(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(zeros) → MARK(cons(0, zeros))
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(U11(tt, V1)) → MARK(U12(isNatList(V1)))
ACTIVE(U11(tt, V1)) → U121(isNatList(V1))
ACTIVE(U11(tt, V1)) → ISNATLIST(V1)
ACTIVE(U12(tt)) → MARK(tt)
ACTIVE(U21(tt, V1)) → MARK(U22(isNat(V1)))
ACTIVE(U21(tt, V1)) → U221(isNat(V1))
ACTIVE(U21(tt, V1)) → ISNAT(V1)
ACTIVE(U22(tt)) → MARK(tt)
ACTIVE(U31(tt, V)) → MARK(U32(isNatList(V)))
ACTIVE(U31(tt, V)) → U321(isNatList(V))
ACTIVE(U31(tt, V)) → ISNATLIST(V)
ACTIVE(U32(tt)) → MARK(tt)
ACTIVE(U41(tt, V1, V2)) → MARK(U42(isNat(V1), V2))
ACTIVE(U41(tt, V1, V2)) → U421(isNat(V1), V2)
ACTIVE(U41(tt, V1, V2)) → ISNAT(V1)
ACTIVE(U42(tt, V2)) → MARK(U43(isNatIList(V2)))
ACTIVE(U42(tt, V2)) → U431(isNatIList(V2))
ACTIVE(U42(tt, V2)) → ISNATILIST(V2)
ACTIVE(U43(tt)) → MARK(tt)
ACTIVE(U51(tt, V1, V2)) → MARK(U52(isNat(V1), V2))
ACTIVE(U51(tt, V1, V2)) → U521(isNat(V1), V2)
ACTIVE(U51(tt, V1, V2)) → ISNAT(V1)
ACTIVE(U52(tt, V2)) → MARK(U53(isNatList(V2)))
ACTIVE(U52(tt, V2)) → U531(isNatList(V2))
ACTIVE(U52(tt, V2)) → ISNATLIST(V2)
ACTIVE(U53(tt)) → MARK(tt)
ACTIVE(U61(tt, L)) → MARK(s(length(L)))
ACTIVE(U61(tt, L)) → S(length(L))
ACTIVE(U61(tt, L)) → LENGTH(L)
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(isNat(0)) → MARK(tt)
ACTIVE(isNat(length(V1))) → MARK(U11(isNatIListKind(V1), V1))
ACTIVE(isNat(length(V1))) → U111(isNatIListKind(V1), V1)
ACTIVE(isNat(length(V1))) → ISNATILISTKIND(V1)
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
ACTIVE(isNat(s(V1))) → U211(isNatKind(V1), V1)
ACTIVE(isNat(s(V1))) → ISNATKIND(V1)
ACTIVE(isNatIList(V)) → MARK(U31(isNatIListKind(V), V))
ACTIVE(isNatIList(V)) → U311(isNatIListKind(V), V)
ACTIVE(isNatIList(V)) → ISNATILISTKIND(V)
ACTIVE(isNatIList(zeros)) → MARK(tt)
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
ACTIVE(isNatIList(cons(V1, V2))) → U411(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
ACTIVE(isNatIList(cons(V1, V2))) → AND(isNatKind(V1), isNatIListKind(V2))
ACTIVE(isNatIList(cons(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatIList(cons(V1, V2))) → ISNATILISTKIND(V2)
ACTIVE(isNatIListKind(nil)) → MARK(tt)
ACTIVE(isNatIListKind(zeros)) → MARK(tt)
ACTIVE(isNatIListKind(cons(V1, V2))) → MARK(and(isNatKind(V1), isNatIListKind(V2)))
ACTIVE(isNatIListKind(cons(V1, V2))) → AND(isNatKind(V1), isNatIListKind(V2))
ACTIVE(isNatIListKind(cons(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatIListKind(cons(V1, V2))) → ISNATILISTKIND(V2)
ACTIVE(isNatKind(0)) → MARK(tt)
ACTIVE(isNatKind(length(V1))) → MARK(isNatIListKind(V1))
ACTIVE(isNatKind(length(V1))) → ISNATILISTKIND(V1)
ACTIVE(isNatKind(s(V1))) → MARK(isNatKind(V1))
ACTIVE(isNatKind(s(V1))) → ISNATKIND(V1)
ACTIVE(isNatList(nil)) → MARK(tt)
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
ACTIVE(isNatList(cons(V1, V2))) → U511(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
ACTIVE(isNatList(cons(V1, V2))) → AND(isNatKind(V1), isNatIListKind(V2))
ACTIVE(isNatList(cons(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatList(cons(V1, V2))) → ISNATILISTKIND(V2)
ACTIVE(length(nil)) → MARK(0)
ACTIVE(length(cons(N, L))) → MARK(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
ACTIVE(length(cons(N, L))) → U611(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
ACTIVE(length(cons(N, L))) → AND(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N)))
ACTIVE(length(cons(N, L))) → AND(isNatList(L), isNatIListKind(L))
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
ACTIVE(length(cons(N, L))) → ISNATILISTKIND(L)
ACTIVE(length(cons(N, L))) → AND(isNat(N), isNatKind(N))
ACTIVE(length(cons(N, L))) → ISNAT(N)
ACTIVE(length(cons(N, L))) → ISNATKIND(N)
MARK(zeros) → ACTIVE(zeros)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(0) → ACTIVE(0)
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
MARK(U11(X1, X2)) → U111(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(U12(X)) → ACTIVE(U12(mark(X)))
MARK(U12(X)) → U121(mark(X))
MARK(U12(X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → U211(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → ACTIVE(U22(mark(X)))
MARK(U22(X)) → U221(mark(X))
MARK(U22(X)) → MARK(X)
MARK(isNat(X)) → ACTIVE(isNat(X))
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
MARK(U31(X1, X2)) → U311(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
MARK(U32(X)) → U321(mark(X))
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → ACTIVE(U41(mark(X1), X2, X3))
MARK(U41(X1, X2, X3)) → U411(mark(X1), X2, X3)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → ACTIVE(U42(mark(X1), X2))
MARK(U42(X1, X2)) → U421(mark(X1), X2)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → ACTIVE(U43(mark(X)))
MARK(U43(X)) → U431(mark(X))
MARK(U43(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
MARK(U51(X1, X2, X3)) → U511(mark(X1), X2, X3)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
MARK(U52(X1, X2)) → U521(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → ACTIVE(U53(mark(X)))
MARK(U53(X)) → U531(mark(X))
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → ACTIVE(U61(mark(X1), X2))
MARK(U61(X1, X2)) → U611(mark(X1), X2)
MARK(U61(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatIListKind(X)) → ACTIVE(isNatIListKind(X))
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))
MARK(nil) → ACTIVE(nil)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
U111(X1, mark(X2)) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)
U121(mark(X)) → U121(X)
U121(active(X)) → U121(X)
ISNATLIST(mark(X)) → ISNATLIST(X)
ISNATLIST(active(X)) → ISNATLIST(X)
U211(mark(X1), X2) → U211(X1, X2)
U211(X1, mark(X2)) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)
U221(mark(X)) → U221(X)
U221(active(X)) → U221(X)
ISNAT(mark(X)) → ISNAT(X)
ISNAT(active(X)) → ISNAT(X)
U311(mark(X1), X2) → U311(X1, X2)
U311(X1, mark(X2)) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)
U321(mark(X)) → U321(X)
U321(active(X)) → U321(X)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, mark(X2), X3) → U411(X1, X2, X3)
U411(X1, X2, mark(X3)) → U411(X1, X2, X3)
U411(active(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, active(X2), X3) → U411(X1, X2, X3)
U411(X1, X2, active(X3)) → U411(X1, X2, X3)
U421(mark(X1), X2) → U421(X1, X2)
U421(X1, mark(X2)) → U421(X1, X2)
U421(active(X1), X2) → U421(X1, X2)
U421(X1, active(X2)) → U421(X1, X2)
U431(mark(X)) → U431(X)
U431(active(X)) → U431(X)
ISNATILIST(mark(X)) → ISNATILIST(X)
ISNATILIST(active(X)) → ISNATILIST(X)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, mark(X3)) → U511(X1, X2, X3)
U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)
U521(mark(X1), X2) → U521(X1, X2)
U521(X1, mark(X2)) → U521(X1, X2)
U521(active(X1), X2) → U521(X1, X2)
U521(X1, active(X2)) → U521(X1, X2)
U531(mark(X)) → U531(X)
U531(active(X)) → U531(X)
U611(mark(X1), X2) → U611(X1, X2)
U611(X1, mark(X2)) → U611(X1, X2)
U611(active(X1), X2) → U611(X1, X2)
U611(X1, active(X2)) → U611(X1, X2)
S(mark(X)) → S(X)
S(active(X)) → S(X)
LENGTH(mark(X)) → LENGTH(X)
LENGTH(active(X)) → LENGTH(X)
AND(mark(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
ISNATILISTKIND(mark(X)) → ISNATILISTKIND(X)
ISNATILISTKIND(active(X)) → ISNATILISTKIND(X)
ISNATKIND(mark(X)) → ISNATKIND(X)
ISNATKIND(active(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 23 SCCs with 76 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(active(X)) → ISNATKIND(X)
ISNATKIND(mark(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(active(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATKIND(x1)  =  ISNATKIND(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ISNATKIND1, active1]

