(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(U11(tt, V1)) → U121(isNatList(V1))
ACTIVE(U11(tt, V1)) → ISNATLIST(V1)
ACTIVE(U21(tt, V1)) → U221(isNat(V1))
ACTIVE(U21(tt, V1)) → ISNAT(V1)
ACTIVE(U31(tt, V)) → U321(isNatList(V))
ACTIVE(U31(tt, V)) → ISNATLIST(V)
ACTIVE(U41(tt, V1, V2)) → U421(isNat(V1), V2)
ACTIVE(U41(tt, V1, V2)) → ISNAT(V1)
ACTIVE(U42(tt, V2)) → U431(isNatIList(V2))
ACTIVE(U42(tt, V2)) → ISNATILIST(V2)
ACTIVE(U51(tt, V1, V2)) → U521(isNat(V1), V2)
ACTIVE(U51(tt, V1, V2)) → ISNAT(V1)
ACTIVE(U52(tt, V2)) → U531(isNatList(V2))
ACTIVE(U52(tt, V2)) → ISNATLIST(V2)
ACTIVE(U61(tt, L)) → S(length(L))
ACTIVE(U61(tt, L)) → LENGTH(L)
ACTIVE(isNat(length(V1))) → U111(isNatIListKind(V1), V1)
ACTIVE(isNat(length(V1))) → ISNATILISTKIND(V1)
ACTIVE(isNat(s(V1))) → U211(isNatKind(V1), V1)
ACTIVE(isNat(s(V1))) → ISNATKIND(V1)
ACTIVE(isNatIList(V)) → U311(isNatIListKind(V), V)
ACTIVE(isNatIList(V)) → ISNATILISTKIND(V)
ACTIVE(isNatIList(cons(V1, V2))) → U411(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
ACTIVE(isNatIList(cons(V1, V2))) → AND(isNatKind(V1), isNatIListKind(V2))
ACTIVE(isNatIList(cons(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatIList(cons(V1, V2))) → ISNATILISTKIND(V2)
ACTIVE(isNatIListKind(cons(V1, V2))) → AND(isNatKind(V1), isNatIListKind(V2))
ACTIVE(isNatIListKind(cons(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatIListKind(cons(V1, V2))) → ISNATILISTKIND(V2)
ACTIVE(isNatKind(length(V1))) → ISNATILISTKIND(V1)
ACTIVE(isNatKind(s(V1))) → ISNATKIND(V1)
ACTIVE(isNatList(cons(V1, V2))) → U511(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
ACTIVE(isNatList(cons(V1, V2))) → AND(isNatKind(V1), isNatIListKind(V2))
ACTIVE(isNatList(cons(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatList(cons(V1, V2))) → ISNATILISTKIND(V2)
ACTIVE(length(cons(N, L))) → U611(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
ACTIVE(length(cons(N, L))) → AND(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N)))
ACTIVE(length(cons(N, L))) → AND(isNatList(L), isNatIListKind(L))
ACTIVE(length(cons(N, L))) → ISNATLIST(L)
ACTIVE(length(cons(N, L))) → ISNATILISTKIND(L)
ACTIVE(length(cons(N, L))) → AND(isNat(N), isNatKind(N))
ACTIVE(length(cons(N, L))) → ISNAT(N)
ACTIVE(length(cons(N, L))) → ISNATKIND(N)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X1, X2)) → U111(active(X1), X2)
ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(U12(X)) → U121(active(X))
ACTIVE(U12(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → U211(active(X1), X2)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → U221(active(X))
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → U311(active(X1), X2)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X)) → U321(active(X))
ACTIVE(U32(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2, X3)) → U411(active(X1), X2, X3)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U42(X1, X2)) → U421(active(X1), X2)
ACTIVE(U42(X1, X2)) → ACTIVE(X1)
ACTIVE(U43(X)) → U431(active(X))
ACTIVE(U43(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → U511(active(X1), X2, X3)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → U521(active(X1), X2)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U53(X)) → U531(active(X))
ACTIVE(U53(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → U611(active(X1), X2)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → LENGTH(active(X))
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
CONS(mark(X1), X2) → CONS(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)
U121(mark(X)) → U121(X)
U211(mark(X1), X2) → U211(X1, X2)
U221(mark(X)) → U221(X)
U311(mark(X1), X2) → U311(X1, X2)
U321(mark(X)) → U321(X)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)
U421(mark(X1), X2) → U421(X1, X2)
U431(mark(X)) → U431(X)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U521(mark(X1), X2) → U521(X1, X2)
U531(mark(X)) → U531(X)
U611(mark(X1), X2) → U611(X1, X2)
S(mark(X)) → S(X)
LENGTH(mark(X)) → LENGTH(X)
AND(mark(X1), X2) → AND(X1, X2)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(U11(X1, X2)) → U111(proper(X1), proper(X2))
PROPER(U11(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(U12(X)) → U121(proper(X))
PROPER(U12(X)) → PROPER(X)
PROPER(isNatList(X)) → ISNATLIST(proper(X))
PROPER(isNatList(X)) → PROPER(X)
PROPER(U21(X1, X2)) → U211(proper(X1), proper(X2))
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X)) → U221(proper(X))
PROPER(U22(X)) → PROPER(X)
PROPER(isNat(X)) → ISNAT(proper(X))
PROPER(isNat(X)) → PROPER(X)
PROPER(U31(X1, X2)) → U311(proper(X1), proper(X2))
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U32(X)) → U321(proper(X))
PROPER(U32(X)) → PROPER(X)
PROPER(U41(X1, X2, X3)) → U411(proper(X1), proper(X2), proper(X3))
PROPER(U41(X1, X2, X3)) → PROPER(X1)
PROPER(U41(X1, X2, X3)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X3)
PROPER(U42(X1, X2)) → U421(proper(X1), proper(X2))
PROPER(U42(X1, X2)) → PROPER(X1)
PROPER(U42(X1, X2)) → PROPER(X2)
PROPER(U43(X)) → U431(proper(X))
PROPER(U43(X)) → PROPER(X)
PROPER(isNatIList(X)) → ISNATILIST(proper(X))
PROPER(isNatIList(X)) → PROPER(X)
PROPER(U51(X1, X2, X3)) → U511(proper(X1), proper(X2), proper(X3))
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(U52(X1, X2)) → U521(proper(X1), proper(X2))
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(U52(X1, X2)) → PROPER(X2)
PROPER(U53(X)) → U531(proper(X))
PROPER(U53(X)) → PROPER(X)
PROPER(U61(X1, X2)) → U611(proper(X1), proper(X2))
PROPER(U61(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(length(X)) → LENGTH(proper(X))
PROPER(length(X)) → PROPER(X)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatIListKind(X)) → ISNATILISTKIND(proper(X))
PROPER(isNatIListKind(X)) → PROPER(X)
PROPER(isNatKind(X)) → ISNATKIND(proper(X))
PROPER(isNatKind(X)) → PROPER(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
U111(ok(X1), ok(X2)) → U111(X1, X2)
U121(ok(X)) → U121(X)
ISNATLIST(ok(X)) → ISNATLIST(X)
U211(ok(X1), ok(X2)) → U211(X1, X2)
U221(ok(X)) → U221(X)
ISNAT(ok(X)) → ISNAT(X)
U311(ok(X1), ok(X2)) → U311(X1, X2)
U321(ok(X)) → U321(X)
U411(ok(X1), ok(X2), ok(X3)) → U411(X1, X2, X3)
U421(ok(X1), ok(X2)) → U421(X1, X2)
U431(ok(X)) → U431(X)
ISNATILIST(ok(X)) → ISNATILIST(X)
U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
U521(ok(X1), ok(X2)) → U521(X1, X2)
U531(ok(X)) → U531(X)
U611(ok(X1), ok(X2)) → U611(X1, X2)
S(ok(X)) → S(X)
LENGTH(ok(X)) → LENGTH(X)
AND(ok(X1), ok(X2)) → AND(X1, X2)
ISNATILISTKIND(ok(X)) → ISNATILISTKIND(X)
ISNATKIND(ok(X)) → ISNATKIND(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 25 SCCs with 85 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(ok(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(ok(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATKIND(x1)  =  ISNATKIND(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1, x2)  =  x2
tt  =  tt
U12(x1)  =  U12(x1)
isNatList(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  x1
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  x1
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  x3
U42(x1, x2)  =  x1
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  x3
U52(x1, x2)  =  x2
U53(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  s(x1)
length(x1)  =  x1
and(x1, x2)  =  and(x2)
isNatIListKind(x1)  =  isNatIListKind(x1)
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[s1, proper1] > zeros > tt > [mark, top]
[s1, proper1] > cons1 > U612 > [ISNATKIND1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > cons1 > and1 > [ISNATKIND1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > 0 > [ISNATKIND1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > U121 > [ISNATKIND1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > isNatIList1 > [ISNATKIND1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
nil > 0 > [ISNATKIND1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]

Status:
ISNATKIND1: [1]
ok1: [1]
zeros: []
mark: []
cons1: [1]
0: []
tt: []
U121: [1]
isNat1: [1]
U321: [1]
isNatIList1: [1]
U612: [2,1]
s1: [1]
and1: [1]
isNatIListKind1: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATILISTKIND(ok(X)) → ISNATILISTKIND(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATILISTKIND(ok(X)) → ISNATILISTKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATILISTKIND(x1)  =  ISNATILISTKIND(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1, x2)  =  x2
tt  =  tt
U12(x1)  =  U12(x1)
isNatList(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  x1
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  x1
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  x3
U42(x1, x2)  =  x1
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  x3
U52(x1, x2)  =  x2
U53(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  s(x1)
length(x1)  =  x1
and(x1, x2)  =  and(x2)
isNatIListKind(x1)  =  isNatIListKind(x1)
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[s1, proper1] > zeros > tt > [mark, top]
[s1, proper1] > cons1 > U612 > [ISNATILISTKIND1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > cons1 > and1 > [ISNATILISTKIND1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > 0 > [ISNATILISTKIND1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > U121 > [ISNATILISTKIND1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > isNatIList1 > [ISNATILISTKIND1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
nil > 0 > [ISNATILISTKIND1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]

Status:
ISNATILISTKIND1: [1]
ok1: [1]
zeros: []
mark: []
cons1: [1]
0: []
tt: []
U121: [1]
isNat1: [1]
U321: [1]
isNatIList1: [1]
U612: [2,1]
s1: [1]
and1: [1]
isNatIListKind1: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(ok(X)) → ISNATILIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATILIST(ok(X)) → ISNATILIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATILIST(x1)  =  ISNATILIST(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1, x2)  =  x2
tt  =  tt
U12(x1)  =  U12(x1)
isNatList(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  x1
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  x1
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  x3
U42(x1, x2)  =  x1
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  x3
U52(x1, x2)  =  x2
U53(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  s(x1)
length(x1)  =  x1
and(x1, x2)  =  and(x2)
isNatIListKind(x1)  =  isNatIListKind(x1)
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[s1, proper1] > zeros > tt > [mark, top]
[s1, proper1] > cons1 > U612 > [ISNATILIST1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > cons1 > and1 > [ISNATILIST1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > 0 > [ISNATILIST1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > U121 > [ISNATILIST1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > isNatIList1 > [ISNATILIST1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
nil > 0 > [ISNATILIST1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]

