1, x2)
isNat(x1)  =  isNat
s(x1)  =  s(x1)
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [active1, cons2, isNatIList, U613, nil, proper1] > [U622, s1] > [U31^11, mark1, 0, U111, tt, U211, U311, U411, U421, U511, U521, isNatList, isNat, top]

Status:
U31^11: [1]
mark1: [1]
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U111: [1]
tt: multiset
U211: [1]
U311: [1]
U411: [1]
U421: [1]
isNatIList: []
U511: [1]
U521: [1]
isNatList: multiset
U613: [2,1,3]
U622: multiset
isNat: multiset
s1: [1]
nil: multiset
proper1: [1]
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(78) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X)) → U311(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(79) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(ok(X)) → U311(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1)  =  U311(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1)  =  x1
tt  =  tt
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x2
U42(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  x2
U52(x1)  =  x1
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  x2
U62(x1, x2)  =  x2
isNat(x1)  =  x1
s(x1)  =  x1
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
U31^11 > [mark, 0, tt, top]
[ok1, active1, zeros, cons1, isNatIList1, nil, proper1] > [mark, 0, tt, top]

Status:
U31^11: multiset
ok1: multiset
active1: multiset
zeros: multiset
mark: multiset
cons1: multiset
0: multiset
tt: multiset
isNatIList1: multiset
nil: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(80) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(81) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(82) TRUE

(83) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X)) → U211(X)
U211(mark(X)) → U211(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X)) → U211(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1)  =  U211(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1)  =  U11(x1)
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2)  =  U62(x1, x2)
isNat(x1)  =  isNat
s(x1)  =  s(x1)
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [active1, cons2, isNatIList, U613, nil, proper1] > [U622, s1] > [U21^11, mark1, 0, U111, tt, U211, U311, U411, U421, U511, U521, isNatList, isNat, top]

Status:
U21^11: [1]
mark1: [1]
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U111: [1]
tt: multiset
U211: [1]
U311: [1]
U411: [1]
U421: [1]
isNatIList: []
U511: [1]
U521: [1]
isNatList: multiset
U613: [2,1,3]
U622: multiset
isNat: multiset
s1: [1]
nil: multiset
proper1: [1]
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(85) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X)) → U211(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(86) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(ok(X)) → U211(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1)  =  U211(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1)  =  x1
tt  =  tt
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x2
U42(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  x2
U52(x1)  =  x1
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  x2
U62(x1, x2)  =  x2
isNat(x1)  =  x1
s(x1)  =  x1
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
U21^11 > [mark, 0, tt, top]
[ok1, active1, zeros, cons1, isNatIList1, nil, proper1] > [mark, 0, tt, top]

Status:
U21^11: multiset
ok1: multiset
active1: multiset
zeros: multiset
mark: multiset
cons1: multiset
0: multiset
tt: multiset
isNatIList1: multiset
nil: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(87) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(88) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(89) TRUE

(90) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X)) → U111(X)
U111(mark(X)) → U111(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(91) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X)) → U111(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1)  =  U111(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1)  =  U11(x1)
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2)  =  U62(x1, x2)
isNat(x1)  =  isNat
s(x1)  =  s(x1)
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [active1, cons2, isNatIList, U613, nil, proper1] > [U622, s1] > [U11^11, mark1, 0, U111, tt, U211, U311, U411, U421, U511, U521, isNatList, isNat, top]

Status:
U11^11: [1]
mark1: [1]
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U111: [1]
tt: multiset
U211: [1]
U311: [1]
U411: [1]
U421: [1]
isNatIList: []
U511: [1]
U521: [1]
isNatList: multiset
U613: [2,1,3]
U622: multiset
isNat: multiset
s1: [1]
nil: multiset
proper1: [1]
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(92) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X)) → U111(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(93) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X)) → U111(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1)  =  U111(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1)  =  x1
tt  =  tt
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x2
U42(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  x2
U52(x1)  =  x1
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  x2
U62(x1, x2)  =  x2
isNat(x1)  =  x1
s(x1)  =  x1
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
U11^11 > [mark, 0, tt, top]
[ok1, active1, zeros, cons1, isNatIList1, nil, proper1] > [mark, 0, tt, top]