Status:
active1: multiset
ISNATKIND1: [1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(mark(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(mark(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > ISNATKIND1

Status:
ISNATKIND1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATILISTKIND(active(X)) → ISNATILISTKIND(X)
ISNATILISTKIND(mark(X)) → ISNATILISTKIND(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATILISTKIND(active(X)) → ISNATILISTKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATILISTKIND(x1)  =  ISNATILISTKIND(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ISNATILISTKIND1, active1]

Status:
active1: multiset
ISNATILISTKIND1: [1]


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATILISTKIND(mark(X)) → ISNATILISTKIND(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATILISTKIND(mark(X)) → ISNATILISTKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > ISNATILISTKIND1

Status:
ISNATILISTKIND1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(X1, active(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(X1, mark(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active: multiset
AND1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[AND2, mark1]

Status:
AND2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(active(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(active(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: [1]
AND2: [1,2]


The following usable rules [FROCOS05] were oriented: none

(27) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(29) TRUE

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(active(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(active(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  LENGTH(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[LENGTH1, active1]

Status:
active1: multiset
LENGTH1: [1]


The following usable rules [FROCOS05] were oriented: none

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(mark(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > LENGTH1

Status:
LENGTH1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(34) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(36) TRUE

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[S1, active1]

Status:
active1: multiset
S1: [1]


The following usable rules [FROCOS05] were oriented: none

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > S1

Status:
mark1: multiset
S1: multiset


The following usable rules [FROCOS05] were oriented: none

(41) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(43) TRUE

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2)) → U611(X1, X2)
U611(mark(X1), X2) → U611(X1, X2)
U611(active(X1), X2) → U611(X1, X2)
U611(X1, active(X2)) → U611(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, active(X2)) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2)) → U611(X1, X2)
U611(mark(X1), X2) → U611(X1, X2)
U611(active(X1), X2) → U611(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, mark(X2)) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  U611(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active: multiset
U61^11: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2) → U611(X1, X2)
U611(active(X1), X2) → U611(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X1), X2) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  U611(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U61^12, mark1]

Status:
U61^12: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(active(X1), X2) → U611(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(active(X1), X2) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: [1]
U61^12: [1,2]


The following usable rules [FROCOS05] were oriented: none

(52) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(54) TRUE

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U531(active(X)) → U531(X)
U531(mark(X)) → U531(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U531(active(X)) → U531(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U531(x1)  =  U531(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U53^11, active1]

Status:
active1: multiset
U53^11: [1]


The following usable rules [FROCOS05] were oriented: none

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U531(mark(X)) → U531(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U531(mark(X)) → U531(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U53^11