Status:
ISNATILIST1: [1]
ok1: [1]
zeros: []
mark: []
cons1: [1]
0: []
tt: []
U121: [1]
isNat1: [1]
U321: [1]
isNatIList1: [1]
U612: [2,1]
s1: [1]
and1: [1]
isNatIListKind1: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(ok(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(ok(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  ISNAT(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1, x2)  =  x2
tt  =  tt
U12(x1)  =  U12(x1)
isNatList(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  x1
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  x1
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  x3
U42(x1, x2)  =  x1
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  x3
U52(x1, x2)  =  x2
U53(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  s(x1)
length(x1)  =  x1
and(x1, x2)  =  and(x2)
isNatIListKind(x1)  =  isNatIListKind(x1)
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[s1, proper1] > zeros > tt > [mark, top]
[s1, proper1] > cons1 > U612 > [ISNAT1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > cons1 > and1 > [ISNAT1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > 0 > [ISNAT1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > U121 > [ISNAT1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > isNatIList1 > [ISNAT1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
nil > 0 > [ISNAT1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]

Status:
ISNAT1: [1]
ok1: [1]
zeros: []
mark: []
cons1: [1]
0: []
tt: []
U121: [1]
isNat1: [1]
U321: [1]
isNatIList1: [1]
U612: [2,1]
s1: [1]
and1: [1]
isNatIListKind1: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATLIST(ok(X)) → ISNATLIST(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATLIST(ok(X)) → ISNATLIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATLIST(x1)  =  ISNATLIST(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1)
0  =  0
U11(x1, x2)  =  x2
tt  =  tt
U12(x1)  =  U12(x1)
isNatList(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  x1
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  x1
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  x3
U42(x1, x2)  =  x1
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  x3
U52(x1, x2)  =  x2
U53(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  s(x1)
length(x1)  =  x1
and(x1, x2)  =  and(x2)
isNatIListKind(x1)  =  isNatIListKind(x1)
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[s1, proper1] > zeros > tt > [mark, top]
[s1, proper1] > cons1 > U612 > [ISNATLIST1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > cons1 > and1 > [ISNATLIST1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > 0 > [ISNATLIST1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > U121 > [ISNATLIST1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
[s1, proper1] > isNatIList1 > [ISNATLIST1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]
nil > 0 > [ISNATLIST1, ok1, isNat1, U321, isNatIListKind1] > tt > [mark, top]

Status:
ISNATLIST1: [1]
ok1: [1]
zeros: []
mark: []
cons1: [1]
0: []
tt: []
U121: [1]
isNat1: [1]
U321: [1]
isNatIList1: [1]
U612: [2,1]
s1: [1]
and1: [1]
isNatIListKind1: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(27) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(29) TRUE

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(ok(X1), ok(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  x1
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList
U21(x1, x2)  =  x1
U22(x1)  =  x1
isNat(x1)  =  isNat
U31(x1, x2)  =  x1
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  U41(x1, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  U43(x1)
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  x1
U52(x1, x2)  =  U52(x1)
U53(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  x1
length(x1)  =  length(x1)
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, zeros, 0, isNatList, U422, isNatKind] > [cons2, isNatIListKind] > U412 > isNat > [mark1, U321, length1] > tt
[active1, zeros, 0, isNatList, U422, isNatKind] > [cons2, isNatIListKind] > U612 > [mark1, U321, length1] > tt
[active1, zeros, 0, isNatList, U422, isNatKind] > [cons2, isNatIListKind] > and2 > [mark1, U321, length1] > tt
[active1, zeros, 0, isNatList, U422, isNatKind] > U431 > [mark1, U321, length1] > tt
[active1, zeros, 0, isNatList, U422, isNatKind] > U521 > [mark1, U321, length1] > tt
nil > [mark1, U321, length1] > tt

Status:
mark1: [1]
active1: [1]
zeros: []
cons2: [2,1]
0: []
tt: []
isNatList: []
isNat: []
U321: [1]
U412: [1,2]
U422: [1,2]
U431: [1]
U521: [1]
U612: [2,1]
length1: [1]
and2: [2,1]
isNatIListKind: []
isNatKind: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(ok(X1), ok(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(ok(X1), ok(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x1
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList(x1)
U21(x1, x2)  =  U21(x2)
U22(x1)  =  x1
isNat(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x3)
U42(x1, x2)  =  x1
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  x1
U52(x1, x2)  =  x1
U53(x1)  =  x1
U61(x1, x2)  =  x1
s(x1)  =  s(x1)
length(x1)  =  length(x1)
and(x1, x2)  =  and(x2)
isNatIListKind(x1)  =  isNatIListKind(x1)
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U211, isNatIList1, proper1] > U112 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > U411 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > s1 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > length1 > [zeros, 0] > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > length1 > and1 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > length1 > isNatIListKind1 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > nil > [zeros, 0] > [mark, tt, isNatList1] > ok1

Status:
AND1: [1]
ok1: [1]
zeros: []
mark: []
0: []
U112: [1,2]
tt: []
isNatList1: [1]
U211: [1]
U411: [1]
isNatIList1: [1]
s1: [1]
length1: [1]
and1: [1]
isNatIListKind1: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(34) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(36) TRUE

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(ok(X)) → LENGTH(X)
LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(ok(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  LENGTH(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x2)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  x1
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  x2
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  U41(x2, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  U51(x2, x3)
U52(x1, x2)  =  U52(x2)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x2)
s(x1)  =  x1
length(x1)  =  x1
and(x1, x2)  =  x2
isNatIListKind(x1)  =  x1
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > zeros
active1 > [cons2, U512] > U521 > [LENGTH1, ok1, U321, U531]
active1 > [cons2, U512] > U611 > [LENGTH1, ok1, U321, U531]
active1 > 0 > tt > U422 > [LENGTH1, ok1, U321, U531]
active1 > 0 > tt > U521 > [LENGTH1, ok1, U321, U531]
active1 > isNat1 > U111 > [LENGTH1, ok1, U321, U531]
active1 > isNat1 > tt > U422 > [LENGTH1, ok1, U321, U531]
active1 > isNat1 > tt > U521 > [LENGTH1, ok1, U321, U531]
active1 > U412 > U422 > [LENGTH1, ok1, U321, U531]
proper1 > zeros
proper1 > [cons2, U512] > U521 > [LENGTH1, ok1, U321, U531]
proper1 > [cons2, U512] > U611 > [LENGTH1, ok1, U321, U531]
proper1 > 0 > tt > U422 > [LENGTH1, ok1, U321, U531]
proper1 > 0 > tt > U521 > [LENGTH1, ok1, U321, U531]
proper1 > isNat1 > U111 > [LENGTH1, ok1, U321, U531]
proper1 > isNat1 > tt > U422 > [LENGTH1, ok1, U321, U531]
proper1 > isNat1 > tt > U521 > [LENGTH1, ok1, U321, U531]
proper1 > U412 > U422 > [LENGTH1, ok1, U321, U531]
proper1 > nil > tt > U422 > [LENGTH1, ok1, U321, U531]
proper1 > nil > tt > U521 > [LENGTH1, ok1, U321, U531]

Status:
LENGTH1: [1]
ok1: [1]
active1: [1]
zeros: []
cons2: [1,2]
0: []
U111: [1]
tt: []
isNat1: [1]
U321: [1]
U412: [1,2]
U422: [2,1]
U512: [1,2]
U521: [1]
U531: [1]
U611: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LENGTH(mark(X)) → LENGTH(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LENGTH(mark(X)) → LENGTH(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
isNat(x1)  =  isNat
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  U51(x1)
U52(x1, x2)  =  U52(x1)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  x1
length(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, U221] > zeros > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U412 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U511 > [U521, U531] > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U511 > [U521, U531] > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U612 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > and2 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U111 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U111 > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U422 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U312 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U312 > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U412 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > and2 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
nil > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]

Status:
mark1: [1]
active1: [1]
zeros: []
cons2: [1,2]
0: []
U111: [1]
tt: []
isNatList: []
U211: [1]
U221: [1]
isNat: []
U312: [2,1]
U412: [2,1]
U422: [1,2]
isNatIList1: [1]
U511: [1]
U521: [1]
U531: [1]
U612: [1,2]
and2: [1,2]
isNatIListKind: []
isNatKind: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(41) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(43) TRUE

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x2)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  x1
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  x2
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  U41(x2, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  U51(x2, x3)
U52(x1, x2)  =  U52(x2)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x2)
s(x1)  =  x1
length(x1)  =  x1
and(x1, x2)  =  x2
isNatIListKind(x1)  =  x1
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > zeros
active1 > [cons2, U512] > U521 > [S1, ok1, U321, U531]
active1 > [cons2, U512] > U611 > [S1, ok1, U321, U531]
active1 > 0 > tt > U422 > [S1, ok1, U321, U531]
active1 > 0 > tt > U521 > [S1, ok1, U321, U531]
active1 > isNat1 > U111 > [S1, ok1, U321, U531]
active1 > isNat1 > tt > U422 > [S1, ok1, U321, U531]
active1 > isNat1 > tt > U521 > [S1, ok1, U321, U531]
active1 > U412 > U422 > [S1, ok1, U321, U531]
proper1 > zeros
proper1 > [cons2, U512] > U521 > [S1, ok1, U321, U531]
proper1 > [cons2, U512] > U611 > [S1, ok1, U321, U531]
proper1 > 0 > tt > U422 > [S1, ok1, U321, U531]
proper1 > 0 > tt > U521 > [S1, ok1, U321, U531]
proper1 > isNat1 > U111 > [S1, ok1, U321, U531]
proper1 > isNat1 > tt > U422 > [S1, ok1, U321, U531]
proper1 > isNat1 > tt > U521 > [S1, ok1, U321, U531]
proper1 > U412 > U422 > [S1, ok1, U321, U531]
proper1 > nil > tt > U422 > [S1, ok1, U321, U531]
proper1 > nil > tt > U521 > [S1, ok1, U321, U531]

Status:
S1: [1]
ok1: [1]
active1: [1]
zeros: []
cons2: [1,2]
0: []
U111: [1]
tt: []
isNat1: [1]
U321: [1]
U412: [1,2]
U422: [2,1]
U512: [1,2]
U521: [1]
U531: [1]
U611: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
isNat(x1)  =  isNat
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  U51(x1)
U52(x1, x2)  =  U52(x1)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  x1
length(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, U221] > zeros > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U412 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U511 > [U521, U531] > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U511 > [U521, U531] > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U612 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > and2 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U111 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U111 > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U422 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U312 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U312 > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U412 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > and2 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
nil > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]

Status:
mark1: [1]
active1: [1]
zeros: []
cons2: [1,2]
0: []
U111: [1]
tt: []
isNatList: []
U211: [1]
U221: [1]
isNat: []
U312: [2,1]
U412: [2,1]
U422: [1,2]
isNatIList1: [1]
U511: [1]
U521: [1]
U531: [1]
U612: [1,2]
and2: [1,2]
isNatIListKind: []
isNatKind: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(48) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(50) TRUE

