(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt) → tt
a__U81(tt, V1, V2) → a__U82(a__isNatKind(V1), V1, V2)
a__U82(tt, V1, V2) → a__U83(a__isNatIListKind(V2), V1, V2)
a__U83(tt, V1, V2) → a__U84(a__isNatIListKind(V2), V1, V2)
a__U84(tt, V1, V2) → a__U85(a__isNat(V1), V2)
a__U85(tt, V2) → a__U86(a__isNatList(V2))
a__U86(tt) → tt
a__U91(tt, L, N) → a__U92(a__isNatIListKind(L), L, N)
a__U92(tt, L, N) → a__U93(a__isNat(N), L, N)
a__U93(tt, L, N) → a__U94(a__isNatKind(N), L)
a__U94(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U61(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U71(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U81(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U91(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U23(X)) → a__U23(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U85(X1, X2)) → a__U85(mark(X1), X2)
mark(U86(X)) → a__U86(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2)) → a__U94(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__isNatKind(X) → isNatKind(X)
a__U23(X) → U23(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X) → U71(X)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U85(X1, X2) → U85(X1, X2)
a__U86(X) → U86(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2) → U94(X1, X2)
a__length(X) → length(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, V1) → A__U12(a__isNatIListKind(V1), V1)
A__U11(tt, V1) → A__ISNATILISTKIND(V1)
A__U12(tt, V1) → A__U13(a__isNatList(V1))
A__U12(tt, V1) → A__ISNATLIST(V1)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNATKIND(V1)
A__U22(tt, V1) → A__U23(a__isNat(V1))
A__U22(tt, V1) → A__ISNAT(V1)
A__U31(tt, V) → A__U32(a__isNatIListKind(V), V)
A__U31(tt, V) → A__ISNATILISTKIND(V)
A__U32(tt, V) → A__U33(a__isNatList(V))
A__U32(tt, V) → A__ISNATLIST(V)
A__U41(tt, V1, V2) → A__U42(a__isNatKind(V1), V1, V2)
A__U41(tt, V1, V2) → A__ISNATKIND(V1)
A__U42(tt, V1, V2) → A__U43(a__isNatIListKind(V2), V1, V2)
A__U42(tt, V1, V2) → A__ISNATILISTKIND(V2)
A__U43(tt, V1, V2) → A__U44(a__isNatIListKind(V2), V1, V2)
A__U43(tt, V1, V2) → A__ISNATILISTKIND(V2)
A__U44(tt, V1, V2) → A__U45(a__isNat(V1), V2)
A__U44(tt, V1, V2) → A__ISNAT(V1)
A__U45(tt, V2) → A__U46(a__isNatIList(V2))
A__U45(tt, V2) → A__ISNATILIST(V2)
A__U51(tt, V2) → A__U52(a__isNatIListKind(V2))
A__U51(tt, V2) → A__ISNATILISTKIND(V2)
A__U81(tt, V1, V2) → A__U82(a__isNatKind(V1), V1, V2)
A__U81(tt, V1, V2) → A__ISNATKIND(V1)
A__U82(tt, V1, V2) → A__U83(a__isNatIListKind(V2), V1, V2)
A__U82(tt, V1, V2) → A__ISNATILISTKIND(V2)
A__U83(tt, V1, V2) → A__U84(a__isNatIListKind(V2), V1, V2)
A__U83(tt, V1, V2) → A__ISNATILISTKIND(V2)
A__U84(tt, V1, V2) → A__U85(a__isNat(V1), V2)
A__U84(tt, V1, V2) → A__ISNAT(V1)
A__U85(tt, V2) → A__U86(a__isNatList(V2))
A__U85(tt, V2) → A__ISNATLIST(V2)
A__U91(tt, L, N) → A__U92(a__isNatIListKind(L), L, N)
A__U91(tt, L, N) → A__ISNATILISTKIND(L)
A__U92(tt, L, N) → A__U93(a__isNat(N), L, N)
A__U92(tt, L, N) → A__ISNAT(N)
A__U93(tt, L, N) → A__U94(a__isNatKind(N), L)
A__U93(tt, L, N) → A__ISNATKIND(N)
A__U94(tt, L) → A__LENGTH(mark(L))
A__U94(tt, L) → MARK(L)
A__ISNAT(length(V1)) → A__U11(a__isNatIListKind(V1), V1)
A__ISNAT(length(V1)) → A__ISNATILISTKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNATILIST(V) → A__U31(a__isNatIListKind(V), V)
A__ISNATILIST(V) → A__ISNATILISTKIND(V)
A__ISNATILIST(cons(V1, V2)) → A__U41(a__isNatKind(V1), V1, V2)
A__ISNATILIST(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATILISTKIND(cons(V1, V2)) → A__U51(a__isNatKind(V1), V2)
A__ISNATILISTKIND(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(length(V1)) → A__U61(a__isNatIListKind(V1))
A__ISNATKIND(length(V1)) → A__ISNATILISTKIND(V1)
A__ISNATKIND(s(V1)) → A__U71(a__isNatKind(V1))
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNATLIST(cons(V1, V2)) → A__U81(a__isNatKind(V1), V1, V2)
A__ISNATLIST(cons(V1, V2)) → A__ISNATKIND(V1)
A__LENGTH(cons(N, L)) → A__U91(a__isNatList(L), L, N)
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
MARK(zeros) → A__ZEROS
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNatIListKind(X)) → A__ISNATILISTKIND(X)
MARK(U13(X)) → A__U13(mark(X))
MARK(U13(X)) → MARK(X)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → A__U22(mark(X1), X2)
MARK(U22(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(U23(X)) → A__U23(mark(X))
MARK(U23(X)) → MARK(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X1, X2)) → A__U32(mark(X1), X2)
MARK(U32(X1, X2)) → MARK(X1)
MARK(U33(X)) → A__U33(mark(X))
MARK(U33(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2, X3)) → A__U42(mark(X1), X2, X3)
MARK(U42(X1, X2, X3)) → MARK(X1)
MARK(U43(X1, X2, X3)) → A__U43(mark(X1), X2, X3)
MARK(U43(X1, X2, X3)) → MARK(X1)
MARK(U44(X1, X2, X3)) → A__U44(mark(X1), X2, X3)
MARK(U44(X1, X2, X3)) → MARK(X1)