Status:
U11^11: multiset
ok1: multiset
active1: multiset
zeros: multiset
mark: multiset
cons1: multiset
0: multiset
tt: multiset
isNatIList1: multiset
nil: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(94) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(95) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(96) TRUE

(97) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1)  =  U11(x1)
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  U61(x2)
U62(x1, x2)  =  U62(x1)
isNat(x1)  =  isNat(x1)
s(x1)  =  s(x1)
length(x1)  =  length(x1)
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [active1, cons2, isNatIList1, length1, nil, proper1] > [CONS1, ok1, mark, 0, U111, tt, U211, U311, U411, U421, U511, U521, isNatList1, U611, U621, isNat1, s1, top]

Status:
CONS1: multiset
ok1: multiset
mark: multiset
active1: [1]
zeros: multiset
cons2: [2,1]
0: multiset
U111: multiset
tt: multiset
U211: multiset
U311: multiset
U411: multiset
U421: multiset
isNatIList1: [1]
U511: multiset
U521: multiset
isNatList1: multiset
U611: multiset
U621: multiset
isNat1: multiset
s1: multiset
length1: [1]
nil: multiset
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(99) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(100) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1)  =  U11(x1)
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2)  =  U62(x1, x2)
isNat(x1)  =  isNat
s(x1)  =  s(x1)
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [active1, cons2, isNatIList, nil, proper1] > [U613, U622, s1] > [CONS1, mark1, 0, U111, tt, U211, U311, U411, U421, U511, U521, isNatList, isNat, ok, top]

Status:
CONS1: multiset
mark1: [1]
active1: [1]
zeros: multiset
cons2: [1,2]
0: multiset
U111: [1]
tt: multiset
U211: [1]
U311: [1]
U411: [1]
U421: [1]
isNatIList: []
U511: [1]
U521: [1]
isNatList: multiset
U613: multiset
U622: multiset
isNat: multiset
s1: [1]
nil: multiset
proper1: [1]
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(101) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(102) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(103) TRUE

(104) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(U11(X)) → PROPER(X)
PROPER(U21(X)) → PROPER(X)
PROPER(U31(X)) → PROPER(X)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(U42(X)) → PROPER(X)
PROPER(isNatIList(X)) → PROPER(X)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X)) → PROPER(X)
PROPER(isNatList(X)) → PROPER(X)
PROPER(U61(X1, X2, X3)) → PROPER(X1)
PROPER(U61(X1, X2, X3)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → PROPER(X3)
PROPER(U62(X1, X2)) → PROPER(X1)
PROPER(U62(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(length(X)) → PROPER(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(105) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → PROPER(X1)
PROPER(U61(X1, X2, X3)) → PROPER(X2)
PROPER(U61(X1, X2, X3)) → PROPER(X3)
PROPER(U62(X1, X2)) → PROPER(X1)
PROPER(U62(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
cons(x1, x2)  =  cons(x1, x2)
U11(x1)  =  x1
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U42(x1)  =  x1
isNatIList(x1)  =  x1
U51(x1, x2)  =  U51(x1, x2)
U52(x1)  =  x1
isNatList(x1)  =  x1
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2)  =  U62(x1, x2)
isNat(x1)  =  x1
s(x1)  =  x1
length(x1)  =  x1
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [cons2, nil, proper1] > [PROPER1, U412, U512, U613, U622, mark, 0, ok, top]
zeros > tt > [PROPER1, U412, U512, U613, U622, mark, 0, ok, top]