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(ok(X1), ok(X2)) → U611(X1, X2)
U611(mark(X1), X2) → U611(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(ok(X1), ok(X2)) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  U611(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  x1
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  x1
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1, x2)
U42(x1, x2)  =  x1
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  U51(x1, x2)
U52(x1, x2)  =  U52(x2)
U53(x1)  =  x1
U61(x1, x2)  =  x1
s(x1)  =  s(x1)
length(x1)  =  length(x1)
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  x1
isNatKind(x1)  =  isNatKind(x1)
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[0, tt, isNatIList1, U521, isNatKind1, nil, proper1] > [mark, zeros, cons2, s1, length1] > U61^11
[0, tt, isNatIList1, U521, isNatKind1, nil, proper1] > [mark, zeros, cons2, s1, length1] > U312 > ok1
[0, tt, isNatIList1, U521, isNatKind1, nil, proper1] > [mark, zeros, cons2, s1, length1] > U412 > isNat1 > U111 > ok1
[0, tt, isNatIList1, U521, isNatKind1, nil, proper1] > [mark, zeros, cons2, s1, length1] > U512 > ok1
[0, tt, isNatIList1, U521, isNatKind1, nil, proper1] > [mark, zeros, cons2, s1, length1] > and2 > ok1
[0, tt, isNatIList1, U521, isNatKind1, nil, proper1] > [mark, zeros, cons2, s1, length1] > top

Status:
U61^11: [1]
ok1: [1]
mark: []
zeros: []
cons2: [1,2]
0: []
U111: [1]
tt: []
isNat1: [1]
U312: [1,2]
U412: [2,1]
isNatIList1: [1]
U512: [1,2]
U521: [1]
s1: [1]
length1: [1]
and2: [1,2]
isNatKind1: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2) → U611(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X1), X2) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  U611(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNatList(x1)  =  isNatList(x1)
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  U22(x1)
isNat(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2)  =  U52(x1, x2)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  s(x1)
length(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, U221, U531] > zeros > cons2 > U612 > [U61^11, mark1, s1] > isNatKind
[active1, U221, U531] > zeros > cons2 > isNatIListKind > tt > isNatKind
[active1, U221, U531] > zeros > 0 > tt > isNatKind
[active1, U221, U531] > U112 > U121 > [U61^11, mark1, s1] > isNatKind
[active1, U221, U531] > U112 > U121 > tt > isNatKind
[active1, U221, U531] > U112 > isNatList1 > [U61^11, mark1, s1] > isNatKind
[active1, U221, U531] > U112 > isNatList1 > isNatIListKind > tt > isNatKind
[active1, U221, U531] > U212 > [U61^11, mark1, s1] > isNatKind
[active1, U221, U531] > U312 > isNatList1 > [U61^11, mark1, s1] > isNatKind
[active1, U221, U531] > U312 > isNatList1 > isNatIListKind > tt > isNatKind
[active1, U221, U531] > U413 > U422 > [U61^11, mark1, s1] > isNatKind
[active1, U221, U531] > U513 > [U61^11, mark1, s1] > isNatKind
[active1, U221, U531] > U522 > isNatList1 > [U61^11, mark1, s1] > isNatKind
[active1, U221, U531] > U522 > isNatList1 > isNatIListKind > tt > isNatKind
[active1, U221, U531] > and2 > [U61^11, mark1, s1] > isNatKind
nil > 0 > tt > isNatKind
top > isNatKind

Status:
U61^11: [1]
mark1: [1]
active1: [1]
zeros: []
cons2: [2,1]
0: []
U112: [1,2]
tt: []
U121: [1]
isNatList1: [1]
U212: [2,1]
U221: [1]
U312: [1,2]
U413: [2,1,3]
U422: [1,2]
U513: [1,3,2]
U522: [2,1]
U531: [1]
U612: [1,2]
s1: [1]
and2: [1,2]
isNatIListKind: []
isNatKind: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(55) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(57) TRUE

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U531(ok(X)) → U531(X)
U531(mark(X)) → U531(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U531(ok(X)) → U531(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U531(x1)  =  U531(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x2)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  x1
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  x2
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  U41(x2, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  U51(x2, x3)
U52(x1, x2)  =  U52(x2)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x2)
s(x1)  =  x1
length(x1)  =  x1
and(x1, x2)  =  x2
isNatIListKind(x1)  =  x1
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > zeros
active1 > [cons2, U512] > U521 > [U53^11, ok1, U321, U531]
active1 > [cons2, U512] > U611 > [U53^11, ok1, U321, U531]
active1 > 0 > tt > U422 > [U53^11, ok1, U321, U531]
active1 > 0 > tt > U521 > [U53^11, ok1, U321, U531]
active1 > isNat1 > U111 > [U53^11, ok1, U321, U531]
active1 > isNat1 > tt > U422 > [U53^11, ok1, U321, U531]
active1 > isNat1 > tt > U521 > [U53^11, ok1, U321, U531]
active1 > U412 > U422 > [U53^11, ok1, U321, U531]
proper1 > zeros
proper1 > [cons2, U512] > U521 > [U53^11, ok1, U321, U531]
proper1 > [cons2, U512] > U611 > [U53^11, ok1, U321, U531]
proper1 > 0 > tt > U422 > [U53^11, ok1, U321, U531]
proper1 > 0 > tt > U521 > [U53^11, ok1, U321, U531]
proper1 > isNat1 > U111 > [U53^11, ok1, U321, U531]
proper1 > isNat1 > tt > U422 > [U53^11, ok1, U321, U531]
proper1 > isNat1 > tt > U521 > [U53^11, ok1, U321, U531]
proper1 > U412 > U422 > [U53^11, ok1, U321, U531]
proper1 > nil > tt > U422 > [U53^11, ok1, U321, U531]
proper1 > nil > tt > U521 > [U53^11, ok1, U321, U531]

Status:
U53^11: [1]
ok1: [1]
active1: [1]
zeros: []
cons2: [1,2]
0: []
U111: [1]
tt: []
isNat1: [1]
U321: [1]
U412: [1,2]
U422: [2,1]
U512: [1,2]
U521: [1]
U531: [1]
U611: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U531(mark(X)) → U531(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U531(mark(X)) → U531(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U531(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
isNat(x1)  =  isNat
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  U51(x1)
U52(x1, x2)  =  U52(x1)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  x1
length(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, U221] > zeros > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U412 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U511 > [U521, U531] > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U511 > [U521, U531] > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U612 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > and2 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U111 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U111 > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U422 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U312 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U312 > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U412 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > and2 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
nil > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]

Status:
mark1: [1]
active1: [1]
zeros: []
cons2: [1,2]
0: []
U111: [1]
tt: []
isNatList: []
U211: [1]
U221: [1]
isNat: []
U312: [2,1]
U412: [2,1]
U422: [1,2]
isNatIList1: [1]
U511: [1]
U521: [1]
U531: [1]
U612: [1,2]
and2: [1,2]
isNatIListKind: []
isNatKind: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(62) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(64) TRUE

(65) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(ok(X1), ok(X2)) → U521(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(ok(X1), ok(X2)) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  U521(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  x2
0  =  0
U11(x1, x2)  =  x1
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  x1
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  x2
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U42(x1, x2)  =  x2
U43(x1)  =  U43(x1)
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x3)
U52(x1, x2)  =  x1
U53(x1)  =  x1
U61(x1, x2)  =  x2
s(x1)  =  s(x1)
length(x1)  =  x1
and(x1, x2)  =  x1
isNatIListKind(x1)  =  x1
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
U52^11 > [ok1, mark, tt, U431, nil]
0 > [ok1, mark, tt, U431, nil]
top > [active1, s1, proper1] > zeros > [ok1, mark, tt, U431, nil]
top > [active1, s1, proper1] > [isNat1, U512] > [ok1, mark, tt, U431, nil]
top > [active1, s1, proper1] > U413 > [ok1, mark, tt, U431, nil]

Status:
U52^11: [1]
ok1: [1]
mark: []
active1: [1]
zeros: []
0: []
tt: []
isNat1: [1]
U413: [2,1,3]
U431: [1]
U512: [1,2]
s1: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(mark(X1), X2) → U521(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(mark(X1), X2) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  U521(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList
U21(x1, x2)  =  x1
U22(x1)  =  x1
isNat(x1)  =  isNat
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1)
U42(x1, x2)  =  x1
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList
U51(x1, x2, x3)  =  x1
U52(x1, x2)  =  U52(x1)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  x1
length(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
U52^12 > isNat
[active1, U531] > zeros > cons2 > [mark1, isNatList, isNatKind] > isNat
[active1, U531] > zeros > 0 > [tt, isNatIListKind] > [mark1, isNatList, isNatKind] > isNat
[active1, U531] > U111 > [mark1, isNatList, isNatKind] > isNat
[active1, U531] > isNatIList > [tt, isNatIListKind] > [mark1, isNatList, isNatKind] > isNat
[active1, U531] > isNatIList > U411 > [mark1, isNatList, isNatKind] > isNat
[active1, U531] > isNatIList > and2 > [mark1, isNatList, isNatKind] > isNat
[active1, U531] > U521 > [mark1, isNatList, isNatKind] > isNat
[active1, U531] > U612 > [mark1, isNatList, isNatKind] > isNat
nil > 0 > [tt, isNatIListKind] > [mark1, isNatList, isNatKind] > isNat
top > isNat

Status:
U52^12: [1,2]
mark1: [1]
active1: [1]
zeros: []
cons2: [2,1]
0: []
U111: [1]
tt: []
isNatList: []
isNat: []
U411: [1]
isNatIList: []
U521: [1]
U531: [1]
U612: [2,1]
and2: [2,1]
isNatIListKind: []
isNatKind: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(69) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(71) TRUE

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2, X3) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  x1
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList
U21(x1, x2)  =  x1
U22(x1)  =  U22(x1)
isNat(x1)  =  isNat
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1)
U42(x1, x2)  =  x1
U43(x1)  =  U43(x1)
isNatIList(x1)  =  isNatIList
U51(x1, x2, x3)  =  x1
U52(x1, x2)  =  x1
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  x1
length(x1)  =  length(x1)
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, isNat, U411] > [0, tt, isNatIList, length1] > [cons2, U612, and2] > mark1 > top > [isNatList, isNatIListKind]
[active1, isNat, U411] > [0, tt, isNatIList, length1] > U221 > mark1 > top > [isNatList, isNatIListKind]
[active1, isNat, U411] > [0, tt, isNatIList, length1] > U431 > mark1 > top > [isNatList, isNatIListKind]
[active1, isNat, U411] > [0, tt, isNatIList, length1] > U531 > mark1 > top > [isNatList, isNatIListKind]
[active1, isNat, U411] > [0, tt, isNatIList, length1] > isNatKind > mark1 > top > [isNatList, isNatIListKind]
zeros > [0, tt, isNatIList, length1] > [cons2, U612, and2] > mark1 > top > [isNatList, isNatIListKind]
zeros > [0, tt, isNatIList, length1] > U221 > mark1 > top > [isNatList, isNatIListKind]
zeros > [0, tt, isNatIList, length1] > U431 > mark1 > top > [isNatList, isNatIListKind]
zeros > [0, tt, isNatIList, length1] > U531 > mark1 > top > [isNatList, isNatIListKind]
zeros > [0, tt, isNatIList, length1] > isNatKind > mark1 > top > [isNatList, isNatIListKind]
nil > mark1 > top > [isNatList, isNatIListKind]