MARK(U45(X1, X2)) → A__U45(mark(X1), X2)
MARK(U45(X1, X2)) → MARK(X1)
MARK(U46(X)) → A__U46(mark(X))
MARK(U46(X)) → MARK(X)
MARK(isNatIList(X)) → A__ISNATILIST(X)
MARK(U51(X1, X2)) → A__U51(mark(X1), X2)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → A__U52(mark(X))
MARK(U52(X)) → MARK(X)
MARK(U61(X)) → A__U61(mark(X))
MARK(U61(X)) → MARK(X)
MARK(U71(X)) → A__U71(mark(X))
MARK(U71(X)) → MARK(X)
MARK(U81(X1, X2, X3)) → A__U81(mark(X1), X2, X3)
MARK(U81(X1, X2, X3)) → MARK(X1)
MARK(U82(X1, X2, X3)) → A__U82(mark(X1), X2, X3)
MARK(U82(X1, X2, X3)) → MARK(X1)
MARK(U83(X1, X2, X3)) → A__U83(mark(X1), X2, X3)
MARK(U83(X1, X2, X3)) → MARK(X1)
MARK(U84(X1, X2, X3)) → A__U84(mark(X1), X2, X3)
MARK(U84(X1, X2, X3)) → MARK(X1)
MARK(U85(X1, X2)) → A__U85(mark(X1), X2)
MARK(U85(X1, X2)) → MARK(X1)
MARK(U86(X)) → A__U86(mark(X))
MARK(U86(X)) → MARK(X)
MARK(U91(X1, X2, X3)) → A__U91(mark(X1), X2, X3)
MARK(U91(X1, X2, X3)) → MARK(X1)
MARK(U92(X1, X2, X3)) → A__U92(mark(X1), X2, X3)
MARK(U92(X1, X2, X3)) → MARK(X1)
MARK(U93(X1, X2, X3)) → A__U93(mark(X1), X2, X3)
MARK(U93(X1, X2, X3)) → MARK(X1)
MARK(U94(X1, X2)) → A__U94(mark(X1), X2)
MARK(U94(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt) → tt
a__U81(tt, V1, V2) → a__U82(a__isNatKind(V1), V1, V2)
a__U82(tt, V1, V2) → a__U83(a__isNatIListKind(V2), V1, V2)
a__U83(tt, V1, V2) → a__U84(a__isNatIListKind(V2), V1, V2)
a__U84(tt, V1, V2) → a__U85(a__isNat(V1), V2)
a__U85(tt, V2) → a__U86(a__isNatList(V2))
a__U86(tt) → tt
a__U91(tt, L, N) → a__U92(a__isNatIListKind(L), L, N)
a__U92(tt, L, N) → a__U93(a__isNat(N), L, N)
a__U93(tt, L, N) → a__U94(a__isNatKind(N), L)
a__U94(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U61(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U71(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U81(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U91(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U23(X)) → a__U23(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U85(X1, X2)) → a__U85(mark(X1), X2)
mark(U86(X)) → a__U86(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2)) → a__U94(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__isNatKind(X) → isNatKind(X)
a__U23(X) → U23(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X) → U71(X)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U85(X1, X2) → U85(X1, X2)
a__U86(X) → U86(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2) → U94(X1, X2)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 61 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U51(tt, V2) → A__ISNATILISTKIND(V2)
A__ISNATILISTKIND(cons(V1, V2)) → A__U51(a__isNatKind(V1), V2)
A__ISNATILISTKIND(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(length(V1)) → A__ISNATILISTKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt) → tt
a__U81(tt, V1, V2) → a__U82(a__isNatKind(V1), V1, V2)
a__U82(tt, V1, V2) → a__U83(a__isNatIListKind(V2), V1, V2)
a__U83(tt, V1, V2) → a__U84(a__isNatIListKind(V2), V1, V2)
a__U84(tt, V1, V2) → a__U85(a__isNat(V1), V2)
a__U85(tt, V2) → a__U86(a__isNatList(V2))
a__U86(tt) → tt
a__U91(tt, L, N) → a__U92(a__isNatIListKind(L), L, N)
a__U92(tt, L, N) → a__U93(a__isNat(N), L, N)
a__U93(tt, L, N) → a__U94(a__isNatKind(N), L)
a__U94(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U61(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U71(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U81(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U91(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U23(X)) → a__U23(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U85(X1, X2)) → a__U85(mark(X1), X2)
mark(U86(X)) → a__U86(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2)) → a__U94(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__isNatKind(X) → isNatKind(X)
a__U23(X) → U23(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X) → U71(X)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U85(X1, X2) → U85(X1, X2)
a__U86(X) → U86(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2) → U94(X1, X2)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U51(tt, V2) → A__ISNATILISTKIND(V2)
A__ISNATILISTKIND(cons(V1, V2)) → A__U51(a__isNatKind(V1), V2)
A__ISNATILISTKIND(cons(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U51(x1, x2)  =  A__U51(x1, x2)
tt  =  tt
A__ISNATILISTKIND(x1)  =  A__ISNATILISTKIND(x1)
cons(x1, x2)  =  cons(x1, x2)
a__isNatKind(x1)  =  a__isNatKind(x1)
A__ISNATKIND(x1)  =  A__ISNATKIND(x1)
length(x1)  =  x1
s(x1)  =  s(x1)
a__isNatIListKind(x1)  =  a__isNatIListKind(x1)
nil  =  nil
zeros  =  zeros
a__U51(x1, x2)  =  a__U51(x1, x2)
0  =  0
a__U61(x1)  =  x1
a__U71(x1)  =  a__U71(x1)
isNatKind(x1)  =  isNatKind(x1)
isNatIListKind(x1)  =  isNatIListKind(x1)
U71(x1)  =  U71
a__U52(x1)  =  a__U52(x1)
U61(x1)  =  U61
U52(x1)  =  U52(x1)
U51(x1, x2)  =  U51