Status:
mark1: multiset
U53^11: multiset


The following usable rules [FROCOS05] were oriented: none

(59) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(61) TRUE

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(X1, mark(X2)) → U521(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)
U521(active(X1), X2) → U521(X1, X2)
U521(X1, active(X2)) → U521(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(X1, active(X2)) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(X1, mark(X2)) → U521(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)
U521(active(X1), X2) → U521(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(X1, mark(X2)) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  U521(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U52^11: [1]
active: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(mark(X1), X2) → U521(X1, X2)
U521(active(X1), X2) → U521(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(mark(X1), X2) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  U521(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U52^12, mark1]

Status:
U52^12: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(active(X1), X2) → U521(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(active(X1), X2) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: [1]
U52^12: [1,2]


The following usable rules [FROCOS05] were oriented: none

(70) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(72) TRUE

(73) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, X2, mark(X3)) → U511(X1, X2, X3)
U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(74) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(X1, X2, mark(X3)) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  U511(x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U51^11, mark1]

Status:
mark1: multiset
U51^11: multiset


The following usable rules [FROCOS05] were oriented: none

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(76) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(X1, mark(X2), X3) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  U511(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U51^12

Status:
U51^12: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(77) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2, X3) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  U511(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U51^13, mark1]

Status:
U51^13: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(79) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(X1, X2, active(X3)) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  U511(x3)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U51^11, active1]

Status:
active1: multiset
U51^11: [1]


The following usable rules [FROCOS05] were oriented: none

(81) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(82) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(active(X1), X2, X3) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  U511(x1, x3)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U51^12, active1]

Status:
active1: multiset
U51^12: multiset


The following usable rules [FROCOS05] were oriented: none

(83) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, active(X2), X3) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(X1, active(X2), X3) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  U511(x2, x3)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U51^12, active1]

Status:
active1: multiset
U51^12: [1,2]


The following usable rules [FROCOS05] were oriented: none

(85) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(86) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(87) TRUE

(88) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(active(X)) → ISNATILIST(X)
ISNATILIST(mark(X)) → ISNATILIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(89) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATILIST(active(X)) → ISNATILIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATILIST(x1)  =  ISNATILIST(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ISNATILIST1, active1]

Status:
active1: multiset
ISNATILIST1: [1]


The following usable rules [FROCOS05] were oriented: none

(90) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(mark(X)) → ISNATILIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(91) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATILIST(mark(X)) → ISNATILIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > ISNATILIST1

Status:
ISNATILIST1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(92) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(93) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(94) TRUE

(95) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U431(active(X)) → U431(X)
U431(mark(X)) → U431(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(96) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U431(active(X)) → U431(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U431(x1)  =  U431(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U43^11, active1]

Status:
active1: multiset
U43^11: [1]


The following usable rules [FROCOS05] were oriented: none

(97) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U431(mark(X)) → U431(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U431(mark(X)) → U431(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U43^11

Status:
mark1: multiset
U43^11: multiset


The following usable rules [FROCOS05] were oriented: none

(99) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(100) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(101) TRUE

(102) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(X1, mark(X2)) → U421(X1, X2)
U421(mark(X1), X2) → U421(X1, X2)
U421(active(X1), X2) → U421(X1, X2)
U421(X1, active(X2)) → U421(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(103) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U421(X1, active(X2)) → U421(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U421(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(104) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(X1, mark(X2)) → U421(X1, X2)
U421(mark(X1), X2) → U421(X1, X2)
U421(active(X1), X2) → U421(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(105) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U421(X1, mark(X2)) → U421(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U421(x1, x2)  =  U421(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active: multiset
mark1: [1]
U42^11: [1]


The following usable rules [FROCOS05] were oriented: none

(106) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(mark(X1), X2) → U421(X1, X2)
U421(active(X1), X2) → U421(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(107) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U421(mark(X1), X2) → U421(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U421(x1, x2)  =  U421(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U42^12, mark1]

Status:
U42^12: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(108) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(active(X1), X2) → U421(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(109) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U421(active(X1), X2) → U421(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: [1]
U42^12: [1,2]


The following usable rules [FROCOS05] were oriented: none

(110) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(111) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(112) TRUE

(113) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(X1, mark(X2), X3) → U411(X1, X2, X3)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, X2, mark(X3)) → U411(X1, X2, X3)
U411(active(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, active(X2), X3) → U411(X1, X2, X3)
U411(X1, X2, active(X3)) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(114) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(X1, X2, mark(X3)) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  U411(x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U41^11, mark1]

Status:
U41^11: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(115) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(X1, mark(X2), X3) → U411(X1, X2, X3)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)
U411(active(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, active(X2), X3) → U411(X1, X2, X3)
U411(X1, X2, active(X3)) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(116) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(X1, mark(X2), X3) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  U411(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U41^12

Status:
U41^12: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(117) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X1), X2, X3) → U411(X1, X2, X3)
U411(active(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, active(X2), X3) → U411(X1, X2, X3)
U411(X1, X2, active(X3)) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(118) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X1), X2, X3) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  U411(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U41^13, mark1]

Status:
mark1: [1]
U41^13: multiset


The following usable rules [FROCOS05] were oriented: none

(119) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(active(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, active(X2), X3) → U411(X1, X2, X3)
U411(X1, X2, active(X3)) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(X1, X2, active(X3)) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  U411(x3)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U41^11, active1]

Status:
active1: multiset
U41^11: [1]


The following usable rules [FROCOS05] were oriented: none

(121) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(active(X1), X2, X3) → U411(X1, X2, X3)
U411(X1, active(X2), X3) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(122) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(active(X1), X2, X3) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  U411(x1, x3)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U41^12, active1]

Status:
active1: multiset
U41^12: multiset


The following usable rules [FROCOS05] were oriented: none

(123) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(X1, active(X2), X3) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(124) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(X1, active(X2), X3) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  U411(x2, x3)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U41^12, active1]

Status:
active1: multiset
U41^12: [1,2]


The following usable rules [FROCOS05] were oriented: none

(125) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(126) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(127) TRUE

(128) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(active(X)) → U321(X)
U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(129) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(active(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1)  =  U321(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U32^11, active1]

Status:
active1: multiset
U32^11: [1]


The following usable rules [FROCOS05] were oriented: none

(130) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(131) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(mark(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U32^11