Status:
mark1: [1]
active1: [1]
zeros: []
cons2: [1,2]
0: []
tt: []
isNatList: []
U221: [1]
isNat: []
U411: [1]
U431: [1]
isNatIList: []
U531: [1]
U612: [1,2]
length1: [1]
and2: [1,2]
isNatIListKind: []
isNatKind: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(74) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  x3
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x2
0  =  0
U11(x1, x2)  =  x1
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  U22(x1)
isNat(x1)  =  x1
U31(x1, x2)  =  U31(x1)
U32(x1)  =  x1
U41(x1, x2, x3)  =  x3
U42(x1, x2)  =  U42(x1)
U43(x1)  =  U43(x1)
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  x3
U52(x1, x2)  =  x2
U53(x1)  =  x1
U61(x1, x2)  =  x2
s(x1)  =  x1
length(x1)  =  length(x1)
and(x1, x2)  =  x2
isNatIListKind(x1)  =  x1
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > tt > U221 > [ok1, U421, U431, length1] > [mark, nil, top]
active1 > [U311, proper1] > U221 > [ok1, U421, U431, length1] > [mark, nil, top]
zeros > 0 > tt > U221 > [ok1, U421, U431, length1] > [mark, nil, top]

Status:
ok1: [1]
active1: [1]
zeros: []
mark: []
0: []
tt: []
U221: [1]
U311: [1]
U421: [1]
U431: [1]
length1: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(76) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(77) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(78) TRUE

(79) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U431(ok(X)) → U431(X)
U431(mark(X)) → U431(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U431(ok(X)) → U431(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U431(x1)  =  U431(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x2)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  x1
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  x2
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  U41(x2, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  U51(x2, x3)
U52(x1, x2)  =  U52(x2)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x2)
s(x1)  =  x1
length(x1)  =  x1
and(x1, x2)  =  x2
isNatIListKind(x1)  =  x1
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > zeros
active1 > [cons2, U512] > U521 > [U43^11, ok1, U321, U531]
active1 > [cons2, U512] > U611 > [U43^11, ok1, U321, U531]
active1 > 0 > tt > U422 > [U43^11, ok1, U321, U531]
active1 > 0 > tt > U521 > [U43^11, ok1, U321, U531]
active1 > isNat1 > U111 > [U43^11, ok1, U321, U531]
active1 > isNat1 > tt > U422 > [U43^11, ok1, U321, U531]
active1 > isNat1 > tt > U521 > [U43^11, ok1, U321, U531]
active1 > U412 > U422 > [U43^11, ok1, U321, U531]
proper1 > zeros
proper1 > [cons2, U512] > U521 > [U43^11, ok1, U321, U531]
proper1 > [cons2, U512] > U611 > [U43^11, ok1, U321, U531]
proper1 > 0 > tt > U422 > [U43^11, ok1, U321, U531]
proper1 > 0 > tt > U521 > [U43^11, ok1, U321, U531]
proper1 > isNat1 > U111 > [U43^11, ok1, U321, U531]
proper1 > isNat1 > tt > U422 > [U43^11, ok1, U321, U531]
proper1 > isNat1 > tt > U521 > [U43^11, ok1, U321, U531]
proper1 > U412 > U422 > [U43^11, ok1, U321, U531]
proper1 > nil > tt > U422 > [U43^11, ok1, U321, U531]
proper1 > nil > tt > U521 > [U43^11, ok1, U321, U531]

Status:
U43^11: [1]
ok1: [1]
active1: [1]
zeros: []
cons2: [1,2]
0: []
U111: [1]
tt: []
isNat1: [1]
U321: [1]
U412: [1,2]
U422: [2,1]
U512: [1,2]
U521: [1]
U531: [1]
U611: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(81) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U431(mark(X)) → U431(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(82) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U431(mark(X)) → U431(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U431(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
isNat(x1)  =  isNat
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  U51(x1)
U52(x1, x2)  =  U52(x1)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  x1
length(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, U221] > zeros > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U412 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U511 > [U521, U531] > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U511 > [U521, U531] > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U612 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > and2 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U111 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U111 > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U422 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U312 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U312 > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U412 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > and2 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
nil > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]

Status:
mark1: [1]
active1: [1]
zeros: []
cons2: [1,2]
0: []
U111: [1]
tt: []
isNatList: []
U211: [1]
U221: [1]
isNat: []
U312: [2,1]
U412: [2,1]
U422: [1,2]
isNatIList1: [1]
U511: [1]
U521: [1]
U531: [1]
U612: [1,2]
and2: [1,2]
isNatIListKind: []
isNatKind: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(83) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(85) TRUE

(86) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(ok(X1), ok(X2)) → U421(X1, X2)
U421(mark(X1), X2) → U421(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(87) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U421(ok(X1), ok(X2)) → U421(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U421(x1, x2)  =  U421(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  x1
zeros  =  zeros
cons(x1, x2)  =  x1
0  =  0
U11(x1, x2)  =  x1
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  x1
isNat(x1)  =  x1
U31(x1, x2)  =  U31(x2)
U32(x1)  =  x1
U41(x1, x2, x3)  =  x3
U42(x1, x2)  =  U42(x1)
U43(x1)  =  U43(x1)
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  x2
U52(x1, x2)  =  U52(x1, x2)
U53(x1)  =  x1
U61(x1, x2)  =  x2
s(x1)  =  x1
length(x1)  =  x1
and(x1, x2)  =  x2
isNatIListKind(x1)  =  isNatIListKind(x1)
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
U42^11 > mark
[U522, proper1] > [ok1, U311, U421, U431, isNatIList1, isNatIListKind1] > [zeros, 0, tt] > mark
[U522, proper1] > [ok1, U311, U421, U431, isNatIList1, isNatIListKind1] > top > mark
[U522, proper1] > nil > [zeros, 0, tt] > mark

Status:
U42^11: [1]
ok1: [1]
mark: []
zeros: []
0: []
tt: []
U311: [1]
U421: [1]
U431: [1]
isNatIList1: [1]
U522: [1,2]
isNatIListKind1: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(88) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(mark(X1), X2) → U421(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(89) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U421(mark(X1), X2) → U421(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U421(x1, x2)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  x1
tt  =  tt
U12(x1)  =  U12(x1)
isNatList(x1)  =  isNatList
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
isNat(x1)  =  isNat
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  x1
U52(x1, x2)  =  x1
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  s(x1)
length(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, cons2, isNatIListKind] > U121 > [zeros, tt, isNatList, nil] > 0 > [U312, ok] > [mark1, U531, s1, top]
[active1, cons2, isNatIListKind] > U121 > [zeros, tt, isNatList, nil] > U221 > [U312, ok] > [mark1, U531, s1, top]
[active1, cons2, isNatIListKind] > U121 > [zeros, tt, isNatList, nil] > isNatKind > [U312, ok] > [mark1, U531, s1, top]
[active1, cons2, isNatIListKind] > U321 > [zeros, tt, isNatList, nil] > 0 > [U312, ok] > [mark1, U531, s1, top]
[active1, cons2, isNatIListKind] > U321 > [zeros, tt, isNatList, nil] > U221 > [U312, ok] > [mark1, U531, s1, top]
[active1, cons2, isNatIListKind] > U321 > [zeros, tt, isNatList, nil] > isNatKind > [U312, ok] > [mark1, U531, s1, top]
[active1, cons2, isNatIListKind] > U413 > [U211, isNat] > [zeros, tt, isNatList, nil] > 0 > [U312, ok] > [mark1, U531, s1, top]
[active1, cons2, isNatIListKind] > U413 > [U211, isNat] > [zeros, tt, isNatList, nil] > U221 > [U312, ok] > [mark1, U531, s1, top]
[active1, cons2, isNatIListKind] > U413 > [U211, isNat] > [zeros, tt, isNatList, nil] > isNatKind > [U312, ok] > [mark1, U531, s1, top]
[active1, cons2, isNatIListKind] > U413 > U422 > [U312, ok] > [mark1, U531, s1, top]
[active1, cons2, isNatIListKind] > U612 > [U312, ok] > [mark1, U531, s1, top]
[active1, cons2, isNatIListKind] > and2 > [U312, ok] > [mark1, U531, s1, top]

Status:
mark1: [1]
active1: [1]
zeros: []
cons2: [1,2]
0: []
tt: []
U121: [1]
isNatList: []
U211: [1]
U221: [1]
isNat: []
U312: [1,2]
U321: [1]
U413: [2,3,1]
U422: [1,2]
U531: [1]
U612: [1,2]
s1: [1]
and2: [1,2]
isNatIListKind: []
isNatKind: []
nil: []
ok: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(90) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(91) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(92) TRUE

(93) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2), ok(X3)) → U411(X1, X2, X3)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(94) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X1), X2, X3) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  x1
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList
U21(x1, x2)  =  x1
U22(x1)  =  U22(x1)
isNat(x1)  =  isNat
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1)
U42(x1, x2)  =  x1
U43(x1)  =  U43(x1)
isNatIList(x1)  =  isNatIList
U51(x1, x2, x3)  =  x1
U52(x1, x2)  =  x1
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  x1
length(x1)  =  length(x1)
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, isNat, U411] > [0, tt, isNatIList, length1] > [cons2, U612, and2] > mark1 > top > [isNatList, isNatIListKind]
[active1, isNat, U411] > [0, tt, isNatIList, length1] > U221 > mark1 > top > [isNatList, isNatIListKind]
[active1, isNat, U411] > [0, tt, isNatIList, length1] > U431 > mark1 > top > [isNatList, isNatIListKind]
[active1, isNat, U411] > [0, tt, isNatIList, length1] > U531 > mark1 > top > [isNatList, isNatIListKind]
[active1, isNat, U411] > [0, tt, isNatIList, length1] > isNatKind > mark1 > top > [isNatList, isNatIListKind]
zeros > [0, tt, isNatIList, length1] > [cons2, U612, and2] > mark1 > top > [isNatList, isNatIListKind]
zeros > [0, tt, isNatIList, length1] > U221 > mark1 > top > [isNatList, isNatIListKind]
zeros > [0, tt, isNatIList, length1] > U431 > mark1 > top > [isNatList, isNatIListKind]
zeros > [0, tt, isNatIList, length1] > U531 > mark1 > top > [isNatList, isNatIListKind]
zeros > [0, tt, isNatIList, length1] > isNatKind > mark1 > top > [isNatList, isNatIListKind]
nil > mark1 > top > [isNatList, isNatIListKind]

Status:
mark1: [1]
active1: [1]
zeros: []
cons2: [1,2]
0: []
tt: []
isNatList: []
U221: [1]
isNat: []
U411: [1]
U431: [1]
isNatIList: []
U531: [1]
U612: [1,2]
length1: [1]
and2: [1,2]
isNatIListKind: []
isNatKind: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(95) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2), ok(X3)) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(96) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(ok(X1), ok(X2), ok(X3)) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  x3
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x2
0  =  0
U11(x1, x2)  =  x1
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  U22(x1)
isNat(x1)  =  x1
U31(x1, x2)  =  U31(x1)
U32(x1)  =  x1
U41(x1, x2, x3)  =  x3
U42(x1, x2)  =  U42(x1)
U43(x1)  =  U43(x1)
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  x3
U52(x1, x2)  =  x2
U53(x1)  =  x1
U61(x1, x2)  =  x2
s(x1)  =  x1
length(x1)  =  length(x1)
and(x1, x2)  =  x2
isNatIListKind(x1)  =  x1
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > tt > U221 > [ok1, U421, U431, length1] > [mark, nil, top]
active1 > [U311, proper1] > U221 > [ok1, U421, U431, length1] > [mark, nil, top]
zeros > 0 > tt > U221 > [ok1, U421, U431, length1] > [mark, nil, top]