Lexicographic path order with status [LPO].
Quasi-Precedence:
cons2 > AU512 > [AISNATILISTKIND1, AISNATKIND1] > U61
cons2 > aU512 > [aisNatKind1, aisNatIListKind1, isNatKind1] > tt > [AISNATILISTKIND1, AISNATKIND1] > U61
cons2 > aU512 > [aisNatKind1, aisNatIListKind1, isNatKind1] > tt > [aU521, U521] > U61
cons2 > aU512 > [aisNatKind1, aisNatIListKind1, isNatKind1] > [aU711, U71] > U61
cons2 > aU512 > [aisNatKind1, aisNatIListKind1, isNatKind1] > isNatIListKind1 > U61
cons2 > aU512 > U51 > U61
s1 > [AISNATILISTKIND1, AISNATKIND1] > U61
s1 > [aU711, U71] > U61
nil > U61
zeros > U61
0 > tt > [AISNATILISTKIND1, AISNATKIND1] > U61
0 > tt > [aU521, U521] > U61

Status:
AISNATILISTKIND1: [1]
U51: []
aU521: [1]
AISNATKIND1: [1]
isNatKind1: [1]
U71: []
0: []
isNatIListKind1: [1]
cons2: [1,2]
U61: []
tt: []
aisNatKind1: [1]
AU512: [1,2]
zeros: []
U521: [1]
s1: [1]
aisNatIListKind1: [1]
nil: []
aU512: [1,2]
aU711: [1]


The following usable rules [FROCOS05] were oriented:

a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U61(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U71(a__isNatKind(V1))
a__isNatKind(X) → isNatKind(X)
a__U71(tt) → tt
a__isNatIListKind(X) → isNatIListKind(X)
a__U71(X) → U71(X)
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U61(X) → U61(X)
a__U52(X) → U52(X)
a__U51(X1, X2) → U51(X1, X2)
a__U61(tt) → tt
a__U52(tt) → tt