Status:
PROPER1: multiset
cons2: multiset
U412: multiset
U512: multiset
U613: multiset
U622: multiset
zeros: multiset
mark: multiset
0: multiset
tt: multiset
nil: multiset
proper1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(106) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U11(X)) → PROPER(X)
PROPER(U21(X)) → PROPER(X)
PROPER(U31(X)) → PROPER(X)
PROPER(U42(X)) → PROPER(X)
PROPER(isNatIList(X)) → PROPER(X)
PROPER(U52(X)) → PROPER(X)
PROPER(isNatList(X)) → PROPER(X)
PROPER(isNat(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(length(X)) → PROPER(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(107) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U11(X)) → PROPER(X)
PROPER(U21(X)) → PROPER(X)
PROPER(U31(X)) → PROPER(X)
PROPER(U42(X)) → PROPER(X)
PROPER(isNatIList(X)) → PROPER(X)
PROPER(U52(X)) → PROPER(X)
PROPER(isNatList(X)) → PROPER(X)
PROPER(isNat(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(length(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
U11(x1)  =  U11(x1)
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList(x1)
isNat(x1)  =  isNat(x1)
s(x1)  =  s(x1)
length(x1)  =  length(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1, x2)
0  =  0
tt  =  tt
U41(x1, x2)  =  U41(x2)
U51(x1, x2)  =  U51(x1, x2)
U61(x1, x2, x3)  =  U61(x2, x3)
U62(x1, x2)  =  U62(x1, x2)
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [isNatIList1, length1, active1, cons2, nil, proper1] > [U111, U211, U311, U421, U521, isNatList1, isNat1, s1, mark, 0, tt, U411, U512, U612, U622, ok, top]

Status:
U111: multiset
U211: multiset
U311: multiset
U421: multiset
isNatIList1: multiset
U521: multiset
isNatList1: multiset
isNat1: multiset
s1: multiset
length1: multiset
active1: multiset
zeros: multiset
mark: multiset
cons2: multiset
0: multiset
tt: multiset
U411: [1]
U512: multiset
U612: [2,1]
U622: multiset
nil: multiset
proper1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(108) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(109) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(110) TRUE

(111) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U62(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(112) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(length(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1)  =  x1
cons(x1, x2)  =  x1
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1)  =  x1
U61(x1, x2, x3)  =  x1
U62(x1, x2)  =  x1
s(x1)  =  x1
length(x1)  =  length(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
isNatIList(x1)  =  isNatIList(x1)
isNatList(x1)  =  isNatList(x1)
isNat(x1)  =  isNat(x1)
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[zeros, isNatIList1, nil, proper1] > [tt, isNatList1, isNat1] > [length1, mark] > [ACTIVE1, 0, ok1]
top > [ACTIVE1, 0, ok1]

Status:
ACTIVE1: [1]
length1: multiset
zeros: multiset
mark: multiset
0: multiset
tt: multiset
isNatIList1: multiset
isNatList1: multiset
isNat1: multiset
nil: multiset
proper1: multiset
ok1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(113) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U62(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(114) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1)  =  x1
cons(x1, x2)  =  x1
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1)  =  x1
U61(x1, x2, x3)  =  x1
U62(x1, x2)  =  x1
s(x1)  =  s(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
isNatIList(x1)  =  isNatIList
isNatList(x1)  =  isNatList(x1)
isNat(x1)  =  isNat(x1)
length(x1)  =  length
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [mark, tt, isNatList1, isNat1] > [ACTIVE1, s1, 0, ok, top]
length > [isNatIList, proper1] > [mark, tt, isNatList1, isNat1] > [ACTIVE1, s1, 0, ok, top]
length > [isNatIList, proper1] > nil > [ACTIVE1, s1, 0, ok, top]

Status:
ACTIVE1: [1]
s1: multiset
zeros: multiset
mark: multiset
0: multiset
tt: multiset
isNatIList: []
isNatList1: multiset
isNat1: multiset
length: []
nil: multiset
proper1: [1]
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(115) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U62(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(116) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U61(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1)  =  x1
cons(x1, x2)  =  x1
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1)  =  x1
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
isNatIList(x1)  =  isNatIList(x1)
isNatList(x1)  =  isNatList(x1)
isNat(x1)  =  isNat(x1)
s(x1)  =  s(x1)
length(x1)  =  length(x1)
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, isNatIList1, length1, nil, proper1] > [ACTIVE1, U613, mark, 0, tt, isNatList1, isNat1, s1, ok, top]
zeros > [ACTIVE1, U613, mark, 0, tt, isNatList1, isNat1, s1, ok, top]