Status:
ok1: [1]
active1: [1]
zeros: []
mark: []
0: []
tt: []
U221: [1]
U311: [1]
U421: [1]
U431: [1]
length1: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(97) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(99) TRUE

(100) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(ok(X)) → U321(X)
U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(101) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(ok(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1)  =  U321(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x2)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  x1
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  x2
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  U41(x2, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  U51(x2, x3)
U52(x1, x2)  =  U52(x2)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x2)
s(x1)  =  x1
length(x1)  =  x1
and(x1, x2)  =  x2
isNatIListKind(x1)  =  x1
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > zeros
active1 > [cons2, U512] > U521 > [U32^11, ok1, U321, U531]
active1 > [cons2, U512] > U611 > [U32^11, ok1, U321, U531]
active1 > 0 > tt > U422 > [U32^11, ok1, U321, U531]
active1 > 0 > tt > U521 > [U32^11, ok1, U321, U531]
active1 > isNat1 > U111 > [U32^11, ok1, U321, U531]
active1 > isNat1 > tt > U422 > [U32^11, ok1, U321, U531]
active1 > isNat1 > tt > U521 > [U32^11, ok1, U321, U531]
active1 > U412 > U422 > [U32^11, ok1, U321, U531]
proper1 > zeros
proper1 > [cons2, U512] > U521 > [U32^11, ok1, U321, U531]
proper1 > [cons2, U512] > U611 > [U32^11, ok1, U321, U531]
proper1 > 0 > tt > U422 > [U32^11, ok1, U321, U531]
proper1 > 0 > tt > U521 > [U32^11, ok1, U321, U531]
proper1 > isNat1 > U111 > [U32^11, ok1, U321, U531]
proper1 > isNat1 > tt > U422 > [U32^11, ok1, U321, U531]
proper1 > isNat1 > tt > U521 > [U32^11, ok1, U321, U531]
proper1 > U412 > U422 > [U32^11, ok1, U321, U531]
proper1 > nil > tt > U422 > [U32^11, ok1, U321, U531]
proper1 > nil > tt > U521 > [U32^11, ok1, U321, U531]

Status:
U32^11: [1]
ok1: [1]
active1: [1]
zeros: []
cons2: [1,2]
0: []
U111: [1]
tt: []
isNat1: [1]
U321: [1]
U412: [1,2]
U422: [2,1]
U512: [1,2]
U521: [1]
U531: [1]
U611: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(102) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(mark(X)) → U321(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(103) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(mark(X)) → U321(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
isNat(x1)  =  isNat
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  U51(x1)
U52(x1, x2)  =  U52(x1)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  x1
length(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, U221] > zeros > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U412 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U511 > [U521, U531] > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U511 > [U521, U531] > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U612 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > and2 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U111 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U111 > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U422 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U312 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U312 > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U412 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > and2 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
nil > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]

Status:
mark1: [1]
active1: [1]
zeros: []
cons2: [1,2]
0: []
U111: [1]
tt: []
isNatList: []
U211: [1]
U221: [1]
isNat: []
U312: [2,1]
U412: [2,1]
U422: [1,2]
isNatIList1: [1]
U511: [1]
U521: [1]
U531: [1]
U612: [1,2]
and2: [1,2]
isNatIListKind: []
isNatKind: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(104) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(105) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(106) TRUE

(107) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X1), ok(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(108) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  x1
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList
U21(x1, x2)  =  x1
U22(x1)  =  x1
isNat(x1)  =  isNat
U31(x1, x2)  =  x1
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  U41(x1, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  U43(x1)
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  x1
U52(x1, x2)  =  U52(x1)
U53(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  x1
length(x1)  =  length(x1)
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, zeros, 0, isNatList, U422, isNatKind] > [cons2, isNatIListKind] > U412 > isNat > [mark1, U321, length1] > tt
[active1, zeros, 0, isNatList, U422, isNatKind] > [cons2, isNatIListKind] > U612 > [mark1, U321, length1] > tt
[active1, zeros, 0, isNatList, U422, isNatKind] > [cons2, isNatIListKind] > and2 > [mark1, U321, length1] > tt
[active1, zeros, 0, isNatList, U422, isNatKind] > U431 > [mark1, U321, length1] > tt
[active1, zeros, 0, isNatList, U422, isNatKind] > U521 > [mark1, U321, length1] > tt
nil > [mark1, U321, length1] > tt

Status:
mark1: [1]
active1: [1]
zeros: []
cons2: [2,1]
0: []
tt: []
isNatList: []
isNat: []
U321: [1]
U412: [1,2]
U422: [1,2]
U431: [1]
U521: [1]
U612: [2,1]
length1: [1]
and2: [2,1]
isNatIListKind: []
isNatKind: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(109) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X1), ok(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(110) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(ok(X1), ok(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x1
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList(x1)
U21(x1, x2)  =  U21(x2)
U22(x1)  =  x1
isNat(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x3)
U42(x1, x2)  =  x1
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  x1
U52(x1, x2)  =  x1
U53(x1)  =  x1
U61(x1, x2)  =  x1
s(x1)  =  s(x1)
length(x1)  =  length(x1)
and(x1, x2)  =  and(x2)
isNatIListKind(x1)  =  isNatIListKind(x1)
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U211, isNatIList1, proper1] > U112 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > U411 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > s1 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > length1 > [zeros, 0] > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > length1 > and1 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > length1 > isNatIListKind1 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > nil > [zeros, 0] > [mark, tt, isNatList1] > ok1

Status:
U31^11: [1]
ok1: [1]
zeros: []
mark: []
0: []
U112: [1,2]
tt: []
isNatList1: [1]
U211: [1]
U411: [1]
isNatIList1: [1]
s1: [1]
length1: [1]
and1: [1]
isNatIListKind1: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(111) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(112) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(113) TRUE

(114) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(ok(X)) → U221(X)
U221(mark(X)) → U221(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(115) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(ok(X)) → U221(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1)  =  U221(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x2)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  x1
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  x2
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  U41(x2, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  U51(x2, x3)
U52(x1, x2)  =  U52(x2)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x2)
s(x1)  =  x1
length(x1)  =  x1
and(x1, x2)  =  x2
isNatIListKind(x1)  =  x1
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > zeros
active1 > [cons2, U512] > U521 > [U22^11, ok1, U321, U531]
active1 > [cons2, U512] > U611 > [U22^11, ok1, U321, U531]
active1 > 0 > tt > U422 > [U22^11, ok1, U321, U531]
active1 > 0 > tt > U521 > [U22^11, ok1, U321, U531]
active1 > isNat1 > U111 > [U22^11, ok1, U321, U531]
active1 > isNat1 > tt > U422 > [U22^11, ok1, U321, U531]
active1 > isNat1 > tt > U521 > [U22^11, ok1, U321, U531]
active1 > U412 > U422 > [U22^11, ok1, U321, U531]
proper1 > zeros
proper1 > [cons2, U512] > U521 > [U22^11, ok1, U321, U531]
proper1 > [cons2, U512] > U611 > [U22^11, ok1, U321, U531]
proper1 > 0 > tt > U422 > [U22^11, ok1, U321, U531]
proper1 > 0 > tt > U521 > [U22^11, ok1, U321, U531]
proper1 > isNat1 > U111 > [U22^11, ok1, U321, U531]
proper1 > isNat1 > tt > U422 > [U22^11, ok1, U321, U531]
proper1 > isNat1 > tt > U521 > [U22^11, ok1, U321, U531]
proper1 > U412 > U422 > [U22^11, ok1, U321, U531]
proper1 > nil > tt > U422 > [U22^11, ok1, U321, U531]
proper1 > nil > tt > U521 > [U22^11, ok1, U321, U531]

Status:
U22^11: [1]
ok1: [1]
active1: [1]
zeros: []
cons2: [1,2]
0: []
U111: [1]
tt: []
isNat1: [1]
U321: [1]
U412: [1,2]
U422: [2,1]
U512: [1,2]
U521: [1]
U531: [1]
U611: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(116) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(mark(X)) → U221(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(117) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X)) → U221(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
isNat(x1)  =  isNat
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  U51(x1)
U52(x1, x2)  =  U52(x1)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  x1
length(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, U221] > zeros > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U412 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U511 > [U521, U531] > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U511 > [U521, U531] > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U612 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > and2 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U111 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U111 > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U422 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U312 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U312 > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U412 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > and2 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
nil > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]

Status:
mark1: [1]
active1: [1]
zeros: []
cons2: [1,2]
0: []
U111: [1]
tt: []
isNatList: []
U211: [1]
U221: [1]
isNat: []
U312: [2,1]
U412: [2,1]
U422: [1,2]
isNatIList1: [1]
U511: [1]
U521: [1]
U531: [1]
U612: [1,2]
and2: [1,2]
isNatIListKind: []
isNatKind: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(118) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(119) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(120) TRUE

(121) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(122) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(ok(X1), ok(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  x1
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1)  =  x1
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1, x2)
U42(x1, x2)  =  x1
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  U51(x1, x2)
U52(x1, x2)  =  U52(x2)
U53(x1)  =  x1
U61(x1, x2)  =  x1
s(x1)  =  s(x1)
length(x1)  =  length(x1)
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  x1
isNatKind(x1)  =  isNatKind(x1)
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[0, tt, isNatIList1, U521, isNatKind1, nil, proper1] > [mark, zeros, cons2, s1, length1] > U21^11
[0, tt, isNatIList1, U521, isNatKind1, nil, proper1] > [mark, zeros, cons2, s1, length1] > U312 > ok1
[0, tt, isNatIList1, U521, isNatKind1, nil, proper1] > [mark, zeros, cons2, s1, length1] > U412 > isNat1 > U111 > ok1
[0, tt, isNatIList1, U521, isNatKind1, nil, proper1] > [mark, zeros, cons2, s1, length1] > U512 > ok1
[0, tt, isNatIList1, U521, isNatKind1, nil, proper1] > [mark, zeros, cons2, s1, length1] > and2 > ok1
[0, tt, isNatIList1, U521, isNatKind1, nil, proper1] > [mark, zeros, cons2, s1, length1] > top