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNATKIND(length(V1)) → A__ISNATILISTKIND(V1)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt) → tt
a__U81(tt, V1, V2) → a__U82(a__isNatKind(V1), V1, V2)
a__U82(tt, V1, V2) → a__U83(a__isNatIListKind(V2), V1, V2)
a__U83(tt, V1, V2) → a__U84(a__isNatIListKind(V2), V1, V2)
a__U84(tt, V1, V2) → a__U85(a__isNat(V1), V2)
a__U85(tt, V2) → a__U86(a__isNatList(V2))
a__U86(tt) → tt
a__U91(tt, L, N) → a__U92(a__isNatIListKind(L), L, N)
a__U92(tt, L, N) → a__U93(a__isNat(N), L, N)
a__U93(tt, L, N) → a__U94(a__isNatKind(N), L)
a__U94(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U61(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U71(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U81(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U91(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U23(X)) → a__U23(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U85(X1, X2)) → a__U85(mark(X1), X2)
mark(U86(X)) → a__U86(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2)) → a__U94(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__isNatKind(X) → isNatKind(X)
a__U23(X) → U23(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X) → U71(X)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U85(X1, X2) → U85(X1, X2)
a__U86(X) → U86(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2) → U94(X1, X2)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V1) → A__ISNATLIST(V1)
A__ISNATLIST(cons(V1, V2)) → A__U81(a__isNatKind(V1), V1, V2)
A__U81(tt, V1, V2) → A__U82(a__isNatKind(V1), V1, V2)
A__U82(tt, V1, V2) → A__U83(a__isNatIListKind(V2), V1, V2)
A__U83(tt, V1, V2) → A__U84(a__isNatIListKind(V2), V1, V2)
A__U84(tt, V1, V2) → A__U85(a__isNat(V1), V2)
A__U85(tt, V2) → A__ISNATLIST(V2)
A__U84(tt, V1, V2) → A__ISNAT(V1)
A__ISNAT(length(V1)) → A__U11(a__isNatIListKind(V1), V1)
A__U11(tt, V1) → A__U12(a__isNatIListKind(V1), V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U22(tt, V1) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt) → tt
a__U81(tt, V1, V2) → a__U82(a__isNatKind(V1), V1, V2)
a__U82(tt, V1, V2) → a__U83(a__isNatIListKind(V2), V1, V2)
a__U83(tt, V1, V2) → a__U84(a__isNatIListKind(V2), V1, V2)
a__U84(tt, V1, V2) → a__U85(a__isNat(V1), V2)
a__U85(tt, V2) → a__U86(a__isNatList(V2))
a__U86(tt) → tt
a__U91(tt, L, N) → a__U92(a__isNatIListKind(L), L, N)
a__U92(tt, L, N) → a__U93(a__isNat(N), L, N)
a__U93(tt, L, N) → a__U94(a__isNatKind(N), L)
a__U94(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U61(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U71(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U81(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U91(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U23(X)) → a__U23(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U85(X1, X2)) → a__U85(mark(X1), X2)
mark(U86(X)) → a__U86(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2)) → a__U94(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__isNatKind(X) → isNatKind(X)
a__U23(X) → U23(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X) → U71(X)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U85(X1, X2) → U85(X1, X2)
a__U86(X) → U86(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2) → U94(X1, X2)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNATLIST(cons(V1, V2)) → A__U81(a__isNatKind(V1), V1, V2)
A__U83(tt, V1, V2) → A__U84(a__isNatIListKind(V2), V1, V2)
A__U85(tt, V2) → A__ISNATLIST(V2)
A__U84(tt, V1, V2) → A__ISNAT(V1)
A__ISNAT(length(V1)) → A__U11(a__isNatIListKind(V1), V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U12(x1, x2)  =  x2
tt  =  tt
A__ISNATLIST(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
A__U81(x1, x2, x3)  =  A__U81(x1, x2, x3)
a__isNatKind(x1)  =  a__isNatKind
A__U82(x1, x2, x3)  =  A__U82(x1, x2, x3)
A__U83(x1, x2, x3)  =  A__U83(x1, x2, x3)
a__isNatIListKind(x1)  =  a__isNatIListKind
A__U84(x1, x2, x3)  =  A__U84(x2, x3)
A__U85(x1, x2)  =  A__U85(x1, x2)
a__isNat(x1)  =  x1
A__ISNAT(x1)  =  A__ISNAT(x1)
length(x1)  =  length(x1)
A__U11(x1, x2)  =  x2
s(x1)  =  x1
A__U21(x1, x2)  =  A__U21(x2)
A__U22(x1, x2)  =  A__U22(x2)
nil  =  nil
zeros  =  zeros
a__U51(x1, x2)  =  x1
0  =  0
a__U61(x1)  =  x1
a__U71(x1)  =  a__U71
a__isNatList(x1)  =  a__isNatList(x1)
isNatKind(x1)  =  isNatKind
a__U23(x1)  =  x1
U23(x1)  =  U23
isNat(x1)  =  x1
a__U11(x1, x2)  =  a__U11(x1, x2)
a__U13(x1)  =  a__U13
U13(x1)  =  U13
a__U21(x1, x2)  =  x2
isNatList(x1)  =  isNatList(x1)
U21(x1, x2)  =  x2
a__U22(x1, x2)  =  x2
U22(x1, x2)  =  U22
U11(x1, x2)  =  x2
a__U81(x1, x2, x3)  =  a__U81(x1, x2, x3)
a__U82(x1, x2, x3)  =  a__U82(x1, x2, x3)
isNatIListKind(x1)  =  isNatIListKind
a__U83(x1, x2, x3)  =  a__U83(x2, x3)
a__U84(x1, x2, x3)  =  a__U84(x1, x2, x3)
a__U12(x1, x2)  =  a__U12(x1)
U12(x1, x2)  =  x1
a__U85(x1, x2)  =  a__U85(x2)
a__U86(x1)  =  a__U86
a__U52(x1)  =  x1
U86(x1)  =  U86
U85(x1, x2)  =  U85(x2)
U84(x1, x2, x3)  =  U84(x1, x2, x3)
U83(x1, x2, x3)  =  U83
U82(x1, x2, x3)  =  U82(x3)
U81(x1, x2, x3)  =  U81(x1, x2, x3)
U71(x1)  =  U71
U61(x1)  =  U61
U52(x1)  =  U52
U51(x1, x2)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
cons2 > [aU813, U813] > [aU823, aU832, U83] > [aU843, U843] > aU851 > [aU86, U86] > [tt, aisNatKind, aisNatIListKind, length1, zeros, 0, aU71, isNatKind, aU13] > [AU813, AU823, AU833] > [AU842, AU852, AISNAT1, AU211, AU221] > [U23, aU112, U22, aU121, U61, U52]
cons2 > [aU813, U813] > [aU823, aU832, U83] > [aU843, U843] > aU851 > [aU86, U86] > [tt, aisNatKind, aisNatIListKind, length1, zeros, 0, aU71, isNatKind, aU13] > aisNatList1 > [U23, aU112, U22, aU121, U61, U52]
cons2 > [aU813, U813] > [aU823, aU832, U83] > [aU843, U843] > aU851 > [aU86, U86] > [tt, aisNatKind, aisNatIListKind, length1, zeros, 0, aU71, isNatKind, aU13] > U13 > [U23, aU112, U22, aU121, U61, U52]
cons2 > [aU813, U813] > [aU823, aU832, U83] > [aU843, U843] > aU851 > [aU86, U86] > [tt, aisNatKind, aisNatIListKind, length1, zeros, 0, aU71, isNatKind, aU13] > isNatIListKind > [U23, aU112, U22, aU121, U61, U52]
cons2 > [aU813, U813] > [aU823, aU832, U83] > [aU843, U843] > aU851 > [aU86, U86] > [tt, aisNatKind, aisNatIListKind, length1, zeros, 0, aU71, isNatKind, aU13] > U71 > [U23, aU112, U22, aU121, U61, U52]
cons2 > [aU813, U813] > [aU823, aU832, U83] > [aU843, U843] > aU851 > U851 > [U23, aU112, U22, aU121, U61, U52]
cons2 > [aU813, U813] > [aU823, aU832, U83] > U821 > [U23, aU112, U22, aU121, U61, U52]
nil > [U23, aU112, U22, aU121, U61, U52]
isNatList1 > [U23, aU112, U22, aU121, U61, U52]

Status:
aU71: []
U22: []
AISNAT1: [1]
aU112: [1,2]
U86: []
aU813: [3,2,1]
aU13: []
aU851: [1]
AU842: [1,2]
U83: []
AU833: [1,3,2]
AU221: [1]
U61: []
tt: []
isNatList1: [1]
zeros: []
isNatKind: []
aU823: [2,3,1]
U23: []
aisNatList1: [1]
aU832: [1,2]
AU813: [1,3,2]
nil: []
U13: []
U821: [1]
AU211: [1]
U813: [3,2,1]
U52: []
aisNatIListKind: []
U851: [1]
AU823: [1,3,2]
U71: []
0: []
aU121: [1]
aU86: []
AU852: [1,2]
cons2: [2,1]
aU843: [2,3,1]
U843: [2,3,1]
length1: [1]
aisNatKind: []
isNatIListKind: []