Status:
ACTIVE1: [1]
U613: [3,2,1]
active1: multiset
zeros: multiset
mark: multiset
0: multiset
tt: multiset
isNatIList1: multiset
isNatList1: multiset
isNat1: multiset
s1: multiset
length1: multiset
nil: multiset
proper1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(117) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X)) → ACTIVE(X)
ACTIVE(U62(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(118) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U62(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1)  =  x1
cons(x1, x2)  =  x1
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1)  =  x1
U62(x1, x2)  =  U62(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
isNatIList(x1)  =  isNatIList(x1)
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  U61(x1)
isNat(x1)  =  isNat(x1)
s(x1)  =  s
length(x1)  =  length(x1)
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
s > [zeros, isNatIList1, length1, proper1] > [mark, tt, isNatList1, isNat1] > [ACTIVE1, U621, 0, U611, ok, top]
s > [zeros, isNatIList1, length1, proper1] > nil > [ACTIVE1, U621, 0, U611, ok, top]

Status:
ACTIVE1: [1]
U621: multiset
zeros: multiset
mark: multiset
0: multiset
tt: multiset
isNatIList1: [1]
isNatList1: multiset
U611: [1]
isNat1: multiset
s: []
length1: [1]
nil: multiset
proper1: [1]
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(119) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U52(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1)  =  x1
cons(x1, x2)  =  x1
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1)  =  U52(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
isNatIList(x1)  =  isNatIList(x1)
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  U61(x1)
U62(x1, x2)  =  U62(x1)
isNat(x1)  =  isNat(x1)
s(x1)  =  s
length(x1)  =  length(x1)
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
s > [zeros, isNatIList1, length1, proper1] > [mark, tt, isNatList1, isNat1] > [ACTIVE1, U521, 0, U611, U621, ok, top]
s > [zeros, isNatIList1, length1, proper1] > nil > [ACTIVE1, U521, 0, U611, U621, ok, top]

Status:
ACTIVE1: [1]
U521: multiset
zeros: multiset
mark: multiset
0: multiset
tt: multiset
isNatIList1: [1]
isNatList1: multiset
U611: [1]
U621: multiset
isNat1: multiset
s: []
length1: [1]
nil: multiset
proper1: [1]
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(121) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(122) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U51(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1)  =  x1
cons(x1, x2)  =  x1
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1, x2)  =  U51(x1, x2)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
isNatIList(x1)  =  isNatIList(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  U61(x2, x3)
U62(x1, x2)  =  U62(x1, x2)
isNat(x1)  =  isNat(x1)
s(x1)  =  s(x1)
length(x1)  =  length(x1)
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
U512 > [ACTIVE1, mark, 0, tt, U521, isNatList1, U612, U622, isNat1, s1, ok, top]
zeros > [ACTIVE1, mark, 0, tt, U521, isNatList1, U612, U622, isNat1, s1, ok, top]
isNatIList1 > [ACTIVE1, mark, 0, tt, U521, isNatList1, U612, U622, isNat1, s1, ok, top]
length1 > [ACTIVE1, mark, 0, tt, U521, isNatList1, U612, U622, isNat1, s1, ok, top]
nil > [ACTIVE1, mark, 0, tt, U521, isNatList1, U612, U622, isNat1, s1, ok, top]

Status:
ACTIVE1: [1]
U512: [2,1]
zeros: multiset
mark: multiset
0: multiset
tt: multiset
isNatIList1: multiset
U521: [1]
isNatList1: [1]
U612: [2,1]
U622: [2,1]
isNat1: multiset
s1: [1]
length1: multiset
nil: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(123) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(U42(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(124) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U42(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1)  =  x1
cons(x1, x2)  =  x1
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  U42(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  U61
U62(x1, x2)  =  U62(x1)
isNat(x1)  =  isNat(x1)
s(x1)  =  s
length(x1)  =  length(x1)
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
U61 > [zeros, isNatIList1, length1, proper1] > [mark, tt, isNatList1, isNat1] > [ACTIVE1, U421, U511, U521, U621, top]
U61 > [zeros, isNatIList1, length1, proper1] > nil > 0 > [ACTIVE1, U421, U511, U521, U621, top]
s > [zeros, isNatIList1, length1, proper1] > [mark, tt, isNatList1, isNat1] > [ACTIVE1, U421, U511, U521, U621, top]
s > [zeros, isNatIList1, length1, proper1] > nil > 0 > [ACTIVE1, U421, U511, U521, U621, top]