Status:
U21^11: [1]
ok1: [1]
mark: []
zeros: []
cons2: [1,2]
0: []
U111: [1]
tt: []
isNat1: [1]
U312: [1,2]
U412: [2,1]
isNatIList1: [1]
U512: [1,2]
U521: [1]
s1: [1]
length1: [1]
and2: [1,2]
isNatKind1: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(123) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(124) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNatList(x1)  =  isNatList(x1)
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  U22(x1)
isNat(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2)  =  U52(x1, x2)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  s(x1)
length(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, U221, U531] > zeros > cons2 > U612 > [U21^11, mark1, s1] > isNatKind
[active1, U221, U531] > zeros > cons2 > isNatIListKind > tt > isNatKind
[active1, U221, U531] > zeros > 0 > tt > isNatKind
[active1, U221, U531] > U112 > U121 > [U21^11, mark1, s1] > isNatKind
[active1, U221, U531] > U112 > U121 > tt > isNatKind
[active1, U221, U531] > U112 > isNatList1 > [U21^11, mark1, s1] > isNatKind
[active1, U221, U531] > U112 > isNatList1 > isNatIListKind > tt > isNatKind
[active1, U221, U531] > U212 > [U21^11, mark1, s1] > isNatKind
[active1, U221, U531] > U312 > isNatList1 > [U21^11, mark1, s1] > isNatKind
[active1, U221, U531] > U312 > isNatList1 > isNatIListKind > tt > isNatKind
[active1, U221, U531] > U413 > U422 > [U21^11, mark1, s1] > isNatKind
[active1, U221, U531] > U513 > [U21^11, mark1, s1] > isNatKind
[active1, U221, U531] > U522 > isNatList1 > [U21^11, mark1, s1] > isNatKind
[active1, U221, U531] > U522 > isNatList1 > isNatIListKind > tt > isNatKind
[active1, U221, U531] > and2 > [U21^11, mark1, s1] > isNatKind
nil > 0 > tt > isNatKind
top > isNatKind

Status:
U21^11: [1]
mark1: [1]
active1: [1]
zeros: []
cons2: [2,1]
0: []
U112: [1,2]
tt: []
U121: [1]
isNatList1: [1]
U212: [2,1]
U221: [1]
U312: [1,2]
U413: [2,1,3]
U422: [1,2]
U513: [1,3,2]
U522: [2,1]
U531: [1]
U612: [1,2]
s1: [1]
and2: [1,2]
isNatIListKind: []
isNatKind: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(125) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(126) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(127) TRUE

(128) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(ok(X)) → U121(X)
U121(mark(X)) → U121(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(129) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(ok(X)) → U121(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1)  =  U121(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x2)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  x1
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  x2
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  U41(x2, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  U51(x2, x3)
U52(x1, x2)  =  U52(x2)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x2)
s(x1)  =  x1
length(x1)  =  x1
and(x1, x2)  =  x2
isNatIListKind(x1)  =  x1
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > zeros
active1 > [cons2, U512] > U521 > [U12^11, ok1, U321, U531]
active1 > [cons2, U512] > U611 > [U12^11, ok1, U321, U531]
active1 > 0 > tt > U422 > [U12^11, ok1, U321, U531]
active1 > 0 > tt > U521 > [U12^11, ok1, U321, U531]
active1 > isNat1 > U111 > [U12^11, ok1, U321, U531]
active1 > isNat1 > tt > U422 > [U12^11, ok1, U321, U531]
active1 > isNat1 > tt > U521 > [U12^11, ok1, U321, U531]
active1 > U412 > U422 > [U12^11, ok1, U321, U531]
proper1 > zeros
proper1 > [cons2, U512] > U521 > [U12^11, ok1, U321, U531]
proper1 > [cons2, U512] > U611 > [U12^11, ok1, U321, U531]
proper1 > 0 > tt > U422 > [U12^11, ok1, U321, U531]
proper1 > 0 > tt > U521 > [U12^11, ok1, U321, U531]
proper1 > isNat1 > U111 > [U12^11, ok1, U321, U531]
proper1 > isNat1 > tt > U422 > [U12^11, ok1, U321, U531]
proper1 > isNat1 > tt > U521 > [U12^11, ok1, U321, U531]
proper1 > U412 > U422 > [U12^11, ok1, U321, U531]
proper1 > nil > tt > U422 > [U12^11, ok1, U321, U531]
proper1 > nil > tt > U521 > [U12^11, ok1, U321, U531]

Status:
U12^11: [1]
ok1: [1]
active1: [1]
zeros: []
cons2: [1,2]
0: []
U111: [1]
tt: []
isNat1: [1]
U321: [1]
U412: [1,2]
U422: [2,1]
U512: [1,2]
U521: [1]
U531: [1]
U611: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(130) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X)) → U121(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(131) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X)) → U121(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList
U21(x1, x2)  =  U21(x1)
U22(x1)  =  U22(x1)
isNat(x1)  =  isNat
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  U51(x1)
U52(x1, x2)  =  U52(x1)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  x1
length(x1)  =  x1
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, U221] > zeros > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U412 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U511 > [U521, U531] > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U511 > [U521, U531] > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > U612 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > cons2 > and2 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U111 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U111 > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > U422 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U312 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U312 > isNatList > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > U412 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
[active1, U221] > isNatIList1 > and2 > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]
nil > [mark1, U211] > isNat > [isNatIListKind, isNatKind] > [0, tt]

Status:
mark1: [1]
active1: [1]
zeros: []
cons2: [1,2]
0: []
U111: [1]
tt: []
isNatList: []
U211: [1]
U221: [1]
isNat: []
U312: [2,1]
U412: [2,1]
U422: [1,2]
isNatIList1: [1]
U511: [1]
U521: [1]
U531: [1]
U612: [1,2]
and2: [1,2]
isNatIListKind: []
isNatKind: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(132) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(133) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(134) TRUE

(135) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2)) → U111(X1, X2)
U111(mark(X1), X2) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(136) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  x1
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList
U21(x1, x2)  =  x1
U22(x1)  =  x1
isNat(x1)  =  isNat
U31(x1, x2)  =  x1
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  U41(x1, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  U43(x1)
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  x1
U52(x1, x2)  =  U52(x1)
U53(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  x1
length(x1)  =  length(x1)
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, zeros, 0, isNatList, U422, isNatKind] > [cons2, isNatIListKind] > U412 > isNat > [mark1, U321, length1] > tt
[active1, zeros, 0, isNatList, U422, isNatKind] > [cons2, isNatIListKind] > U612 > [mark1, U321, length1] > tt
[active1, zeros, 0, isNatList, U422, isNatKind] > [cons2, isNatIListKind] > and2 > [mark1, U321, length1] > tt
[active1, zeros, 0, isNatList, U422, isNatKind] > U431 > [mark1, U321, length1] > tt
[active1, zeros, 0, isNatList, U422, isNatKind] > U521 > [mark1, U321, length1] > tt
nil > [mark1, U321, length1] > tt

Status:
mark1: [1]
active1: [1]
zeros: []
cons2: [2,1]
0: []
tt: []
isNatList: []
isNat: []
U321: [1]
U412: [1,2]
U422: [1,2]
U431: [1]
U521: [1]
U612: [2,1]
length1: [1]
and2: [2,1]
isNatIListKind: []
isNatKind: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(137) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2)) → U111(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(138) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X1), ok(X2)) → U111(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2)  =  U111(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x1
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList(x1)
U21(x1, x2)  =  U21(x2)
U22(x1)  =  x1
isNat(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x3)
U42(x1, x2)  =  x1
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  x1
U52(x1, x2)  =  x1
U53(x1)  =  x1
U61(x1, x2)  =  x1
s(x1)  =  s(x1)
length(x1)  =  length(x1)
and(x1, x2)  =  and(x2)
isNatIListKind(x1)  =  isNatIListKind(x1)
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U211, isNatIList1, proper1] > U112 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > U411 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > s1 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > length1 > [zeros, 0] > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > length1 > and1 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > length1 > isNatIListKind1 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > nil > [zeros, 0] > [mark, tt, isNatList1] > ok1

Status:
U11^11: [1]
ok1: [1]
zeros: []
mark: []
0: []
U112: [1,2]
tt: []
isNatList1: [1]
U211: [1]
U411: [1]
isNatIList1: [1]
s1: [1]
length1: [1]
and1: [1]
isNatIListKind1: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(139) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(140) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(141) TRUE

(142) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(143) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  x1
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList
U21(x1, x2)  =  x1
U22(x1)  =  x1
isNat(x1)  =  isNat
U31(x1, x2)  =  x1
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  U41(x1, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  U43(x1)
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  x1
U52(x1, x2)  =  U52(x1)
U53(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  x1
length(x1)  =  length(x1)
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, zeros, 0, isNatList, U422, isNatKind] > [cons2, isNatIListKind] > U412 > isNat > [mark1, U321, length1] > tt
[active1, zeros, 0, isNatList, U422, isNatKind] > [cons2, isNatIListKind] > U612 > [mark1, U321, length1] > tt
[active1, zeros, 0, isNatList, U422, isNatKind] > [cons2, isNatIListKind] > and2 > [mark1, U321, length1] > tt
[active1, zeros, 0, isNatList, U422, isNatKind] > U431 > [mark1, U321, length1] > tt
[active1, zeros, 0, isNatList, U422, isNatKind] > U521 > [mark1, U321, length1] > tt
nil > [mark1, U321, length1] > tt

Status:
mark1: [1]
active1: [1]
zeros: []
cons2: [2,1]
0: []
tt: []
isNatList: []
isNat: []
U321: [1]
U412: [1,2]
U422: [1,2]
U431: [1]
U521: [1]
U612: [2,1]
length1: [1]
and2: [2,1]
isNatIListKind: []
isNatKind: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(144) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(145) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x1
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList(x1)
U21(x1, x2)  =  U21(x2)
U22(x1)  =  x1
isNat(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x3)
U42(x1, x2)  =  x1
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  x1
U52(x1, x2)  =  x1
U53(x1)  =  x1
U61(x1, x2)  =  x1
s(x1)  =  s(x1)
length(x1)  =  length(x1)
and(x1, x2)  =  and(x2)
isNatIListKind(x1)  =  isNatIListKind(x1)
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U211, isNatIList1, proper1] > U112 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > U411 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > s1 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > length1 > [zeros, 0] > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > length1 > and1 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > length1 > isNatIListKind1 > [mark, tt, isNatList1] > ok1
[U211, isNatIList1, proper1] > nil > [zeros, 0] > [mark, tt, isNatList1] > ok1

Status:
CONS1: [1]
ok1: [1]
zeros: []
mark: []
0: []
U112: [1,2]
tt: []
isNatList1: [1]
U211: [1]
U411: [1]
isNatIList1: [1]
s1: [1]
length1: [1]
and1: [1]
isNatIListKind1: [1]
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(146) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(147) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(148) TRUE