The following usable rules [FROCOS05] were oriented:

a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U61(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U71(a__isNatKind(V1))
a__isNatKind(X) → isNatKind(X)
a__U23(X) → U23(X)
a__isNat(X) → isNat(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__U13(X) → U13(X)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U81(tt, V1, V2) → a__U82(a__isNatKind(V1), V1, V2)
a__U71(tt) → tt
a__isNatIListKind(X) → isNatIListKind(X)
a__U83(tt, V1, V2) → a__U84(a__isNatIListKind(V2), V1, V2)
a__U12(X1, X2) → U12(X1, X2)
a__U82(tt, V1, V2) → a__U83(a__isNatIListKind(V2), V1, V2)
a__U85(tt, V2) → a__U86(a__isNatList(V2))
a__U84(tt, V1, V2) → a__U85(a__isNat(V1), V2)
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U86(tt) → tt
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U13(tt) → tt
a__U23(tt) → tt
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U61(tt) → tt
a__U52(tt) → tt
a__U86(X) → U86(X)
a__U85(X1, X2) → U85(X1, X2)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U71(X) → U71(X)
a__isNatList(cons(V1, V2)) → a__U81(a__isNatKind(V1), V1, V2)
a__U61(X) → U61(X)
a__U52(X) → U52(X)
a__U51(X1, X2) → U51(X1, X2)

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V1) → A__ISNATLIST(V1)
A__U81(tt, V1, V2) → A__U82(a__isNatKind(V1), V1, V2)
A__U82(tt, V1, V2) → A__U83(a__isNatIListKind(V2), V1, V2)
A__U84(tt, V1, V2) → A__U85(a__isNat(V1), V2)
A__U11(tt, V1) → A__U12(a__isNatIListKind(V1), V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U22(tt, V1) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt) → tt
a__U81(tt, V1, V2) → a__U82(a__isNatKind(V1), V1, V2)
a__U82(tt, V1, V2) → a__U83(a__isNatIListKind(V2), V1, V2)
a__U83(tt, V1, V2) → a__U84(a__isNatIListKind(V2), V1, V2)
a__U84(tt, V1, V2) → a__U85(a__isNat(V1), V2)
a__U85(tt, V2) → a__U86(a__isNatList(V2))
a__U86(tt) → tt
a__U91(tt, L, N) → a__U92(a__isNatIListKind(L), L, N)
a__U92(tt, L, N) → a__U93(a__isNat(N), L, N)
a__U93(tt, L, N) → a__U94(a__isNatKind(N), L)
a__U94(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U61(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U71(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U81(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U91(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U23(X)) → a__U23(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U85(X1, X2)) → a__U85(mark(X1), X2)
mark(U86(X)) → a__U86(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2)) → a__U94(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__isNatKind(X) → isNatKind(X)
a__U23(X) → U23(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X) → U71(X)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U85(X1, X2) → U85(X1, X2)
a__U86(X) → U86(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2) → U94(X1, X2)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes.

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U22(tt, V1) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt) → tt
a__U81(tt, V1, V2) → a__U82(a__isNatKind(V1), V1, V2)
a__U82(tt, V1, V2) → a__U83(a__isNatIListKind(V2), V1, V2)
a__U83(tt, V1, V2) → a__U84(a__isNatIListKind(V2), V1, V2)
a__U84(tt, V1, V2) → a__U85(a__isNat(V1), V2)
a__U85(tt, V2) → a__U86(a__isNatList(V2))
a__U86(tt) → tt
a__U91(tt, L, N) → a__U92(a__isNatIListKind(L), L, N)
a__U92(tt, L, N) → a__U93(a__isNat(N), L, N)
a__U93(tt, L, N) → a__U94(a__isNatKind(N), L)
a__U94(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U61(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U71(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U81(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U91(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U23(X)) → a__U23(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U85(X1, X2)) → a__U85(mark(X1), X2)
mark(U86(X)) → a__U86(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2)) → a__U94(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__isNatKind(X) → isNatKind(X)
a__U23(X) → U23(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X) → U71(X)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U85(X1, X2) → U85(X1, X2)
a__U86(X) → U86(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2) → U94(X1, X2)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U22(tt, V1) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U21(x1, x2)  =  A__U21(x1, x2)
tt  =  tt
A__U22(x1, x2)  =  A__U22(x1, x2)
a__isNatKind(x1)  =  a__isNatKind
A__ISNAT(x1)  =  A__ISNAT(x1)
s(x1)  =  s(x1)
a__isNatIListKind(x1)  =  x1
nil  =  nil
zeros  =  zeros
cons(x1, x2)  =  cons
a__U51(x1, x2)  =  x1
0  =  0
length(x1)  =  length
a__U61(x1)  =  a__U61
a__U71(x1)  =  x1
isNatKind(x1)  =  isNatKind
isNatIListKind(x1)  =  isNatIListKind(x1)
U71(x1)  =  x1
a__U52(x1)  =  a__U52
U61(x1)  =  U61
U52(x1)  =  U52
U51(x1, x2)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[AU212, AU222, AISNAT1] > [tt, aisNatKind, cons, aU61, aU52, U61, U52] > isNatKind

Status:
aU61: []
AU222: [2,1]
AISNAT1: [1]
U52: []
length: []
0: []
isNatIListKind1: [1]
aU52: []
AU212: [2,1]
U61: []
tt: []
cons: []
zeros: []
s1: [1]
isNatKind: []
nil: []
aisNatKind: []