Status:
ACTIVE1: [1]
U421: multiset
zeros: multiset
mark: multiset
0: multiset
tt: multiset
isNatIList1: [1]
U511: multiset
U521: multiset
isNatList1: multiset
U61: []
U621: multiset
isNat1: multiset
s: []
length1: [1]
nil: multiset
proper1: [1]
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(125) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(126) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U41(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1)  =  x1
cons(x1, x2)  =  x1
U21(x1)  =  x1
U31(x1)  =  x1
U41(x1, x2)  =  U41(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  U61(x1)
U62(x1, x2)  =  U62(x1)
isNat(x1)  =  isNat(x1)
s(x1)  =  s
length(x1)  =  length(x1)
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
s > [zeros, isNatIList1, length1, proper1] > [mark, tt, isNatList1, isNat1] > [ACTIVE1, U411, 0, U421, U511, U521, U611, U621, ok, top]
s > [zeros, isNatIList1, length1, proper1] > nil > [ACTIVE1, U411, 0, U421, U511, U521, U611, U621, ok, top]

Status:
ACTIVE1: [1]
U411: multiset
zeros: multiset
mark: multiset
0: multiset
tt: multiset
U421: multiset
isNatIList1: [1]
U511: multiset
U521: multiset
isNatList1: multiset
U611: [1]
U621: multiset
isNat1: multiset
s: []
length1: [1]
nil: multiset
proper1: [1]
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(127) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U21(X)) → ACTIVE(X)
ACTIVE(U31(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(128) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U31(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1)  =  x1
cons(x1, x2)  =  x1
U21(x1)  =  x1
U31(x1)  =  U31(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  x3
U62(x1, x2)  =  U62(x1)
isNat(x1)  =  isNat(x1)
s(x1)  =  s(x1)
length(x1)  =  length(x1)
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, isNatIList1, length1, nil, proper1] > [ACTIVE1, U311, mark, 0, tt, U411, U421, U511, U521, isNatList1, U621, isNat1, s1, ok1, top]
zeros > [ACTIVE1, U311, mark, 0, tt, U411, U421, U511, U521, isNatList1, U621, isNat1, s1, ok1, top]

Status:
ACTIVE1: [1]
U311: multiset
active1: multiset
zeros: multiset
mark: multiset
0: multiset
tt: multiset
U411: multiset
U421: multiset
isNatIList1: multiset
U511: multiset
U521: multiset
isNatList1: multiset
U621: multiset
isNat1: multiset
s1: multiset
length1: multiset
nil: multiset
proper1: multiset
ok1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(129) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U21(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(130) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U21(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1)  =  x1
cons(x1, x2)  =  x1
U21(x1)  =  U21(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList(x1)
U61(x1, x2, x3)  =  x3
U62(x1, x2)  =  U62(x1)
isNat(x1)  =  isNat(x1)
s(x1)  =  s(x1)
length(x1)  =  length(x1)
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, isNatIList1, length1, nil, proper1] > [ACTIVE1, U211, mark, 0, tt, U311, U411, U421, U511, U521, isNatList1, U621, isNat1, s1, ok1, top]
zeros > [ACTIVE1, U211, mark, 0, tt, U311, U411, U421, U511, U521, isNatList1, U621, isNat1, s1, ok1, top]

Status:
ACTIVE1: [1]
U211: multiset
active1: [1]
zeros: multiset
mark: multiset
0: multiset
tt: multiset
U311: multiset
U411: multiset
U421: multiset
isNatIList1: [1]
U511: multiset
U521: multiset
isNatList1: multiset
U621: multiset
isNat1: multiset
s1: multiset
length1: [1]
nil: multiset
proper1: [1]
ok1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(131) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(132) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(cons(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark(x1)
0  =  0
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1)
U42(x1)  =  U42(x1)
isNatIList(x1)  =  isNatIList
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U62(x1, x2)  =  U62(x1, x2)
isNat(x1)  =  isNat
s(x1)  =  s(x1)
length(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > [cons2, active1, isNatIList, nil, proper1] > U613 > [ACTIVE1, mark1, 0, tt, U211, U311, U411, U421, U511, U521, isNatList, isNat, ok, top]
zeros > [cons2, active1, isNatIList, nil, proper1] > [U622, s1] > [ACTIVE1, mark1, 0, tt, U211, U311, U411, U421, U511, U521, isNatList, isNat, ok, top]