Status:
mark1: multiset
U32^11: multiset


The following usable rules [FROCOS05] were oriented: none

(132) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(133) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(134) TRUE

(135) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(136) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, active(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(137) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(138) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, mark(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active: multiset
U31^11: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(139) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(140) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U31^12, mark1]

Status:
U31^12: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(141) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(active(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(142) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(active(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: [1]
U31^12: [1,2]


The following usable rules [FROCOS05] were oriented: none

(143) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(144) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(145) TRUE

(146) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(active(X)) → ISNAT(X)
ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(147) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(active(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  ISNAT(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ISNAT1, active1]

Status:
active1: multiset
ISNAT1: [1]


The following usable rules [FROCOS05] were oriented: none

(148) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(mark(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(149) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(mark(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > ISNAT1

Status:
mark1: multiset
ISNAT1: multiset


The following usable rules [FROCOS05] were oriented: none

(150) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(151) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(152) TRUE

(153) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(active(X)) → U221(X)
U221(mark(X)) → U221(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(154) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(active(X)) → U221(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1)  =  U221(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U22^11, active1]

Status:
active1: multiset
U22^11: [1]


The following usable rules [FROCOS05] were oriented: none

(155) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(mark(X)) → U221(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(156) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X)) → U221(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U22^11

Status:
U22^11: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(157) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(158) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(159) TRUE

(160) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(161) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, active(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(162) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(163) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, mark(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active: multiset
U21^11: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(164) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(165) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U21^12, mark1]

Status:
U21^12: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(166) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(active(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(167) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(active(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: [1]
U21^12: [1,2]


The following usable rules [FROCOS05] were oriented: none

(168) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(169) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(170) TRUE

(171) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATLIST(active(X)) → ISNATLIST(X)
ISNATLIST(mark(X)) → ISNATLIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(172) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATLIST(active(X)) → ISNATLIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATLIST(x1)  =  ISNATLIST(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ISNATLIST1, active1]

Status:
active1: multiset
ISNATLIST1: [1]


The following usable rules [FROCOS05] were oriented: none

(173) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATLIST(mark(X)) → ISNATLIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(174) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATLIST(mark(X)) → ISNATLIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > ISNATLIST1

Status:
ISNATLIST1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(175) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(176) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(177) TRUE

(178) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(active(X)) → U121(X)
U121(mark(X)) → U121(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(179) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(active(X)) → U121(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1)  =  U121(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U12^11, active1]

Status:
active1: multiset
U12^11: [1]


The following usable rules [FROCOS05] were oriented: none

(180) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X)) → U121(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(181) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X)) → U121(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U12^11

Status:
U12^11: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(182) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(183) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(184) TRUE

(185) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2)) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)
U111(X1, active(X2)) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(186) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, active(X2)) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(187) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2)) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(188) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, mark(X2)) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  U111(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active: multiset
U11^11: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(189) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2) → U111(X1, X2)
U111(active(X1), X2) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(190) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  U111(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U11^12, mark1]

Status:
U11^12: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(191) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(active(X1), X2) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(192) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(active(X1), X2) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: [1]
U11^12: [1,2]


The following usable rules [FROCOS05] were oriented: none

(193) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(194) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(195) TRUE

(196) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(197) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, active(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x2
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(198) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(199) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, mark(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
mark(x1)  =  mark(x1)
active(x1)  =  active

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active: multiset
CONS1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(200) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(201) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[CONS2, mark1]

Status:
CONS2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(202) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(active(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(203) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(active(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: [1]
CONS2: [1,2]


The following usable rules [FROCOS05] were oriented: none

(204) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(205) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(206) TRUE

(207) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(U11(tt, V1)) → MARK(U12(isNatList(V1)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNat(V1)))
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → ACTIVE(U12(mark(X)))
ACTIVE(U31(tt, V)) → MARK(U32(isNatList(V)))
MARK(U12(X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U41(tt, V1, V2)) → MARK(U42(isNat(V1), V2))
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U42(tt, V2)) → MARK(U43(isNatIList(V2)))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → ACTIVE(U22(mark(X)))
ACTIVE(U51(tt, V1, V2)) → MARK(U52(isNat(V1), V2))
MARK(U22(X)) → MARK(X)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U52(tt, V2)) → MARK(U53(isNatList(V2)))
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U61(tt, L)) → MARK(s(length(L)))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(and(tt, X)) → MARK(X)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → ACTIVE(U41(mark(X1), X2, X3))
ACTIVE(isNat(length(V1))) → MARK(U11(isNatIListKind(V1), V1))
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → ACTIVE(U42(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → ACTIVE(U43(mark(X)))
ACTIVE(isNatIList(V)) → MARK(U31(isNatIListKind(V), V))
MARK(U43(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
ACTIVE(isNatIListKind(cons(V1, V2))) → MARK(and(isNatKind(V1), isNatIListKind(V2)))
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
ACTIVE(isNatKind(length(V1))) → MARK(isNatIListKind(V1))
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → ACTIVE(U53(mark(X)))
ACTIVE(isNatKind(s(V1))) → MARK(isNatKind(V1))
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → ACTIVE(U61(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
MARK(U61(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(length(cons(N, L))) → MARK(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → MARK(X)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatIListKind(X)) → ACTIVE(isNatIListKind(X))
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(208) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(U22(X)) → ACTIVE(U22(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
cons(x1, x2)  =  cons
ACTIVE(x1)  =  x1
mark(x1)  =  mark
U11(x1, x2)  =  U11
tt  =  tt
U12(x1)  =  U12
isNatList(x1)  =  isNatList
zeros  =  zeros
0  =  0
U21(x1, x2)  =  U21
U22(x1)  =  U22
isNat(x1)  =  isNat
U31(x1, x2)  =  U31
U32(x1)  =  U32
U41(x1, x2, x3)  =  U41
U42(x1, x2)  =  U42
U43(x1)  =  U43
isNatIList(x1)  =  isNatIList
U51(x1, x2, x3)  =  U51
U52(x1, x2)  =  U52
U53(x1)  =  U53
U61(x1, x2)  =  U61
s(x1)  =  s
length(x1)  =  length
and(x1, x2)  =  and
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
active(x1)  =  active
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
tt > [MARK, U11, U12, isNatList, zeros, U21, isNat, U31, U32, U41, U42, U43, isNatIList, U51, U52, U53, U61, s, length, and, isNatIListKind, isNatKind] > [mark, 0, active] > cons
tt > [MARK, U11, U12, isNatList, zeros, U21, isNat, U31, U32, U41, U42, U43, isNatIList, U51, U52, U53, U61, s, length, and, isNatIListKind, isNatKind] > [mark, 0, active] > U22
tt > [MARK, U11, U12, isNatList, zeros, U21, isNat, U31, U32, U41, U42, U43, isNatIList, U51, U52, U53, U61, s, length, and, isNatIListKind, isNatKind] > [mark, 0, active] > nil