(149) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(U12(X)) → PROPER(X)
PROPER(isNatList(X)) → PROPER(X)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X)) → PROPER(X)
PROPER(isNat(X)) → PROPER(X)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U32(X)) → PROPER(X)
PROPER(U41(X1, X2, X3)) → PROPER(X1)
PROPER(U41(X1, X2, X3)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X3)
PROPER(U42(X1, X2)) → PROPER(X1)
PROPER(U42(X1, X2)) → PROPER(X2)
PROPER(U43(X)) → PROPER(X)
PROPER(isNatIList(X)) → PROPER(X)
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(U52(X1, X2)) → PROPER(X2)
PROPER(U53(X)) → PROPER(X)
PROPER(U61(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(s(X)) → PROPER(X)
PROPER(length(X)) → PROPER(X)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatIListKind(X)) → PROPER(X)
PROPER(isNatKind(X)) → PROPER(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(150) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X1)
PROPER(U11(X1, X2)) → PROPER(X2)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → PROPER(X)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X1)
PROPER(U41(X1, X2, X3)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X3)
PROPER(U42(X1, X2)) → PROPER(X1)
PROPER(U42(X1, X2)) → PROPER(X2)
PROPER(isNatIList(X)) → PROPER(X)
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(U52(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(length(X)) → PROPER(X)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatKind(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
U11(x1, x2)  =  U11(x1, x2)
U12(x1)  =  x1
isNatList(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  x1
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2)  =  U52(x1, x2)
U53(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)
s(x1)  =  x1
length(x1)  =  length(x1)
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  x1
isNatKind(x1)  =  isNatKind(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U522, proper1] > cons2 > [U413, U513, mark]
[U522, proper1] > U312 > [U413, U513, mark]
[U522, proper1] > U422 > isNatIList1 > [U413, U513, mark]
[U522, proper1] > [length1, isNatKind1] > U112 > [U413, U513, mark]
[U522, proper1] > [length1, isNatKind1] > [U212, isNat1] > tt > isNatIList1 > [U413, U513, mark]
[U522, proper1] > [length1, isNatKind1] > U612 > [U413, U513, mark]
[U522, proper1] > [length1, isNatKind1] > and2 > [U413, U513, mark]
[U522, proper1] > [length1, isNatKind1] > 0 > [U413, U513, mark]
[U522, proper1] > zeros > 0 > [U413, U513, mark]
[U522, proper1] > nil > 0 > [U413, U513, mark]
[U522, proper1] > nil > tt > isNatIList1 > [U413, U513, mark]
top > [U413, U513, mark]

Status:
cons2: [2,1]
U112: [2,1]
U212: [1,2]
isNat1: [1]
U312: [2,1]
U413: [1,3,2]
U422: [2,1]
isNatIList1: [1]
U513: [3,1,2]
U522: [2,1]
U612: [2,1]
length1: [1]
and2: [2,1]
isNatKind1: [1]
zeros: []
mark: []
0: []
tt: []
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(151) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U12(X)) → PROPER(X)
PROPER(isNatList(X)) → PROPER(X)
PROPER(U22(X)) → PROPER(X)
PROPER(U32(X)) → PROPER(X)
PROPER(U43(X)) → PROPER(X)
PROPER(U53(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(isNatIListKind(X)) → PROPER(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(152) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isNatIListKind(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
U12(x1)  =  x1
isNatList(x1)  =  x1
U22(x1)  =  x1
U32(x1)  =  x1
U43(x1)  =  x1
U53(x1)  =  x1
s(x1)  =  x1
isNatIListKind(x1)  =  isNatIListKind(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons
0  =  0
U11(x1, x2)  =  U11
tt  =  tt
U21(x1, x2)  =  x1
isNat(x1)  =  x1
U31(x1, x2)  =  U31
U41(x1, x2, x3)  =  U41(x2)
U42(x1, x2)  =  x1
isNatIList(x1)  =  x1
U51(x1, x2, x3)  =  U51
U52(x1, x2)  =  U52
U61(x1, x2)  =  U61
length(x1)  =  x1
and(x1, x2)  =  x1
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
U11 > [active1, cons] > [zeros, 0] > [isNatIListKind1, mark, isNatKind, nil, top]
U11 > [active1, cons] > U31 > [U411, proper1] > [isNatIListKind1, mark, isNatKind, nil, top]
tt > [isNatIListKind1, mark, isNatKind, nil, top]
U51 > [active1, cons] > [zeros, 0] > [isNatIListKind1, mark, isNatKind, nil, top]
U51 > [active1, cons] > U31 > [U411, proper1] > [isNatIListKind1, mark, isNatKind, nil, top]
U52 > [active1, cons] > [zeros, 0] > [isNatIListKind1, mark, isNatKind, nil, top]
U52 > [active1, cons] > U31 > [U411, proper1] > [isNatIListKind1, mark, isNatKind, nil, top]
U61 > [active1, cons] > [zeros, 0] > [isNatIListKind1, mark, isNatKind, nil, top]
U61 > [active1, cons] > U31 > [U411, proper1] > [isNatIListKind1, mark, isNatKind, nil, top]

Status:
isNatIListKind1: [1]
active1: [1]
zeros: []
mark: []
cons: []
0: []
U11: []
tt: []
U31: []
U411: [1]
U51: []
U52: []
U61: []
isNatKind: []
nil: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(153) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U12(X)) → PROPER(X)
PROPER(isNatList(X)) → PROPER(X)
PROPER(U22(X)) → PROPER(X)
PROPER(U32(X)) → PROPER(X)
PROPER(U43(X)) → PROPER(X)
PROPER(U53(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(154) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isNatList(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U12(x1)  =  x1
isNatList(x1)  =  isNatList(x1)
U22(x1)  =  x1
U32(x1)  =  x1
U43(x1)  =  x1
U53(x1)  =  x1
s(x1)  =  x1
active(x1)  =  active
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x1
0  =  0
U11(x1, x2)  =  x1
tt  =  tt
U21(x1, x2)  =  x1
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  x1
U41(x1, x2, x3)  =  x1
U42(x1, x2)  =  U42
isNatIList(x1)  =  isNatIList
U51(x1, x2, x3)  =  x1
U52(x1, x2)  =  U52
U61(x1, x2)  =  U61
length(x1)  =  x1
and(x1, x2)  =  x1
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
PROPER1 > [active, mark, U42, U52, U61, isNatKind, ok]
[isNatList1, tt] > isNat1 > isNatIListKind > [active, mark, U42, U52, U61, isNatKind, ok]
[isNatList1, tt] > isNatIList > isNatIListKind > [active, mark, U42, U52, U61, isNatKind, ok]
zeros > 0 > [active, mark, U42, U52, U61, isNatKind, ok]
nil > 0 > [active, mark, U42, U52, U61, isNatKind, ok]
top > [active, mark, U42, U52, U61, isNatKind, ok]

Status:
PROPER1: [1]
isNatList1: [1]
active: []
zeros: []
mark: []
0: []
tt: []
isNat1: [1]
U42: []
isNatIList: []
U52: []
U61: []
isNatIListKind: []
isNatKind: []
nil: []
ok: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(155) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U12(X)) → PROPER(X)
PROPER(U22(X)) → PROPER(X)
PROPER(U32(X)) → PROPER(X)
PROPER(U43(X)) → PROPER(X)
PROPER(U53(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(156) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U12(X)) → PROPER(X)
PROPER(U22(X)) → PROPER(X)
PROPER(U53(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U12(x1)  =  U12(x1)
U22(x1)  =  U22(x1)
U32(x1)  =  x1
U43(x1)  =  x1
U53(x1)  =  U53(x1)
s(x1)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x1
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
isNatList(x1)  =  isNatList(x1)
U21(x1, x2)  =  U21(x1)
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2, x3)  =  U41(x2, x3)
U42(x1, x2)  =  U42(x1, x2)
isNatIList(x1)  =  isNatIList
U51(x1, x2, x3)  =  U51
U52(x1, x2)  =  x1
U61(x1, x2)  =  x1
length(x1)  =  x1
and(x1, x2)  =  x1
isNatIListKind(x1)  =  x1
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U121, active1, tt, U211, U412, U51] > [zeros, 0] > [U221, isNat1]
[U121, active1, tt, U211, U412, U51] > mark > [PROPER1, U531] > [U221, isNat1]
[U121, active1, tt, U211, U412, U51] > mark > U112 > isNatList1 > [U221, isNat1]
[U121, active1, tt, U211, U412, U51] > mark > U312 > isNatList1 > [U221, isNat1]
[U121, active1, tt, U211, U412, U51] > mark > U422 > isNatIList > [U221, isNat1]
[U121, active1, tt, U211, U412, U51] > mark > top > [U221, isNat1]
nil > [zeros, 0] > [U221, isNat1]

Status:
PROPER1: [1]
U121: [1]
U221: [1]
U531: [1]
active1: [1]
zeros: []
mark: []
0: []
U112: [2,1]
tt: []
isNatList1: [1]
U211: [1]
isNat1: [1]
U312: [1,2]
U412: [2,1]
U422: [2,1]
isNatIList: []
U51: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(157) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U32(X)) → PROPER(X)
PROPER(U43(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(158) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U32(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U32(x1)  =  U32(x1)
U43(x1)  =  x1
s(x1)  =  s(x1)
active(x1)  =  x1
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x2
0  =  0
U11(x1, x2)  =  U11(x1, x2)
tt  =  tt
U12(x1)  =  U12(x1)
isNatList(x1)  =  isNatList
U21(x1, x2)  =  U21(x1)
U22(x1)  =  x1
isNat(x1)  =  x1
U31(x1, x2)  =  x1
U41(x1, x2, x3)  =  x2
U42(x1, x2)  =  U42
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  U51(x1, x2)
U52(x1, x2)  =  U52(x2)
U53(x1)  =  x1
U61(x1, x2)  =  U61(x2)
length(x1)  =  length
and(x1, x2)  =  x1
isNatIListKind(x1)  =  isNatIListKind(x1)
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
0 > tt > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
isNatList > proper1 > U321 > PROPER1 > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
isNatList > proper1 > U321 > tt > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
isNatList > proper1 > U112 > U121 > tt > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
isNatList > proper1 > U42 > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
isNatList > proper1 > U512 > U521 > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
isNatList > proper1 > isNatIListKind1 > tt > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
isNatList > proper1 > nil > tt > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
isNatKind > proper1 > U321 > PROPER1 > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
isNatKind > proper1 > U321 > tt > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
isNatKind > proper1 > U112 > U121 > tt > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
isNatKind > proper1 > U42 > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
isNatKind > proper1 > U512 > U521 > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
isNatKind > proper1 > isNatIListKind1 > tt > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
isNatKind > proper1 > nil > tt > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
top > proper1 > U321 > PROPER1 > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
top > proper1 > U321 > tt > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
top > proper1 > U112 > U121 > tt > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
top > proper1 > U42 > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
top > proper1 > U512 > U521 > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
top > proper1 > isNatIListKind1 > tt > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]
top > proper1 > nil > tt > [s1, zeros, mark, U211, isNatIList1, U611, length, ok]

Status:
PROPER1: [1]
U321: [1]
s1: [1]
zeros: []
mark: []
0: []
U112: [1,2]
tt: []
U121: [1]
isNatList: []
U211: [1]
U42: []
isNatIList1: [1]
U512: [1,2]
U521: [1]
U611: [1]
length: []
isNatIListKind1: [1]
isNatKind: []
nil: []
proper1: [1]
ok: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(159) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U43(X)) → PROPER(X)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(160) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U43(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U43(x1)  =  U43(x1)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  U11(x1)
tt  =  tt
U12(x1)  =  U12(x1)
isNatList(x1)  =  x1
U21(x1, x2)  =  U21
U22(x1)  =  U22(x1)
isNat(x1)  =  isNat(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  U41(x1)
U42(x1, x2)  =  x1
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  U51
U52(x1, x2)  =  x1
U53(x1)  =  U53(x1)
U61(x1, x2)  =  U61(x2)
s(x1)  =  x1
length(x1)  =  length(x1)
and(x1, x2)  =  x1
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind(x1)
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, mark, 0, U21, U51, U611, isNatKind1] > [PROPER1, U431] > tt > [U221, isNatIListKind]
[active1, mark, 0, U21, U51, U611, isNatKind1] > zeros > [U221, isNatIListKind]
[active1, mark, 0, U21, U51, U611, isNatKind1] > cons2 > [isNat1, length1] > U111 > U121 > tt > [U221, isNatIListKind]
[active1, mark, 0, U21, U51, U611, isNatKind1] > cons2 > U411 > [U221, isNatIListKind]
[active1, mark, 0, U21, U51, U611, isNatKind1] > U321 > tt > [U221, isNatIListKind]
[active1, mark, 0, U21, U51, U611, isNatKind1] > isNatIList1 > tt > [U221, isNatIListKind]
[active1, mark, 0, U21, U51, U611, isNatKind1] > isNatIList1 > U312 > [U221, isNatIListKind]
[active1, mark, 0, U21, U51, U611, isNatKind1] > isNatIList1 > U411 > [U221, isNatIListKind]
[active1, mark, 0, U21, U51, U611, isNatKind1] > U531 > tt > [U221, isNatIListKind]
[active1, mark, 0, U21, U51, U611, isNatKind1] > top > [U221, isNatIListKind]
nil > [U221, isNatIListKind]