Status:
ACTIVE1: [1]
cons2: [1,2]
active1: [1]
zeros: multiset
mark1: [1]
0: multiset
tt: multiset
U211: [1]
U311: [1]
U411: [1]
U421: [1]
isNatIList: []
U511: [1]
U521: [1]
isNatList: multiset
U613: multiset
U622: multiset
isNat: multiset
s1: [1]
nil: multiset
proper1: [1]
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(133) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(134) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U11(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
U11(x1)  =  U11(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1, x2)
0  =  0
tt  =  tt
U21(x1)  =  U21(x1)
U31(x1)  =  U31(x1)
U41(x1, x2)  =  U41(x1, x2)
U42(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2)  =  U51(x1)
U52(x1)  =  U52(x1)
isNatList(x1)  =  isNatList
U61(x1, x2, x3)  =  U61(x3)
U62(x1, x2)  =  U62(x1)
isNat(x1)  =  isNat
s(x1)  =  s(x1)
length(x1)  =  length(x1)
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
zeros > cons2 > [U111, mark, 0, U211, U311, U412, U511, U521, isNatList, U611, U621, isNat, s1, ok, top]
zeros > tt > isNatIList1 > [U111, mark, 0, U211, U311, U412, U511, U521, isNatList, U611, U621, isNat, s1, ok, top]
length1 > [U111, mark, 0, U211, U311, U412, U511, U521, isNatList, U611, U621, isNat, s1, ok, top]
nil > [U111, mark, 0, U211, U311, U412, U511, U521, isNatList, U611, U621, isNat, s1, ok, top]

Status:
U111: multiset
zeros: multiset
mark: multiset
cons2: multiset
0: multiset
tt: multiset
U211: multiset
U311: multiset
U412: multiset
isNatIList1: multiset
U511: multiset
U521: multiset
isNatList: multiset
U611: multiset
U621: multiset
isNat: multiset
s1: multiset
length1: multiset
nil: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(135) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(136) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(137) TRUE

(138) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt)) → mark(tt)
active(U41(tt, V2)) → mark(U42(isNatIList(V2)))
active(U42(tt)) → mark(tt)
active(U51(tt, V2)) → mark(U52(isNatList(V2)))
active(U52(tt)) → mark(tt)
active(U61(tt, L, N)) → mark(U62(isNat(N), L))
active(U62(tt, L)) → mark(s(length(L)))
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatList(V1)))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(isNatIList(V)) → mark(U31(isNatList(V)))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(isNat(V1), V2))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(isNat(V1), V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(isNatList(L), L, N))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X)) → U11(active(X))
active(U21(X)) → U21(active(X))
active(U31(X)) → U31(active(X))
active(U41(X1, X2)) → U41(active(X1), X2)
active(U42(X)) → U42(active(X))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X)) → U52(active(X))
active(U61(X1, X2, X3)) → U61(active(X1), X2, X3)
active(U62(X1, X2)) → U62(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X)) → mark(U11(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X)) → mark(U31(X))
U41(mark(X1), X2) → mark(U41(X1, X2))
U42(mark(X)) → mark(U42(X))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X)) → mark(U52(X))
U61(mark(X1), X2, X3) → mark(U61(X1, X2, X3))
U62(mark(X1), X2) → mark(U62(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X)) → U11(proper(X))
proper(tt) → ok(tt)
proper(U21(X)) → U21(proper(X))
proper(U31(X)) → U31(proper(X))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(U42(X)) → U42(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X)) → U52(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U61(X1, X2, X3)) → U61(proper(X1), proper(X2), proper(X3))
proper(U62(X1, X2)) → U62(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X)) → ok(U11(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X)) → ok(U31(X))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
U42(ok(X)) → ok(U42(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X)) → ok(U52(X))
isNatList(ok(X)) → ok(isNatList(X))
U61(ok(X1), ok(X2), ok(X3)) → ok(U61(X1, X2, X3))
U62(ok(X1), ok(X2)) → ok(U62(X1, X2))
isNat(ok(X)) → ok(isNat(X))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.