Status:
U22: multiset
U31: []
U42: []
U11: []
isNatIList: []
length: []
isNat: []
U61: []
tt: multiset
cons: multiset
zeros: multiset
U41: []
and: []
isNatKind: []
U43: []
nil: multiset
active: []
U51: []
U21: []
MARK: []
U32: []
isNatList: []
U53: []
U52: []
U12: []
s: []
0: multiset
mark: multiset
isNatIListKind: []


The following usable rules [FROCOS05] were oriented:

U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U43(active(X)) → U43(X)
U43(mark(X)) → U43(X)
U42(X1, active(X2)) → U42(X1, X2)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U53(active(X)) → U53(X)
U53(mark(X)) → U53(X)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatIListKind(mark(X)) → isNatIListKind(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U32(active(X)) → U32(X)
U32(mark(X)) → U32(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U12(active(X)) → U12(X)
U12(mark(X)) → U12(X)

(209) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V1)) → MARK(U12(isNatList(V1)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNat(V1)))
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → ACTIVE(U12(mark(X)))
ACTIVE(U31(tt, V)) → MARK(U32(isNatList(V)))
MARK(U12(X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U41(tt, V1, V2)) → MARK(U42(isNat(V1), V2))
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U42(tt, V2)) → MARK(U43(isNatIList(V2)))
MARK(U21(X1, X2)) → MARK(X1)
ACTIVE(U51(tt, V1, V2)) → MARK(U52(isNat(V1), V2))
MARK(U22(X)) → MARK(X)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U52(tt, V2)) → MARK(U53(isNatList(V2)))
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U61(tt, L)) → MARK(s(length(L)))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(and(tt, X)) → MARK(X)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → ACTIVE(U41(mark(X1), X2, X3))
ACTIVE(isNat(length(V1))) → MARK(U11(isNatIListKind(V1), V1))
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → ACTIVE(U42(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → ACTIVE(U43(mark(X)))
ACTIVE(isNatIList(V)) → MARK(U31(isNatIListKind(V), V))
MARK(U43(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
ACTIVE(isNatIListKind(cons(V1, V2))) → MARK(and(isNatKind(V1), isNatIListKind(V2)))
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
ACTIVE(isNatKind(length(V1))) → MARK(isNatIListKind(V1))
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → ACTIVE(U53(mark(X)))
ACTIVE(isNatKind(s(V1))) → MARK(isNatKind(V1))
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → ACTIVE(U61(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
MARK(U61(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(length(cons(N, L))) → MARK(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → MARK(X)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatIListKind(X)) → ACTIVE(isNatIListKind(X))
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(210) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U43(X)) → ACTIVE(U43(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
U11(x1, x2)  =  U11
tt  =  tt
MARK(x1)  =  MARK
U12(x1)  =  U12
isNatList(x1)  =  isNatList
cons(x1, x2)  =  x2
zeros  =  zeros
0  =  0
mark(x1)  =  mark
U21(x1, x2)  =  U21
U22(x1)  =  U22
isNat(x1)  =  isNat
U31(x1, x2)  =  U31
U32(x1)  =  U32
U41(x1, x2, x3)  =  U41
U42(x1, x2)  =  U42
U43(x1)  =  U43
isNatIList(x1)  =  isNatIList
U51(x1, x2, x3)  =  U51
U52(x1, x2)  =  U52
U53(x1)  =  U53
U61(x1, x2)  =  U61
s(x1)  =  s
length(x1)  =  length
and(x1, x2)  =  and
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
active(x1)  =  x1
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
nil > mark > [U11, MARK, U12, isNatList, zeros, U21, isNat, U31, U32, U41, U42, isNatIList, U51, U52, U53, U61, s, length, and, isNatIListKind, isNatKind] > tt > U22
nil > mark > [U11, MARK, U12, isNatList, zeros, U21, isNat, U31, U32, U41, U42, isNatIList, U51, U52, U53, U61, s, length, and, isNatIListKind, isNatKind] > tt > U43
nil > mark > [U11, MARK, U12, isNatList, zeros, U21, isNat, U31, U32, U41, U42, isNatIList, U51, U52, U53, U61, s, length, and, isNatIListKind, isNatKind] > 0

Status:
U22: multiset
U31: []
U42: []
U11: []
isNatIList: []
length: []
isNat: []
U61: []
tt: multiset
zeros: multiset
U41: []
and: []
isNatKind: []
U43: multiset
nil: multiset
U51: []
U21: []
MARK: []
U32: []
isNatList: []
U53: []
U52: []
U12: []
s: []
0: multiset
mark: []
isNatIListKind: []


The following usable rules [FROCOS05] were oriented:

U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U43(active(X)) → U43(X)
U43(mark(X)) → U43(X)
U42(X1, active(X2)) → U42(X1, X2)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U53(active(X)) → U53(X)
U53(mark(X)) → U53(X)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatIListKind(mark(X)) → isNatIListKind(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U32(active(X)) → U32(X)
U32(mark(X)) → U32(X)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U12(active(X)) → U12(X)
U12(mark(X)) → U12(X)