The following usable rules [FROCOS05] were oriented:

a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U61(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U71(a__isNatKind(V1))
a__isNatKind(X) → isNatKind(X)
a__U71(tt) → tt
a__U71(X) → U71(X)
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U61(X) → U61(X)
a__U52(X) → U52(X)
a__U51(X1, X2) → U51(X1, X2)
a__U61(tt) → tt
a__U52(tt) → tt

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt) → tt
a__U81(tt, V1, V2) → a__U82(a__isNatKind(V1), V1, V2)
a__U82(tt, V1, V2) → a__U83(a__isNatIListKind(V2), V1, V2)
a__U83(tt, V1, V2) → a__U84(a__isNatIListKind(V2), V1, V2)
a__U84(tt, V1, V2) → a__U85(a__isNat(V1), V2)
a__U85(tt, V2) → a__U86(a__isNatList(V2))
a__U86(tt) → tt
a__U91(tt, L, N) → a__U92(a__isNatIListKind(L), L, N)
a__U92(tt, L, N) → a__U93(a__isNat(N), L, N)
a__U93(tt, L, N) → a__U94(a__isNatKind(N), L)
a__U94(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U61(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U71(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U81(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U91(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U23(X)) → a__U23(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U85(X1, X2)) → a__U85(mark(X1), X2)
mark(U86(X)) → a__U86(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2)) → a__U94(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__isNatKind(X) → isNatKind(X)
a__U23(X) → U23(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X) → U71(X)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U85(X1, X2) → U85(X1, X2)
a__U86(X) → U86(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2) → U94(X1, X2)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U44(tt, V1, V2) → A__U45(a__isNat(V1), V2)
A__U45(tt, V2) → A__ISNATILIST(V2)
A__ISNATILIST(cons(V1, V2)) → A__U41(a__isNatKind(V1), V1, V2)
A__U41(tt, V1, V2) → A__U42(a__isNatKind(V1), V1, V2)
A__U42(tt, V1, V2) → A__U43(a__isNatIListKind(V2), V1, V2)
A__U43(tt, V1, V2) → A__U44(a__isNatIListKind(V2), V1, V2)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt) → tt
a__U81(tt, V1, V2) → a__U82(a__isNatKind(V1), V1, V2)
a__U82(tt, V1, V2) → a__U83(a__isNatIListKind(V2), V1, V2)
a__U83(tt, V1, V2) → a__U84(a__isNatIListKind(V2), V1, V2)
a__U84(tt, V1, V2) → a__U85(a__isNat(V1), V2)
a__U85(tt, V2) → a__U86(a__isNatList(V2))
a__U86(tt) → tt
a__U91(tt, L, N) → a__U92(a__isNatIListKind(L), L, N)
a__U92(tt, L, N) → a__U93(a__isNat(N), L, N)
a__U93(tt, L, N) → a__U94(a__isNatKind(N), L)
a__U94(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U61(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U71(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U81(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U91(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U23(X)) → a__U23(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U85(X1, X2)) → a__U85(mark(X1), X2)
mark(U86(X)) → a__U86(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2)) → a__U94(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__isNatKind(X) → isNatKind(X)
a__U23(X) → U23(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X) → U71(X)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U85(X1, X2) → U85(X1, X2)
a__U86(X) → U86(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2) → U94(X1, X2)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNATILIST(cons(V1, V2)) → A__U41(a__isNatKind(V1), V1, V2)
A__U41(tt, V1, V2) → A__U42(a__isNatKind(V1), V1, V2)
A__U42(tt, V1, V2) → A__U43(a__isNatIListKind(V2), V1, V2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U44(x1, x2, x3)  =  x3
tt  =  tt
A__U45(x1, x2)  =  x2
a__isNat(x1)  =  a__isNat
A__ISNATILIST(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
A__U41(x1, x2, x3)  =  A__U41(x3)
a__isNatKind(x1)  =  a__isNatKind
A__U42(x1, x2, x3)  =  A__U42(x1, x3)
A__U43(x1, x2, x3)  =  x3
a__isNatIListKind(x1)  =  x1
nil  =  nil
zeros  =  zeros
a__U51(x1, x2)  =  x2
0  =  0
length(x1)  =  length
a__U61(x1)  =  a__U61
s(x1)  =  s
a__U71(x1)  =  a__U71
a__isNatList(x1)  =  a__isNatList(x1)
isNatKind(x1)  =  isNatKind
a__U23(x1)  =  x1
U23(x1)  =  U23(x1)
isNat(x1)  =  isNat
a__U11(x1, x2)  =  a__U11(x1)
a__U13(x1)  =  x1
U13(x1)  =  U13
a__U21(x1, x2)  =  a__U21(x1, x2)
isNatList(x1)  =  x1
U21(x1, x2)  =  U21
a__U22(x1, x2)  =  a__U22(x1, x2)
U22(x1, x2)  =  U22
U11(x1, x2)  =  U11(x1, x2)
a__U81(x1, x2, x3)  =  a__U81(x1, x2, x3)
a__U82(x1, x2, x3)  =  a__U82
isNatIListKind(x1)  =  x1
a__U83(x1, x2, x3)  =  a__U83
a__U84(x1, x2, x3)  =  a__U84(x1, x2, x3)
a__U12(x1, x2)  =  a__U12
U12(x1, x2)  =  U12(x1, x2)
a__U85(x1, x2)  =  a__U85(x1)
a__U86(x1)  =  a__U86
a__U52(x1)  =  x1
U86(x1)  =  U86(x1)
U85(x1, x2)  =  U85
U84(x1, x2, x3)  =  U84(x1, x2, x3)
U83(x1, x2, x3)  =  U83(x1, x2, x3)
U82(x1, x2, x3)  =  U82(x1)
U81(x1, x2, x3)  =  U81(x1, x2, x3)
U71(x1)  =  U71
U61(x1)  =  U61
U52(x1)  =  x1
U51(x1, x2)  =  U51