Status:
PROPER1: [1]
U431: [1]
active1: [1]
zeros: []
mark: []
cons2: [1,2]
0: []
U111: [1]
tt: []
U121: [1]
U21: []
U221: [1]
isNat1: [1]
U312: [2,1]
U321: [1]
U411: [1]
isNatIList1: [1]
U51: []
U531: [1]
U611: [1]
length1: [1]
isNatIListKind: []
isNatKind1: [1]
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(161) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(162) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(163) TRUE

(164) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U12(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U42(X1, X2)) → ACTIVE(X1)
ACTIVE(U43(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U53(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(and(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(165) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U11(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U12(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X)) → ACTIVE(X)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(length(X)) → ACTIVE(X)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1, x2)  =  U11(x1)
cons(x1, x2)  =  cons(x1)
U12(x1)  =  U12(x1)
U21(x1, x2)  =  x1
U22(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  U32(x1)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U42(x1, x2)  =  x1
U43(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2)  =  U52(x1)
U53(x1)  =  x1
U61(x1, x2)  =  x1
s(x1)  =  s(x1)
length(x1)  =  length(x1)
and(x1, x2)  =  and(x1, x2)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
0  =  0
tt  =  tt
isNatList(x1)  =  isNatList(x1)
isNat(x1)  =  x1
isNatIList(x1)  =  isNatIList
isNatIListKind(x1)  =  x1
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[length1, active1] > zeros > 0 > [U312, ok] > U413 > mark > cons1 > U121
[length1, active1] > zeros > 0 > [U312, ok] > top > U121
[length1, active1] > isNatList1 > U513 > U521 > [ACTIVE1, U111, U321, and2] > [U312, ok] > U413 > mark > cons1 > U121
[length1, active1] > isNatList1 > U513 > U521 > [ACTIVE1, U111, U321, and2] > [U312, ok] > top > U121
[length1, active1] > isNatList1 > tt > U521 > [ACTIVE1, U111, U321, and2] > [U312, ok] > U413 > mark > cons1 > U121
[length1, active1] > isNatList1 > tt > U521 > [ACTIVE1, U111, U321, and2] > [U312, ok] > top > U121
[length1, active1] > isNatList1 > tt > s1 > [ACTIVE1, U111, U321, and2] > [U312, ok] > U413 > mark > cons1 > U121
[length1, active1] > isNatList1 > tt > s1 > [ACTIVE1, U111, U321, and2] > [U312, ok] > top > U121
isNatIList > tt > U521 > [ACTIVE1, U111, U321, and2] > [U312, ok] > U413 > mark > cons1 > U121
isNatIList > tt > U521 > [ACTIVE1, U111, U321, and2] > [U312, ok] > top > U121
isNatIList > tt > s1 > [ACTIVE1, U111, U321, and2] > [U312, ok] > U413 > mark > cons1 > U121
isNatIList > tt > s1 > [ACTIVE1, U111, U321, and2] > [U312, ok] > top > U121
nil > 0 > [U312, ok] > U413 > mark > cons1 > U121
nil > 0 > [U312, ok] > top > U121
nil > tt > U521 > [ACTIVE1, U111, U321, and2] > [U312, ok] > U413 > mark > cons1 > U121
nil > tt > U521 > [ACTIVE1, U111, U321, and2] > [U312, ok] > top > U121
nil > tt > s1 > [ACTIVE1, U111, U321, and2] > [U312, ok] > U413 > mark > cons1 > U121
nil > tt > s1 > [ACTIVE1, U111, U321, and2] > [U312, ok] > top > U121

Status:
ACTIVE1: [1]
U111: [1]
cons1: [1]
U121: [1]
U312: [2,1]
U321: [1]
U413: [2,1,3]
U513: [1,2,3]
U521: [1]
s1: [1]
length1: [1]
and2: [2,1]
active1: [1]
zeros: []
mark: []
0: []
tt: []
isNatList1: [1]
isNatIList: []
nil: []
ok: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(166) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U42(X1, X2)) → ACTIVE(X1)
ACTIVE(U43(X)) → ACTIVE(X)
ACTIVE(U53(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(167) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U43(X)) → ACTIVE(X)
ACTIVE(U53(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U21(x1, x2)  =  x1
U22(x1)  =  x1
U42(x1, x2)  =  x1
U43(x1)  =  U43(x1)
U53(x1)  =  U53(x1)
U61(x1, x2)  =  x1
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  mark
cons(x1, x2)  =  x1
0  =  0
U11(x1, x2)  =  x2
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  isNatList(x1)
isNat(x1)  =  isNat
U31(x1, x2)  =  U31(x1)
U32(x1)  =  U32
U41(x1, x2, x3)  =  U41(x2, x3)
isNatIList(x1)  =  isNatIList
U51(x1, x2, x3)  =  x2
U52(x1, x2)  =  U52(x2)
s(x1)  =  s
length(x1)  =  length
and(x1, x2)  =  x2
isNatIListKind(x1)  =  x1
isNatKind(x1)  =  x1
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[zeros, 0] > [tt, isNatIList, length, ok] > [mark, U311, U521]
U412 > active1 > [ACTIVE1, U431, U531] > [tt, isNatIList, length, ok] > [mark, U311, U521]
U412 > active1 > isNatList1 > [tt, isNatIList, length, ok] > [mark, U311, U521]
U412 > active1 > isNat > [tt, isNatIList, length, ok] > [mark, U311, U521]
U412 > active1 > U32 > [tt, isNatIList, length, ok] > [mark, U311, U521]
s > active1 > [ACTIVE1, U431, U531] > [tt, isNatIList, length, ok] > [mark, U311, U521]
s > active1 > isNatList1 > [tt, isNatIList, length, ok] > [mark, U311, U521]
s > active1 > isNat > [tt, isNatIList, length, ok] > [mark, U311, U521]
s > active1 > U32 > [tt, isNatIList, length, ok] > [mark, U311, U521]
nil > [tt, isNatIList, length, ok] > [mark, U311, U521]
top > [mark, U311, U521]

Status:
ACTIVE1: [1]
U431: [1]
U531: [1]
active1: [1]
zeros: []
mark: []
0: []
tt: []
isNatList1: [1]
isNat: []
U311: [1]
U32: []
U412: [1,2]
isNatIList: []
U521: [1]
s: []
length: []
nil: []
ok: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(168) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U42(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(169) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U42(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  U22(x1)
U42(x1, x2)  =  U42(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
active(x1)  =  active(x1)
zeros  =  zeros
mark(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
0  =  0
U11(x1, x2)  =  x2
tt  =  tt
U12(x1)  =  x1
isNatList(x1)  =  x1
isNat(x1)  =  x1
U31(x1, x2)  =  x2
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U43(x1)  =  U43(x1)
isNatIList(x1)  =  isNatIList(x1)
U51(x1, x2, x3)  =  U51(x2, x3)
U52(x1, x2)  =  x2
U53(x1)  =  x1
s(x1)  =  x1
length(x1)  =  length(x1)
and(x1, x2)  =  and(x1, x2)
isNatIListKind(x1)  =  isNatIListKind
isNatKind(x1)  =  isNatKind
nil  =  nil
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
ACTIVE1 > [isNatIListKind, isNatKind]
[U422, active1] > U212 > U221 > [isNatIListKind, isNatKind]
[U422, active1] > U612 > length1 > [cons2, U413, and2] > U512 > [isNatIListKind, isNatKind]
[U422, active1] > zeros > [0, nil] > [isNatIListKind, isNatKind]
[U422, active1] > zeros > tt > U221 > [isNatIListKind, isNatKind]
[U422, active1] > zeros > tt > U431 > [isNatIListKind, isNatKind]
[U422, active1] > zeros > tt > length1 > [cons2, U413, and2] > U512 > [isNatIListKind, isNatKind]
[U422, active1] > isNatIList1 > tt > U221 > [isNatIListKind, isNatKind]
[U422, active1] > isNatIList1 > tt > U431 > [isNatIListKind, isNatKind]
[U422, active1] > isNatIList1 > tt > length1 > [cons2, U413, and2] > U512 > [isNatIListKind, isNatKind]
top > [isNatIListKind, isNatKind]

Status:
ACTIVE1: [1]
U212: [2,1]
U221: [1]
U422: [2,1]
U612: [1,2]
active1: [1]
zeros: []
cons2: [1,2]
0: []
tt: []
U413: [3,1,2]
U431: [1]
isNatIList1: [1]
U512: [1,2]
length1: [1]
and2: [1,2]
isNatIListKind: []
isNatKind: []
nil: []
top: []


The following usable rules [FROCOS05] were oriented:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(170) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(171) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(172) TRUE

(173) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(zeros) → mark(cons(0, zeros))
active(U11(tt, V1)) → mark(U12(isNatList(V1)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isNatList(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isNat(V1), V2))
active(U42(tt, V2)) → mark(U43(isNatIList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNat(V1), V2))
active(U52(tt, V2)) → mark(U53(isNatList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, L)) → mark(s(length(L)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(length(V1))) → mark(U11(isNatIListKind(V1), V1))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatIList(V)) → mark(U31(isNatIListKind(V), V))
active(isNatIList(zeros)) → mark(tt)
active(isNatIList(cons(V1, V2))) → mark(U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(isNatIListKind(nil)) → mark(tt)
active(isNatIListKind(zeros)) → mark(tt)
active(isNatIListKind(cons(V1, V2))) → mark(and(isNatKind(V1), isNatIListKind(V2)))
active(isNatKind(0)) → mark(tt)
active(isNatKind(length(V1))) → mark(isNatIListKind(V1))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(isNatList(nil)) → mark(tt)
active(isNatList(cons(V1, V2))) → mark(U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(s(X)) → s(active(X))
active(length(X)) → length(active(X))
active(and(X1, X2)) → and(active(X1), X2)
cons(mark(X1), X2) → mark(cons(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
s(mark(X)) → mark(s(X))
length(mark(X)) → mark(length(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNatList(X)) → isNatList(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(isNatIList(X)) → isNatIList(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatIListKind(X)) → isNatIListKind(proper(X))
proper(isNatKind(X)) → isNatKind(proper(X))
proper(nil) → ok(nil)
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNatList(ok(X)) → ok(isNatList(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
isNat(ok(X)) → ok(isNat(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
isNatIList(ok(X)) → ok(isNatIList(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatIListKind(ok(X)) → ok(isNatIListKind(X))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.