(211) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V1)) → MARK(U12(isNatList(V1)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNat(V1)))
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → ACTIVE(U12(mark(X)))
ACTIVE(U31(tt, V)) → MARK(U32(isNatList(V)))
MARK(U12(X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U41(tt, V1, V2)) → MARK(U42(isNat(V1), V2))
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U42(tt, V2)) → MARK(U43(isNatIList(V2)))
MARK(U21(X1, X2)) → MARK(X1)
ACTIVE(U51(tt, V1, V2)) → MARK(U52(isNat(V1), V2))
MARK(U22(X)) → MARK(X)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U52(tt, V2)) → MARK(U53(isNatList(V2)))
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U61(tt, L)) → MARK(s(length(L)))
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → ACTIVE(U32(mark(X)))
ACTIVE(and(tt, X)) → MARK(X)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → ACTIVE(U41(mark(X1), X2, X3))
ACTIVE(isNat(length(V1))) → MARK(U11(isNatIListKind(V1), V1))
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → ACTIVE(U42(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U42(X1, X2)) → MARK(X1)
ACTIVE(isNatIList(V)) → MARK(U31(isNatIListKind(V), V))
MARK(U43(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
ACTIVE(isNatIListKind(cons(V1, V2))) → MARK(and(isNatKind(V1), isNatIListKind(V2)))
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
ACTIVE(isNatKind(length(V1))) → MARK(isNatIListKind(V1))
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → ACTIVE(U53(mark(X)))
ACTIVE(isNatKind(s(V1))) → MARK(isNatKind(V1))
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → ACTIVE(U61(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
MARK(U61(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(length(cons(N, L))) → MARK(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → MARK(X)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatIListKind(X)) → ACTIVE(isNatIListKind(X))
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(212) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U32(X)) → ACTIVE(U32(mark(X)))
MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
U11(x1, x2)  =  U11
tt  =  tt
MARK(x1)  =  MARK
U12(x1)  =  U12
isNatList(x1)  =  isNatList
cons(x1, x2)  =  cons
zeros  =  zeros
0  =  0
mark(x1)  =  mark(x1)
U21(x1, x2)  =  U21
U22(x1)  =  U22(x1)
isNat(x1)  =  isNat
U31(x1, x2)  =  U31
U32(x1)  =  U32
U41(x1, x2, x3)  =  U41
U42(x1, x2)  =  U42
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList
U51(x1, x2, x3)  =  U51
U52(x1, x2)  =  U52
U53(x1)  =  U53
U61(x1, x2)  =  U61
s(x1)  =  s
length(x1)  =  length
and(x1, x2)  =  and
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
active(x1)  =  active
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
active > U221 > [U11, MARK, U12, isNatList, cons, zeros, mark1, U21, isNat, U31, U41, U42, isNatIList, U51, U52, U53, U61, length, and, isNatIListKind, isNatKind] > [0, nil] > tt
active > U221 > [U11, MARK, U12, isNatList, cons, zeros, mark1, U21, isNat, U31, U41, U42, isNatIList, U51, U52, U53, U61, length, and, isNatIListKind, isNatKind] > U32 > tt
active > U221 > [U11, MARK, U12, isNatList, cons, zeros, mark1, U21, isNat, U31, U41, U42, isNatIList, U51, U52, U53, U61, length, and, isNatIListKind, isNatKind] > s

Status:
U31: []
U42: []
mark1: [1]
U11: []
isNatIList: []
length: []
isNat: []
U61: []
cons: multiset
tt: multiset
zeros: multiset
U41: []
and: []
isNatKind: []
nil: multiset
active: []
U51: []
U21: []
MARK: []
U32: []
isNatList: []
U53: []
U52: []
U12: []
s: []
0: multiset
U221: multiset
isNatIListKind: []


The following usable rules [FROCOS05] were oriented:

U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U42(X1, active(X2)) → U42(X1, X2)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U53(active(X)) → U53(X)
U53(mark(X)) → U53(X)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatIListKind(mark(X)) → isNatIListKind(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
U32(active(X)) → U32(X)
U32(mark(X)) → U32(X)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U12(active(X)) → U12(X)
U12(mark(X)) → U12(X)

(213) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V1)) → MARK(U12(isNatList(V1)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNat(V1)))
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → ACTIVE(U12(mark(X)))
ACTIVE(U31(tt, V)) → MARK(U32(isNatList(V)))
MARK(U12(X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U41(tt, V1, V2)) → MARK(U42(isNat(V1), V2))
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U42(tt, V2)) → MARK(U43(isNatIList(V2)))
MARK(U21(X1, X2)) → MARK(X1)
ACTIVE(U51(tt, V1, V2)) → MARK(U52(isNat(V1), V2))
MARK(U22(X)) → MARK(X)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U52(tt, V2)) → MARK(U53(isNatList(V2)))
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U61(tt, L)) → MARK(s(length(L)))
MARK(U31(X1, X2)) → MARK(X1)
ACTIVE(and(tt, X)) → MARK(X)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → ACTIVE(U41(mark(X1), X2, X3))
ACTIVE(isNat(length(V1))) → MARK(U11(isNatIListKind(V1), V1))
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → ACTIVE(U42(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U42(X1, X2)) → MARK(X1)
ACTIVE(isNatIList(V)) → MARK(U31(isNatIListKind(V), V))
MARK(U43(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
ACTIVE(isNatIListKind(cons(V1, V2))) → MARK(and(isNatKind(V1), isNatIListKind(V2)))
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
ACTIVE(isNatKind(length(V1))) → MARK(isNatIListKind(V1))
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → ACTIVE(U53(mark(X)))
ACTIVE(isNatKind(s(V1))) → MARK(isNatKind(V1))
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → ACTIVE(U61(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
MARK(U61(X1, X2)) → MARK(X1)
ACTIVE(length(cons(N, L))) → MARK(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → MARK(X)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatIListKind(X)) → ACTIVE(isNatIListKind(X))
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(214) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U53(X)) → ACTIVE(U53(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
U11(x1, x2)  =  U11
tt  =  tt
MARK(x1)  =  MARK
U12(x1)  =  U12
isNatList(x1)  =  isNatList
cons(x1, x2)  =  cons
zeros  =  zeros
0  =  0
mark(x1)  =  x1
U21(x1, x2)  =  U21
U22(x1)  =  x1
isNat(x1)  =  isNat
U31(x1, x2)  =  U31
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41
U42(x1, x2)  =  U42
U43(x1)  =  U43
isNatIList(x1)  =  isNatIList
U51(x1, x2, x3)  =  U51
U52(x1, x2)  =  U52
U53(x1)  =  U53
U61(x1, x2)  =  U61
s(x1)  =  x1
length(x1)  =  length
and(x1, x2)  =  and
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
active(x1)  =  x1
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
cons > [U11, MARK, U12, isNatList, zeros, U21, isNat, U31, U41, U42, isNatIList, U51, U52, U61, length, and, isNatIListKind, isNatKind] > U53
0 > tt > [U11, MARK, U12, isNatList, zeros, U21, isNat, U31, U41, U42, isNatIList, U51, U52, U61, length, and, isNatIListKind, isNatKind] > U53
U43 > tt > [U11, MARK, U12, isNatList, zeros, U21, isNat, U31, U41, U42, isNatIList, U51, U52, U61, length, and, isNatIListKind, isNatKind] > U53
nil > tt > [U11, MARK, U12, isNatList, zeros, U21, isNat, U31, U41, U42, isNatIList, U51, U52, U61, length, and, isNatIListKind, isNatKind] > U53