Lexicographic path order with status [LPO].
Quasi-Precedence:
[cons2, aU813, U813] > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > AU422 > [U231, U861, U51]
[cons2, aU813, U813] > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > aU222 > aisNat > aU111 > [U231, U861, U51]
[cons2, aU813, U813] > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > aU222 > aisNat > aU212 > [U231, U861, U51]
[cons2, aU813, U813] > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > [aU82, aU83] > aU843 > [U231, U861, U51]
[cons2, aU813, U813] > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > [aU82, aU83] > U833 > [U231, U861, U51]
[cons2, aU813, U813] > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > [aU82, aU83] > U821 > [U231, U861, U51]
[cons2, aU813, U813] > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > aU851 > aisNatList1 > [U231, U861, U51]
[cons2, aU813, U813] > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > aU851 > U85 > [U231, U861, U51]
nil > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > AU422 > [U231, U861, U51]
nil > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > aU222 > aisNat > aU111 > [U231, U861, U51]
nil > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > aU222 > aisNat > aU212 > [U231, U861, U51]
nil > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > [aU82, aU83] > aU843 > [U231, U861, U51]
nil > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > [aU82, aU83] > U833 > [U231, U861, U51]
nil > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > [aU82, aU83] > U821 > [U231, U861, U51]
nil > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > aU851 > aisNatList1 > [U231, U861, U51]
nil > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > aU851 > U85 > [U231, U861, U51]
zeros > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > AU422 > [U231, U861, U51]
zeros > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > aU222 > aisNat > aU111 > [U231, U861, U51]
zeros > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > aU222 > aisNat > aU212 > [U231, U861, U51]
zeros > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > [aU82, aU83] > aU843 > [U231, U861, U51]
zeros > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > [aU82, aU83] > U833 > [U231, U861, U51]
zeros > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > [aU82, aU83] > U821 > [U231, U861, U51]
zeros > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > aU851 > aisNatList1 > [U231, U861, U51]
zeros > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > aU851 > U85 > [U231, U861, U51]
0 > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > AU422 > [U231, U861, U51]
0 > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > aU222 > aisNat > aU111 > [U231, U861, U51]
0 > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > aU222 > aisNat > aU212 > [U231, U861, U51]
0 > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > [aU82, aU83] > aU843 > [U231, U861, U51]
0 > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > [aU82, aU83] > U833 > [U231, U861, U51]
0 > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > [aU82, aU83] > U821 > [U231, U861, U51]
0 > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > aU851 > aisNatList1 > [U231, U861, U51]
0 > [tt, AU411, aisNatKind, aU61, aU71, isNatKind, aU86, U71, U61] > aU851 > U85 > [U231, U861, U51]
length > [U231, U861, U51]
s > aU212 > [U231, U861, U51]
isNat > [U231, U861, U51]
U13 > [U231, U861, U51]
U21 > [U231, U861, U51]
U22 > [U231, U861, U51]
U112 > [U231, U861, U51]
aU12 > aisNatList1 > [U231, U861, U51]
aU12 > U122 > [U231, U861, U51]
U843 > [U231, U861, U51]

Status:
aU61: []
aU71: []
U22: []
aU813: [1,3,2]
U122: [1,2]
aU851: [1]
length: []
U231: [1]
aU222: [1,2]
isNat: []
U61: []
tt: []
AU422: [1,2]
zeros: []
aU111: [1]
AU411: [1]
aU212: [1,2]
isNatKind: []
aU12: []
aisNatList1: [1]
nil: []
U13: []
U21: []
U51: []
U833: [1,2,3]
U821: [1]
aU82: []
U813: [3,1,2]
aisNat: []
s: []
U112: [2,1]
U71: []
0: []
aU86: []
cons2: [1,2]
aU843: [3,2,1]
U861: [1]
U843: [3,1,2]
U85: []
aisNatKind: []
aU83: []


The following usable rules [FROCOS05] were oriented:

a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U61(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U71(a__isNatKind(V1))
a__isNatKind(X) → isNatKind(X)
a__U71(tt) → tt
a__isNatIListKind(X) → isNatIListKind(X)
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U61(tt) → tt
a__U52(tt) → tt
a__U71(X) → U71(X)
a__U61(X) → U61(X)
a__U52(X) → U52(X)
a__U51(X1, X2) → U51(X1, X2)

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U44(tt, V1, V2) → A__U45(a__isNat(V1), V2)
A__U45(tt, V2) → A__ISNATILIST(V2)
A__U43(tt, V1, V2) → A__U44(a__isNatIListKind(V2), V1, V2)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt) → tt
a__U81(tt, V1, V2) → a__U82(a__isNatKind(V1), V1, V2)
a__U82(tt, V1, V2) → a__U83(a__isNatIListKind(V2), V1, V2)
a__U83(tt, V1, V2) → a__U84(a__isNatIListKind(V2), V1, V2)
a__U84(tt, V1, V2) → a__U85(a__isNat(V1), V2)
a__U85(tt, V2) → a__U86(a__isNatList(V2))
a__U86(tt) → tt
a__U91(tt, L, N) → a__U92(a__isNatIListKind(L), L, N)
a__U92(tt, L, N) → a__U93(a__isNat(N), L, N)
a__U93(tt, L, N) → a__U94(a__isNatKind(N), L)
a__U94(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U61(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U71(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U81(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U91(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U23(X)) → a__U23(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U85(X1, X2)) → a__U85(mark(X1), X2)
mark(U86(X)) → a__U86(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2)) → a__U94(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__isNatKind(X) → isNatKind(X)
a__U23(X) → U23(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X) → U71(X)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U85(X1, X2) → U85(X1, X2)
a__U86(X) → U86(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2) → U94(X1, X2)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(23) TRUE