Status:
U31: multiset
U42: multiset
U11: multiset
isNatIList: multiset
length: multiset
isNat: multiset
U61: multiset
tt: multiset
cons: []
zeros: multiset
U41: multiset
and: multiset
isNatKind: multiset
U43: multiset
nil: multiset
MARK: multiset
U21: multiset
U51: multiset
isNatList: multiset
U52: multiset
U53: multiset
U12: multiset
0: multiset
isNatIListKind: multiset


The following usable rules [FROCOS05] were oriented:

U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U42(X1, active(X2)) → U42(X1, X2)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U53(active(X)) → U53(X)
U53(mark(X)) → U53(X)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U12(active(X)) → U12(X)
U12(mark(X)) → U12(X)

(215) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V1)) → MARK(U12(isNatList(V1)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNat(V1)))
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → ACTIVE(U12(mark(X)))
ACTIVE(U31(tt, V)) → MARK(U32(isNatList(V)))
MARK(U12(X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U41(tt, V1, V2)) → MARK(U42(isNat(V1), V2))
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U42(tt, V2)) → MARK(U43(isNatIList(V2)))
MARK(U21(X1, X2)) → MARK(X1)
ACTIVE(U51(tt, V1, V2)) → MARK(U52(isNat(V1), V2))
MARK(U22(X)) → MARK(X)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U52(tt, V2)) → MARK(U53(isNatList(V2)))
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U61(tt, L)) → MARK(s(length(L)))
MARK(U31(X1, X2)) → MARK(X1)
ACTIVE(and(tt, X)) → MARK(X)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → ACTIVE(U41(mark(X1), X2, X3))
ACTIVE(isNat(length(V1))) → MARK(U11(isNatIListKind(V1), V1))
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → ACTIVE(U42(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U42(X1, X2)) → MARK(X1)
ACTIVE(isNatIList(V)) → MARK(U31(isNatIListKind(V), V))
MARK(U43(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
ACTIVE(isNatIListKind(cons(V1, V2))) → MARK(and(isNatKind(V1), isNatIListKind(V2)))
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
ACTIVE(isNatKind(length(V1))) → MARK(isNatIListKind(V1))
MARK(U52(X1, X2)) → MARK(X1)
ACTIVE(isNatKind(s(V1))) → MARK(isNatKind(V1))
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → ACTIVE(U61(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
MARK(U61(X1, X2)) → MARK(X1)
ACTIVE(length(cons(N, L))) → MARK(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → MARK(X)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatIListKind(X)) → ACTIVE(isNatIListKind(X))
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(216) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U12(X)) → ACTIVE(U12(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
U11(x1, x2)  =  U11
tt  =  tt
MARK(x1)  =  MARK
U12(x1)  =  U12
isNatList(x1)  =  isNatList
cons(x1, x2)  =  cons(x1, x2)
zeros  =  zeros
0  =  0
mark(x1)  =  mark
U21(x1, x2)  =  U21
U22(x1)  =  U22
isNat(x1)  =  isNat
U31(x1, x2)  =  U31
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  U41
U42(x1, x2)  =  U42
U43(x1)  =  U43
isNatIList(x1)  =  isNatIList
U51(x1, x2, x3)  =  U51
U52(x1, x2)  =  U52
U53(x1)  =  x1
U61(x1, x2)  =  U61
s(x1)  =  s
length(x1)  =  length
and(x1, x2)  =  and
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
active(x1)  =  active(x1)
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
[cons2, mark, active1] > [U11, MARK, isNatList, zeros, U21, U22, isNat, U31, U41, U42, isNatIList, U51, U52, U61, length, and, isNatIListKind, isNatKind] > tt > U12 > U321
[cons2, mark, active1] > [U11, MARK, isNatList, zeros, U21, U22, isNat, U31, U41, U42, isNatIList, U51, U52, U61, length, and, isNatIListKind, isNatKind] > tt > U43 > U321
[cons2, mark, active1] > [U11, MARK, isNatList, zeros, U21, U22, isNat, U31, U41, U42, isNatIList, U51, U52, U61, length, and, isNatIListKind, isNatKind] > tt > s > U321
[cons2, mark, active1] > [U11, MARK, isNatList, zeros, U21, U22, isNat, U31, U41, U42, isNatIList, U51, U52, U61, length, and, isNatIListKind, isNatKind] > 0 > U321
[cons2, mark, active1] > nil > U321

Status:
U22: multiset
U31: []
U42: []
U11: []
isNatIList: []
length: []
isNat: []
active1: multiset
U61: []
tt: multiset
zeros: multiset
U41: []
and: []
isNatKind: []
U43: multiset
nil: multiset
U51: []
U21: []
MARK: []
isNatList: []
U52: []
U12: multiset
s: []
0: multiset
cons2: multiset
U321: [1]
mark: []
isNatIListKind: []


The following usable rules [FROCOS05] were oriented:

U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U42(X1, active(X2)) → U42(X1, X2)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
isNatList(active(X)) → isNatList(X)
isNatList(mark(X)) → isNatList(X)
isNatKind(active(X)) → isNatKind(X)
isNatKind(mark(X)) → isNatKind(X)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNat(active(X)) → isNat(X)
isNat(mark(X)) → isNat(X)
length(active(X)) → length(X)
length(mark(X)) → length(X)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U12(active(X)) → U12(X)
U12(mark(X)) → U12(X)

(217) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V1)) → MARK(U12(isNatList(V1)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(U11(X1, X2)) → ACTIVE(U11(mark(X1), X2))
ACTIVE(U21(tt, V1)) → MARK(U22(isNat(V1)))
MARK(U11(X1, X2)) → MARK(X1)
ACTIVE(U31(tt, V)) → MARK(U32(isNatList(V)))
MARK(U12(X)) → MARK(X)
MARK(isNatList(X)) → ACTIVE(isNatList(X))
ACTIVE(U41(tt, V1, V2)) → MARK(U42(isNat(V1), V2))
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U42(tt, V2)) → MARK(U43(isNatIList(V2)))
MARK(U21(X1, X2)) → MARK(X1)
ACTIVE(U51(tt, V1, V2)) → MARK(U52(isNat(V1), V2))
MARK(U22(X)) → MARK(X)
MARK(isNat(X)) → ACTIVE(isNat(X))
ACTIVE(U52(tt, V2)) → MARK(U53(isNatList(V2)))
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U61(tt, L)) → MARK(s(length(L)))
MARK(U31(X1, X2)) → MARK(X1)
ACTIVE(and(tt, X)) → MARK(X)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → ACTIVE(U41(mark(X1), X2, X3))
ACTIVE(isNat(length(V1))) → MARK(U11(isNatIListKind(V1), V1))
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → ACTIVE(U42(mark(X1), X2))
ACTIVE(isNat(s(V1))) → MARK(U21(isNatKind(V1), V1))
MARK(U42(X1, X2)) → MARK(X1)
ACTIVE(isNatIList(V)) → MARK(U31(isNatIListKind(V), V))
MARK(U43(X)) → MARK(X)
MARK(isNatIList(X)) → ACTIVE(isNatIList(X))
ACTIVE(isNatIList(cons(V1, V2))) → MARK(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
ACTIVE(isNatIListKind(cons(V1, V2))) → MARK(and(isNatKind(V1), isNatIListKind(V2)))
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → ACTIVE(U52(mark(X1), X2))
ACTIVE(isNatKind(length(V1))) → MARK(isNatIListKind(V1))
MARK(U52(X1, X2)) → MARK(X1)
ACTIVE(isNatKind(s(V1))) → MARK(isNatKind(V1))
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → ACTIVE(U61(mark(X1), X2))
ACTIVE(isNatList(cons(V1, V2))) → MARK(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
MARK(U61(X1, X2)) → MARK(X1)
ACTIVE(length(cons(N, L))) → MARK(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
MARK(s(X)) → MARK(X)
MARK(length(X)) → ACTIVE(length(mark(X)))
MARK(length(X)) → MARK(X)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatIListKind(X)) → ACTIVE(isNatIListKind(X))
MARK(isNatKind(X)) → ACTIVE(isNatKind(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
mark(zeros) → active(zeros)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(U11(X1, X2)) → active(U11(mark(X1), X2))
mark(tt) → active(tt)
mark(U12(X)) → active(U12(mark(X)))
mark(isNatList(X)) → active(isNatList(X))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U22(X)) → active(U22(mark(X)))
mark(isNat(X)) → active(isNat(X))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U32(X)) → active(U32(mark(X)))
mark(U41(X1, X2, X3)) → active(U41(mark(X1), X2, X3))
mark(U42(X1, X2)) → active(U42(mark(X1), X2))
mark(U43(X)) → active(U43(mark(X)))
mark(isNatIList(X)) → active(isNatIList(X))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(U52(X1, X2)) → active(U52(mark(X1), X2))
mark(U53(X)) → active(U53(mark(X)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(length(X)) → active(length(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatIListKind(X)) → active(isNatIListKind(X))
mark(isNatKind(X)) → active(isNatKind(X))
mark(nil) → active(nil)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U11(mark(X1), X2) → U11(X1, X2)
U11(X1, mark(X2)) → U11(X1, X2)
U11(active(X1), X2) → U11(X1, X2)
U11(X1, active(X2)) → U11(X1, X2)
U12(mark(X)) → U12(X)
U12(active(X)) → U12(X)
isNatList(mark(X)) → isNatList(X)
isNatList(active(X)) → isNatList(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U22(mark(X)) → U22(X)
U22(active(X)) → U22(X)
isNat(mark(X)) → isNat(X)
isNat(active(X)) → isNat(X)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U32(mark(X)) → U32(X)
U32(active(X)) → U32(X)
U41(mark(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, mark(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, mark(X3)) → U41(X1, X2, X3)
U41(active(X1), X2, X3) → U41(X1, X2, X3)
U41(X1, active(X2), X3) → U41(X1, X2, X3)
U41(X1, X2, active(X3)) → U41(X1, X2, X3)
U42(mark(X1), X2) → U42(X1, X2)
U42(X1, mark(X2)) → U42(X1, X2)
U42(active(X1), X2) → U42(X1, X2)
U42(X1, active(X2)) → U42(X1, X2)
U43(mark(X)) → U43(X)
U43(active(X)) → U43(X)
isNatIList(mark(X)) → isNatIList(X)
isNatIList(active(X)) → isNatIList(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
U52(mark(X1), X2) → U52(X1, X2)
U52(X1, mark(X2)) → U52(X1, X2)
U52(active(X1), X2) → U52(X1, X2)
U52(X1, active(X2)) → U52(X1, X2)
U53(mark(X)) → U53(X)
U53(active(X)) → U53(X)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
length(mark(X)) → length(X)
length(active(X)) → length(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatIListKind(mark(X)) → isNatIListKind(X)
isNatIListKind(active(X)) → isNatIListKind(X)
isNatKind(mark(X)) → isNatKind(X)
isNatKind(active(X)) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.