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X1, X2)) → MARK(X1)
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X1, X2)) → MARK(X1)
MARK(U33(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2, X3)) → MARK(X1)
MARK(U43(X1, X2, X3)) → MARK(X1)
MARK(U44(X1, X2, X3)) → MARK(X1)
MARK(U45(X1, X2)) → MARK(X1)
MARK(U46(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U61(X)) → MARK(X)
MARK(U71(X)) → MARK(X)
MARK(U81(X1, X2, X3)) → MARK(X1)
MARK(U82(X1, X2, X3)) → MARK(X1)
MARK(U83(X1, X2, X3)) → MARK(X1)
MARK(U84(X1, X2, X3)) → MARK(X1)
MARK(U85(X1, X2)) → MARK(X1)
MARK(U86(X)) → MARK(X)
MARK(U91(X1, X2, X3)) → A__U91(mark(X1), X2, X3)
A__U91(tt, L, N) → A__U92(a__isNatIListKind(L), L, N)
A__U92(tt, L, N) → A__U93(a__isNat(N), L, N)
A__U93(tt, L, N) → A__U94(a__isNatKind(N), L)
A__U94(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U91(a__isNatList(L), L, N)
A__U94(tt, L) → MARK(L)
MARK(U91(X1, X2, X3)) → MARK(X1)
MARK(U92(X1, X2, X3)) → A__U92(mark(X1), X2, X3)
MARK(U92(X1, X2, X3)) → MARK(X1)
MARK(U93(X1, X2, X3)) → A__U93(mark(X1), X2, X3)
MARK(U93(X1, X2, X3)) → MARK(X1)
MARK(U94(X1, X2)) → A__U94(mark(X1), X2)
MARK(U94(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__zeroscons(0, zeros)
a__U11(tt, V1) → a__U12(a__isNatIListKind(V1), V1)
a__U12(tt, V1) → a__U13(a__isNatList(V1))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isNatIListKind(V), V)
a__U32(tt, V) → a__U33(a__isNatList(V))
a__U33(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isNatKind(V1), V1, V2)
a__U42(tt, V1, V2) → a__U43(a__isNatIListKind(V2), V1, V2)
a__U43(tt, V1, V2) → a__U44(a__isNatIListKind(V2), V1, V2)
a__U44(tt, V1, V2) → a__U45(a__isNat(V1), V2)
a__U45(tt, V2) → a__U46(a__isNatIList(V2))
a__U46(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatIListKind(V2))
a__U52(tt) → tt
a__U61(tt) → tt
a__U71(tt) → tt
a__U81(tt, V1, V2) → a__U82(a__isNatKind(V1), V1, V2)
a__U82(tt, V1, V2) → a__U83(a__isNatIListKind(V2), V1, V2)
a__U83(tt, V1, V2) → a__U84(a__isNatIListKind(V2), V1, V2)
a__U84(tt, V1, V2) → a__U85(a__isNat(V1), V2)
a__U85(tt, V2) → a__U86(a__isNatList(V2))
a__U86(tt) → tt
a__U91(tt, L, N) → a__U92(a__isNatIListKind(L), L, N)
a__U92(tt, L, N) → a__U93(a__isNat(N), L, N)
a__U93(tt, L, N) → a__U94(a__isNatKind(N), L)
a__U94(tt, L) → s(a__length(mark(L)))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatIListKind(V1), V1)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatIList(V) → a__U31(a__isNatIListKind(V), V)
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNatKind(V1), V1, V2)
a__isNatIListKind(nil) → tt
a__isNatIListKind(zeros) → tt
a__isNatIListKind(cons(V1, V2)) → a__U51(a__isNatKind(V1), V2)
a__isNatKind(0) → tt
a__isNatKind(length(V1)) → a__U61(a__isNatIListKind(V1))
a__isNatKind(s(V1)) → a__U71(a__isNatKind(V1))
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U81(a__isNatKind(V1), V1, V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U91(a__isNatList(L), L, N)
mark(zeros) → a__zeros
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNatIListKind(X)) → a__isNatIListKind(X)
mark(U13(X)) → a__U13(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U23(X)) → a__U23(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(U43(X1, X2, X3)) → a__U43(mark(X1), X2, X3)
mark(U44(X1, X2, X3)) → a__U44(mark(X1), X2, X3)
mark(U45(X1, X2)) → a__U45(mark(X1), X2)
mark(U46(X)) → a__U46(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X)) → a__U71(mark(X))
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U85(X1, X2)) → a__U85(mark(X1), X2)
mark(U86(X)) → a__U86(mark(X))
mark(U91(X1, X2, X3)) → a__U91(mark(X1), X2, X3)
mark(U92(X1, X2, X3)) → a__U92(mark(X1), X2, X3)
mark(U93(X1, X2, X3)) → a__U93(mark(X1), X2, X3)
mark(U94(X1, X2)) → a__U94(mark(X1), X2)
mark(length(X)) → a__length(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeroszeros
a__U11(X1, X2) → U11(X1, X2)
a__U12(X1, X2) → U12(X1, X2)
a__isNatIListKind(X) → isNatIListKind(X)
a__U13(X) → U13(X)
a__isNatList(X) → isNatList(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__isNatKind(X) → isNatKind(X)
a__U23(X) → U23(X)
a__isNat(X) → isNat(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__U43(X1, X2, X3) → U43(X1, X2, X3)
a__U44(X1, X2, X3) → U44(X1, X2, X3)
a__U45(X1, X2) → U45(X1, X2)
a__U46(X) → U46(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__U61(X) → U61(X)
a__U71(X) → U71(X)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U85(X1, X2) → U85(X1, X2)
a__U86(X) → U86(X)
a__U91(X1, X2, X3) → U91(X1, X2, X3)
a__U92(X1, X2, X3) → U92(X1, X2, X3)
a__U93(X1, X2, X3) → U93(X1, X2, X3)
a__U94(X1, X2) → U94(X1, X2)
a__length(X) → length(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.